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Some class of nonlinear partial
di�erential equations in the ring
of copolynomials over a
commutative ring

Sergiy L. Gefter and Aleksey L. Piven’*

School of Mathematics and Computer Sciences, V. N. Karazin Kharkiv National University, Kharkiv,

Ukraine

We study the copolynomials, i.e., K-linear mappings from the ring of polynomials

K[x] into the commutative ring K. With the help of the Cauchy–Stieltjes transform

of a copolynomial, we introduce and examine a multiplication of copolynomials.

We investigate the Cauchy problem related to the nonlinear partial di�erential

equation ∂u
∂t = aum0

(

∂u
∂x

)m1
(

∂2u
∂x2

)m2
(

∂3u
∂x3

)m3
, m0,m1,m2,m3 ∈

N0,
∑3

j=0mj > 0, a ∈ K in the ring of copolynomials. To find a solution, we

use the series of powers of the δ-function. As examples, we consider the Cauchy

problem with the Euler–Hopf equation ∂u
∂t + u ∂u

∂x = 0, for a Hamilton–Jacobi

type equation ∂u
∂t =

(

∂u
∂x

)2
, and for the Harry Dym equation ∂u

∂t = u3 ∂3u
∂x3

.

KEYWORDS

copolynomial, δ-function, partial di�erential equation, Cauchy problem, Cauchy-

Stieltjes transform, multiplication of copolynomials

1 Introduction

The first, second, and third order equations play an important role in the theory

of nonlinear partial differential equations. A significant portion of classical nonlinear

differential equations is dedicated to these classes (see, for example, [1–5]). In this paper,

we examine a purely algebraic approach to study the special Cauchy problem with the

following evolution equation:

∂u

∂t
= aum0

(

∂u

∂x

)m1
(

∂2u

∂x2

)m2 (
∂3u

∂x3

)m3

(1.1)

u(0, x) = u0δ(x). (1.2)

We study this Cauchy problem in the module K[x]′ of the K-linear functionals on

the ring of polynomials K[x], where K is an arbitrary commutative integral domain with

identity and a, u0 ∈ K. We consider the module K[x]′ as an algebraic analog of space of

distributions (see [6, 7]), where linear partial differential equations in the module K[x]′

were studied). In this paper, the elements of the module K[x]′ are called copolynomials

(see Section 2). A copolynomial δ(x) is defined in the usual way: (δ, p) = p(0), p ∈ K[x].

A multiplication operation for copolynomials plays an important role for us. We define

the product of copolynomials using the Cauchy–Stieltjes transform (see Section 3). We

take note of several non-equivalent constructions of a multiplication that are considered

in classical theories of distributions. For example, in the Colombeau theory [8, 9], the
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square of the δ-function is well-defined, but in some other theories

it is not defined (see, for example, Antosik et al. [10]; Section 12.5).

In Section 4, we prove the existence and uniqueness theorem

for the Cauchy problem (1.1), (1.2), and establish a representation

of the solution in the form of the series in powers of the δ-function

(Theorem 4.1). As examples, we consider the Cauchy problem

for the Euler–Hopf equation ∂u
∂t + u ∂u

∂x = 0, for the Hamilton–

Jacobi type equation ∂u
∂t =

(

∂u
∂x

)2
, and for the Harry Dym equation

∂u
∂t = u3 ∂3u

∂x3
. In some of these examples, an interesting connection

between classical nonlinear partial differential equations and well-

known integer sequences is discovered (see examples 4.1, 4.2, and

4.4, where the Euler–Hopf equation, the Hamilton–Jacobi equation,

and the Harry Dym equation are studied, respectively). Note that

we restrict our consideration of equations of type (1.1) to those

of the order no higher than three for two reasons. First, the

representation in the proof of Theorem 4.1 generally becomesmore

cumbersome. Second, we are unaware of any classical examples of

nonlinear equations of type (1.1) of order higher than three (see

[3, 5]).

Linear functionals in the space of polynomials were extensively

studied from different points of views in algebra, combinatorics,

and the theory of orthogonal polynomials (cf., for example, [11–

13]). In a classical case of (K = R or K = C), series with respect to

derivatives of the δ-function are intensively studied because of their

applications to differential and functional-differential equations

and the theory of orthogonal polynomials [13]. Formal power series

solutions of nonlinear partial differential equations were examined

in a number of studies (cf., for example, [14–16]).

2 Preliminary

Let K be an arbitrary commutative integral domain with

identity, and letK[x] be a ring of polynomials with coefficients inK.

Definition 2.1. By a copolynomial over the ring K, we mean a K-

linear functional defined on the ring K[x], i.e., a homomorphism

occurring from the module K[x] to the ring K.

We denote the module of copolynomials over K by K[x]′. Thus,

T ∈ K[x]′ if and only if T :K[x] → K and T has the property

of K-linearity: T(ap + bq) = aT(p) + bT(q) for all p, q ∈ K[x]

and a, b ∈ K. If T ∈ K[x]′ and p ∈ K[x], are for the value of T

on p, we use the notation (T, p). We also write the copolynomial

T ∈ K[x]′ in the form T(x), where x is regarded as the argument

of polynomials p(x) ∈ K[x] and is subjected to the action of the K-

linear mapping T. In this case, the result of action of T upon p can

be represented in the form (T(x), p(x)).

Let p(x) =
m
∑

n=0
anx

n ∈ K[x]. For any x ∈ K, we consider the

polynomial p(x+ h) ∈ K[h]:

p(x+ h) =
m
∑

n=0

pn(x)h
n,

where pn(x) ∈ K. Since, in the case of a field with zero

characteristic, pn(x) = p(n)(x)
n! , we also assume that by definition

p(n)(x)
n! = pn(x), n = 0, ...,m is also true for any commutative ring

K. For n > m, we assume that
p(n)(x)
n! = 0.

Definition 2.2. The derivative T′ of a copolynomial T ∈ K[x]′, as

in the classical case, is given in the formula

(T′, p) = −(T, p′), p ∈ K[x].

By using this result, we arrive at the following expression for the

nth order derivative:

(T(n), p) = (−1)n(T, p(n)), p ∈ K[x].

Hence,

(T(n), p) = 0, T ∈ K[x]′, p ∈ K[x], n > degp.

By virtue of the equality

(

T(n)

n!
, p

)

= (−1)n

(

T,
p(n)

n!

)

, p ∈ K[x] (2.1)

the copolynomials T(n)

n! are well defined for any T ∈ K[x]′ and

n ∈ N .

Example 2.1. The copolynomial δ-function is given in the formula

(δ, p) = p(0), p ∈ K[x].

For the copolynomial δ-function, we find its derivative of the

nth order as follows:

(δ(n), p) = (−1)n(δ, p(n)) = (−1)np(n)(0), n ∈ N.

Example 2.2. Let K = R and let f :R → R be a Lebesgue-

integrable function such that

∞
∫

−∞

|xnf (x)|dx < +∞, n = 0, 1, 2, ... (2.2)

Then, f generates the regular copolynomial Tf :

(Tf , p) =
∞
∫

−∞

p(x)f (x)dx, p ∈ R[x].

Note that, in this case, unlike the classical theory, all

copolynomials are regular ([13], Theorem 7.3.4), although a

nonzero function f can generate the zero copolynomial {([17],

Remark 1), ([18], Example 2.2)}. We present an example of

a function that satisfies the property (2.2) and generates the

δ-function.

It is known that for any ε > 0 there exists an even function

ϕε(x) ∈ C∞
0 (R) such that ϕε(x) = 1 for any x ∈ (−ε; ε) [19].

Then, ϕε(0) = 1 and ϕ
(k)
ε (0) = 0, and k ∈ N. The inverse Fourier

transform

fε(x) =
1

2π

∞
∫

−∞

ϕε(λ)e
iλxdλ =

1

2π

∞
∫

−∞

ϕε(λ) cos λxdλ
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is an element of the Schwarz space S(R). Then, ϕε(λ) is the Fourier

transform of fε(x):

ϕε(λ) =
∞
∫

−∞

fε(x)e
−iλxdx

and

∞
∫

−∞

fε(x)dx = ϕε(0) = 1,

∞
∫

−∞

xkfε(x)dx = ikϕ(k)
ε (0) = 0, k ∈ N,

∞
∫

−∞

p(x)fε(x)dx = p(0), p ∈ K[x],

i.e., fε(x) generates the copolynomial δ-function for any ε > 0.

We now consider the issue of convergence in the space K[x]′.

In the ring K, we consider the discrete topology. Further, in

the module of copolynomials K[x]′, we consider the topology of

pointwise convergence. The convergence of a sequence {Tn}∞n=1 to

T in K[x]′ means that for every polynomial p ∈ K[x], there exists a

number n0 ∈ N such that

(Tn, p) = (T, p), n = n0, n0 + 1, n0 + 2, ....

By the definition of convergence in the module K[x]′, we arrive

at the following statement [6].

Theorem 2.1. Let {an}∞n=0 be a sequence of elements from K and

let T ∈ K[x]′. Then, the series
∞
∑

n=0
an

T(n)

n! converges in K[x]′.

The following assertion [6] shows the possibility of an

expansion of an arbitrary formal generalized function in a series

in the system
{

δ(n)

n!

}∞

n=0
{see also ([12], Proposition 2.3) in the case

K = C}.

Lemma 2.1. Let T ∈ K[x]′. Then,

T =
∞
∑

n=0

(−1)n(T, xn)
δ(n)

n!
. (2.3)

3 Multiplication of copolynomials

3.1 The Cauchy–Stieltjes transform

Let K
[[

z, 1z
]]

be the module of formal Laurent series with

coefficients in K. For g ∈ K
[[

z, 1z
]]

and g(z) =
∞
∑

k=−∞
gkz

k, we

naturally define the formal residue:

Res(g(z)) = g−1.

Definition 3.1. Let T ∈ K[x]′. Consider the following formal

Laurent series from the ring 1
sK[[

1
s ]]:

C(T)(s) =
∞
∑

k=0

(T, xk)

sk+1
.

The Laurent series C(T)(s) will be called the Cauchy–Stieltjes

transform of a copolynomial T.

We may write informally as follows: C(T)(s) =
(

T, 1
s−x

)

.

Obviously, that the mapping C :K[x]′ → 1
sK[[

1
s ]] is an

isomorphism of K-modules.

Proposition 3.1. (The inversion formula). Let T ∈ K[x]′ and p ∈
K[x]. Then,

(T, p) = Res(C(T)(s)p(s)).

Proof. It is sufficient to consider the case p(x) = xn for some

n ∈ N0. We have

C(T)(s)sn =
∞
∑

k=0

(T, xk)sn

sk+1
.

Therefore, Res(C(T)(s)sn) = (T, xn).

Example 3.1. For the copolynomial δ-function, we have

C(δ)(s) =
1

s
. (3.1)

The following proposition shows that in some sense the

differentiating commutes with the Cauchy–Stieltjes transform.

Proposition 3.2. For any T ∈ K[x]′, the equality

C
(

T(n)
)

= C(T)(n), n ∈ N

holds valid.

Proof. It is sufficient to consider the case n = 1, so that

C
(

T′) (s) =
∞
∑

k=0

(T′, xk)

sk+1
=

= −
∞
∑

k=1

k(T, xk−1)

sk+1
= −

∞
∑

k=0

(k+ 1)(T, xk)

sk+2
= C(T)′(s).

3.2 Multiplication of copolynomials and its
properties

The Cauchy–Stieltjes transform and Proposition 3.2 allow

to introduce the multiplication operation on the module of

copolynomials such that this operation is consistent with

the differentiation.

Definition 3.2. Let T1,T2 ∈ K[x]′, i.e., T1,T2 are copolynomials.

Define their product by the following equality:

C(T1T2) = C(T1)C(T2), (3.2)

i.e.,

T1T2 = C−1
(

C(T1)C(T2)
)

,

where C :K[x]′ → 1
sK[[

1
s ]] is a Cauchy–Stieltjes transform.
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In the following lemma, the action of the product of

copolynomials on monomials is expressed through the action of

multipliers on monomials.

Lemma 3.1. Let T1,T2 ∈ K[x]′ and n ∈ N0. Then,

(T1T2, x
n) =







n−1
∑

k=0

(T1, x
k)(T2, x

n−1−k), n ∈ N,

0, n = 0.

(3.3)

Proof. By Equation 3.2, we have

C(T1T2)(s) = C(T1)(s)C(T2)(s) =
∞
∑

k=0

∞
∑

j=0

(T1, x
k)(T2, x

j)

sk+j+2

=
∞
∑

n=1

n−1
∑

k=0

(T1, x
k)(T2, x

n−1−k)
1

sn+1
.

Applying the inversion formula to the both part of this equality

(see Proposition 3.1), we obtain (3.3).

Remark 3.1. Definition 3.2 means that the module of

copolynomials K[x]′ with the introduced product is a associative

commutative ring, which isomorphic to the ring of formal Laurent

series 1
sK[[

1
s ]] with a natural product operation. In particular,

the ring of copolynomials is an integral domain and this is a ring

without identity.

Example 3.2. Let n = 1. With the help of Proposition 3.2, we find

the square of δ-function:

C(δ2)(s) = (C(δ))2(s) =
1

s2
=
(

−1

s

)′
= (−C(δ))′ = C(−δ′),

i.e.,

δ2 = −δ′.

Moreover, by Equations 2.1, 3.1, we have

C

(

δ(n)

n!

)

(s) =
∞
∑

k=0

(

δ(n)

n!
, xk

)

1

sk+1
=

∞
∑

k=0

(

δ,
1

n!

dnxk

dxn

)

(−1)n

sk+1
=

=
(−1)n

sn+1
= (−1)n(C(δ))n+1,

so that

(−1)nδ(n)

n!
= δn+1, n = 0, 1, 2, ..., (3.4)

and therefore,

(δn)′ = −nδn+1, n ∈ N. (3.5)

Hence, by Theorem 2.1 and (3.4), the series

∞
∑

k=0

ukδ
k+1 =

∞
∑

k=0

(−1)k
δ(k)

k!
uk

converges for any uk ∈ K.

Remark 3.2. By Lemma 2.1 and (3.4) for any copolynomial T ∈
K[x]′, the expansion in powers of the δ-function holds:

T =
∞
∑

k=0

(T, xk)δk+1.

Remark 3.3. The equalities (3.1) and (3.4) show that in a certain

sense δ(x) and 1
s are related (see also [1], p. 79).

4 Main results and examples

4.1 Formal power series over the ring of
copolynomials

The ring of formal power series in the form u(t, x) =
∞
∑

k=0

uk(x)t
k with coefficients uk(x) ∈ K[x]′ will be denoted by

K[x]′[[t]]. In this subsection, we remind several notations from

Gefter and Piven’ [6].

The partial derivative with respect to t of the series u(t, x) ∈
K[x]′[[t]] is defined by the formula

∂u

∂t
=

∞
∑

k=1

kuk(x)t
k−1.

The partial derivative ∂u
∂x of the series u(t, x) ∈ K[x]′[[t]] is

defined as follows:

∂u

∂x
=

∞
∑

k=0

u′k(x)t
k.

By (u(t, x), p(x)), we denote the action of u(t, x) ∈ K[x]′[[t]] on

p(x) ∈ K[x], which is defined coefficient-wise.

(u(t, x), p(x)) =
∞
∑

k=0

(uk(x), p(x))t
k.

Thus, (u(t, x), p(x)) ∈ K[[t]].

4.2 Existence and uniqueness theorem

Let a, u0 ∈ K and let mj ∈ N0 (j = 0, 1, 2, 3),
3
∑

j=0
mj > 0.

Consider the Cauchy problem (1.1), (1.2) in the ring K[x]′[[t]].

We prove the following existence and uniqueness theorem for this

Cauchy problem.

Theorem 4.1. Let K ⊃ Q. Then, the Cauchy problem (1.1), (1.2)

has a unique solution in K[x]′[[t]]. This solution is in the form

u(t, x) =
∞
∑

k=0

ukδ
nk+1tk, (4.1)

where uk ∈ K and n =
3
∑

j=0
(j+ 1)mj − 1. Moreover, for every t ∈ K,

this series converges in the topology of K[x]′.
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Proof. We will find the solution of the Cauchy problem (1.1), (1.2)

in the form (4.1). Differentiating (4.1) on x and t and taking into

account (3.5), we have

∂u

∂t
=

∞
∑

k=0

(k+ 1)uk+1δ
nk+n+1tk, (4.2)

∂u

∂x
= −

∞
∑

k=0

(nk+ 1)ukδ
nk+2tk,

∂2u

∂x2
=

∞
∑

k=0

(nk+ 1)(nk+ 2)ukδ
nk+3tk,

∂3u

∂x3
= −

∞
∑

k=0

(nk+ 1)(nk+ 2)(nk+ 3)ukδ
nk+4tk.

Then,

um0 =
∞
∑

τ0=0

∑

|α|=τ0

uα1 · · · uαm0
δnτ0+m0 tτ0 ,

(

∂u

∂x

)m1

= (−1)m1

∞
∑

τ1=0

∑

|β|=τ1

(nβ1 + 1) · · · (nβm1 + 1)uβ1 · · · uβm1
δnτ1+2m1 tτ1 ,

(

∂2u

∂x2

)m2

=
∞
∑

τ2=0

∑

|γ |=τ2

(nγ1 + 1) · · ·

(nγm2 + 1)(nγ1 + 2) · · · (nγm2 + 2)uγ1 · · · uγm2
δnτ2+3m2 tτ2 ,

(

∂3u

∂x3

)m3

= (−1)m3

∞
∑

τ3=0

∑

|σ |=τ3

(nσ1 + 1) · · · (nσm3 + 1)

(nσ1 + 2) · · · (nσm3 + 2) ·

·(nσ1 + 3) · · · (nσm3 + 3)uσ1 · · · uσm3
δnτ3+4m3 tτ3 ,

where α,β , γ , σ are multi-indexes, α = (α1, ...,αm0 ),β =
(β1, ...,βm1 ), γ = (γ1, ..., γm2 ), σ = (σ1, ..., σm3 ). Therefore,

aum0

(

∂u

∂x

)m1
(

∂2u

∂x2

)m2 (
∂3u

∂x3

)m3

= (−1)m1+m3a

∞
∑

k=0

∑

|τ |=k

∑

|α|=τ0

uα1 · · · uαm0
·

·
∑

|β|=τ1

(nβ1 + 1) · · · (nβm1 + 1)uβ1 · · · uβm1
·

·
∑

|γ |=τ2

(nγ1 + 1) · · · (nγm2 + 1)

(nγ1 + 2) · · · (nγm2 + 2)uγ1 · · · uγm2
·

·
∑

|σ |=τ3

(nσ1 + 1) · · · (nσm3 + 1)(nσ1 + 2) · · · (nσm3 + 2)

(nσ1 + 3) · · · (nσm3 + 3)uσ1 · · · uσm3
δnk+n+1tk, (4.3)

where τ = (τ0, τ1, τ2, τ3). Equating coefficients at δnk+n+1tk in

right-hand sides of (4.2) and (4.3), we obtain

(k+ 1)uk+1 = (−1)m1+m3a
∑

|τ |=k

∑

|α|=τ0

uα1 · · · uαm0
·

·
∑

|β|=τ1

(nβ1 + 1) · · · (nβm1 + 1)uβ1 · · · uβm1
·

·
∑

|γ |=τ2

(nγ1 + 1) · · · (nγm2 + 1)

(nγ1 + 2) · · · (nγm2 + 2)uγ1 · · · uγm2
·

·
∑

|σ |=τ3

(nσ1 + 1) · · · (nσm3 + 1)(nσ1 + 2) · · · (nσm3 + 2)

(nσ1 + 3) · · · (nσm3 + 3)uσ1 · · · uσm3
.

Since K ⊃ Q, we obtain that for any k ∈ N0 the element uk+1

is uniquely expressed through u0, ..., uk. Now, if t ∈ K, then by

Equation 3.4

u(t, x) =
∞
∑

k=0

ukδ
nk+1tk =

∞
∑

k=0

(−1)nk
δ(nk)

(nk)!
ukt

k

so that the convergence of the series (4.1) follows from Theorem

2.1. Now, we prove the uniqueness of the solution of the Cauchy

problem (1.1), (1.2) in the ring K[x]′[[t]]. We will find a solution of

the Cauchy problem (1.1), (1.2) in the form

u(t, x) =
∞
∑

k=0

vk(x)t
k,

where vk(x) ∈ K[x]′. Then, by the initial condition (1.2), we

have v0(x) = u0δ(x). Substitute u(t, x) into Equation 1.1 and

equate coefficients of tk. Then, there exist polynomials pk ∈
K[z1, ..., z4(k+1)] (k = 0, 1, 2, ...) such that

(k+ 1)vk+1(x) = pk

(

v0(x),
∂v0

∂x
,
∂2v0

∂x2
,
∂3v0

∂x3
, ...,

vk(x),
∂vk

∂x
,
∂2vk

∂x2
,
∂3vk

∂x3

)

.

Since the ring K contains the field of rational numbers, from

this we uniquely find uk(x), k ∈ N:

vk(x) = k−1pk−1

(

v0(x),
∂v0

∂x
,
∂2v0

∂x2
,
∂3v0

∂x3
, ...,

vk−1(x),
∂vk−1

∂x
,
∂2vk−1

∂x2
,
∂3vk−1

∂x3

)

.

The proof is complete.

4.3 Examples

We consider some examples of classical equations that illustrate

Theorem 4.1. In what follows, we suppose that K is of characteristic

0 ([20], Section 1.43). We denote by F the quotient field of K.

Obviously, K ⊃ Z and F ⊃ Q.
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Example 4.1. Let u0 ∈ K. In K[x]′[[t]], consider the following

Cauchy problem for the Euler–Hopf equation:

∂u

∂t
+ u

∂u

∂x
= 0, (4.4)

u(0, x) = u0δ(x). (4.5)

By Theorem 4.1, the Cauchy problem (4.4), (4.5) has a unique

solution in F[x]′[[t]] and this solution can be represented in the

form (4.1) of n = 2:

u(t, x) =
∞
∑

k=0

ukδ
2k+1tk, (4.6)

where uk ∈ F. Substituting (4.6) into (4.4), we obtain (see Proof of

Theorem 4.1):

∞
∑

k=0

(k+ 1)uk+1δ
2k+3tk =

∞
∑

k=0

k
∑

j=0

(2j+ 1)ujuk−jδ
2k+3tk. (4.7)

Equating coefficients at δ2k+3tk in (4.7), we have

(k+ 1)uk+1 =
k
∑

j=0

(2j+ 1)ujuk−j, k ∈ N0. (4.8)

Since

k
∑

j=0

(2j+ 1)ujuk−j = (k+ 1)

k
∑

j=0

ujuk−j,

the equality (4.8) implies

(k+ 1)uk+1 = (k+ 1)

k
∑

j=0

ujuk−j, k ∈ N0. (4.9)

Since K is of characteristic 0, the equality (4.9) is reduced to the

following recurrence equation:

uk+1 =
k
∑

j=0

ujuk−j, k ∈ N0. (4.10)

If u0 = 1, then the solution of (4.10) is uk = Ck, where

Ck = (k + 1)−1

(

2k

k

)

(k ∈ N0) is the sequence of the Catalan

numbers ([21], Section 7.5). Generally, the solution of (4.10) is in

the form uk = Cku
k+1
0 (k ∈ N0), so that

u(t, x) =
∞
∑

k=0

Ckδ
2k+1uk+1

0 tk =
∞
∑

k=0

Ck
δ(2k)(x)

(2k)!
uk+1
0 tk (4.11)

(see Equation 3.4). Since u(t, x) ∈ K[x]′[[t]], it is a unique solution

of the Cauchy problem (4.4), (4.5) in the ring K[x]′[[t]].

Remark 4.1. Note that for any t ∈ K, the series (4.11) converges in

the topology of K[x]′. The Cauchy–Stieltjes transform of (4.11) is

the following Laurent series
∞
∑

k=0

Cku
k+1
0 tk

x2k+1 . If K = R, then this series

is an expansion of the functionw(t, x) = x−
√

x2−4u0t
2t in the domain

D = {(t, x) ∈ R2
: x > 0, x2 − 4u0t > 0}. The function w(t, x) is a

classical solution of the Euler–Hopf equation (4.4) in the domainD.

Example 4.2. Let u0 ∈ K. In K[x]′[[t]], consider the following

Cauchy problem for a Hamilton–Jacobi type equation ([5], Section

24.1.6):

∂u

∂t
=
(

∂u

∂x

)2

, (4.12)

u(0, x) = u0δ(x). (4.13)

By Theorem 4.1, the Cauchy problem (4.12), (4.13) has a unique

solution in F[x]′[[t]] and this solution can be represented in the

form (4.1) for n = 3:

u(t, x) =
∞
∑

k=0

ukδ
3k+1tk, (4.14)

where uk ∈ F. Substituting (4.14) into (4.4), we obtain (see Proof of

Theorem 4.1):

∞
∑

k=0

(k+1)uk+1δ
3k+4tk =

∞
∑

k=0

k
∑

j=0

(3j+1)(3(k−j)+1)ujuk−jδ
3k+4tk.

(4.15)

Equating coefficients at δ3k+4tk in Equation 4.15, we have

(k+ 1)uk+1 =
k
∑

j=0

(3j+ 1)(3(k− j)+ 1)ujuk−j, k ∈ N0. (4.16)

We prove that yk = 2kC
(3)
k

k+1
is a solution of the recurrence

Equation 4.16 with the initial condition u0 = 1, where C
(3)
k

=

(3k+1)−1

(

3k+ 1

k

)

=
(3k)!

k!(2k+ 1)!
(k ∈ N0) are the Fuss–Catalan

numbers {[21], Section 7.5, Formula (7.67)}.

Consider the following combinatorial identity that was proved

in Gould [22]:

4

3k+ 4

(

3k+ 4

k

)

=
k
∑

j=0

2

3j+ 2

(

3j+ 2

j

)

2

3(k− j)+ 2

(

3(k− j)+ 2

k− j

)

, k ∈ N0. (4.17)

Since

2

3j+ 2

(

3j+ 2

j

)

=
2(3j+ 1)!

j!(2j+ 1)!(2j+ 2)
=

1

j+ 1

(

3j+ 1

j

)

,

j ∈ N0,
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the equality (4.17) can be written in the form

4

3k+ 4

(

3k+ 4

k

)

=
k
∑

j=0

1

j+ 1

(

3j+ 1

j

)

1

k− j+ 1

(

3(k− j)+ 1

k− j

)

, k ∈ N0. (4.18)

Since

4

3k+ 4

(

3k+ 4

k

)

=
4(3k+ 4)!

k!(2k+ 4)!(3k+ 4)
=

=
2(3k+ 4)!(k+ 1)

(2k+ 3)!k!(k+ 1)(k+ 2)(3k+ 4)

=
2(k+ 1)

(k+ 2)(3k+ 4)

(

3k+ 4

2k+ 3

)

=

=
2(k+ 1)

(k+ 2)(3k+ 4)

(

3(k+ 1)+ 1

k+ 1

)

=
2(k+ 1)

k+ 2

C
(3)
k+1

=
(k+ 1)yk+1

2k
,

after the multiplication (4.18) by 2k, we have

(k+ 1)yk+1 =
k
∑

j=0

2j

j+ 1

(

3j+ 1

j

)

2k−j

k− j+ 1

(

3(k− j)+ 1

k− j

)

=

=
k
∑

j=0

(3j+ 1)(3(k− j)+ 1)yjyk−j, k ∈ N0,

i.e., yk satisfy (4.16). Since yk = 2k(3k)!
(k+1)!(2k+1)!

is the number of

inequivalent rooted maps of some vertices {[23], p.409, Section 5

and Formula (5.7)}, we have yk ∈ Z (see also the integer sequence

A000309 in Sloane [24]). Therefore, if u0 = 1, then uk = yk ∈ Z.

Now, we consider an arbitrary u0 ∈ K. Multiplying the equality

(k+ 1)yk+1 =
k
∑

j=0

(3j+ 1)(3(k− j)+ 1)yjyk−j, k ∈ N0

by uk+2
0 , we obtain

uk+2
0 yk+1 =

1

k+ 1

k
∑

j=0

(3j+ 1)(3(k− j)+ 1)u
j+1
0 yju

k−j+1
0 yk−j,

k ∈ N0.

Therefore, for any u0 ∈ K, the sequence uk = uk+1
0 yk ∈ K

satisfies Equation 4.16. Hence, Equation 4.14 defines the unique

solution to the Cauchy problem (4.12), (4.13) in K[x]′[[t]].

Example 4.3. Let b, u0 ∈ K. Consider the following Cauchy

problem for the heat equation in K[x]′[[t]]

∂u

∂t
= b

∂2u

∂x2
, (4.19)

u(0, x) = u0δ(x). (4.20)

By Theorem 4.1, the Cauchy problem (4.19), (4.20) has a unique

solution in F[x]′[[t]] and this solution can be represented in the

form (4.1) for n = 2:

u(t, x) =
∞
∑

k=0

ukδ
2k+1tk, (4.21)

where uk ∈ F. Substituting (4.21) into (4.19), we obtain (see Proof

of Theorem 4.1):

∞
∑

k=0

(k+ 1)uk+1δ
2k+3tk = b

∞
∑

k=0

(2k+ 1)(2k+ 2)ukδ
2k+3tk. (4.22)

Equating coefficients at δ3k+4tk in Equation 4.22, we have

(k+ 1)uk+1 = b(2k+ 1)(2k+ 2)uk, k ∈ N0

Since K is of characteristic 0, this implies the following

difference equation

uk+1 = 2b(2k+ 1)uk, k ∈ N0,

which, for any given u0 ∈ K, has the unique solution uk =
(2b)k(2k − 1)!!u0, k ∈ N0, where (−1)!! = 1. Therefore, the

unique solution of the Cauchy problem (4.19, 4.20) is in the form

u(t, x) =
∞
∑

k=0

(2b)k(2k−1)!!u0δ
2k+1tk =

∞
∑

k=0

bku0
δ(2k)(x)

k!
tk (4.23)

(see also Equation 3.4). Since u(t, x) ∈ K[x]′[[t]], it is a unique

solution of the Cauchy problem (4.19, 4.20) in the ring K[x]′[[t]].

Now let K = R, b > 0 and t > 0. Taking into account the

equality (3.14) [6] from Equation 4.23, we arrive

( ∞
∑

k=0

(2b)k(2k− 1)!!δ2k+1tk, xj

)

=
1

√
4πbt

∞
∫

−∞

xje−
x2

4bt dx, j ∈ N0,

i.e.,

∞
∑

k=0

(2b)k(2k− 1)!!δ2k+1tk =
1

√
4πbt

e−
x2

4bt in R[x]′.

Example 4.4. Let K ⊃ Q and u0 ∈ K. Consider the following

Cauchy problem for the Harry Dym equation in the ring K[x]′[[t]]

([5], Section 13.1.4)

∂u

∂t
= u3

∂3u

∂x3
(4.24)

u(0, x) = u0δ(x). (4.25)

By Theorem 4.1, the Cauchy problem (4.12, 4.13) has a unique

solution in K[x]′[[t]] and this solution can be represented in the

form (4.1) for n = 6:

u(t, x) =
∞
∑

k=0

ukδ
6k+1tk, (4.26)
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where uk ∈ K. As in the proof of Theorem 4.1, we have

∂u

∂t
=

∞
∑

k=0

(k+ 1)uk+1δ
6k+7tk, (4.27)

∂3u

∂x3
= −

∞
∑

k=0

(6k+ 1)(6k+ 2)(6k+ 3)ukδ
6k+4tk, (4.28)

u3 =
∞
∑

k=0

∑

|α|=k

uα1uα2uα3δ
6k+3tk, (4.29)

where α = (α1,α2,α3). Substituting (4.27–4.29) into (4.24), we

obtain

∞
∑

k=0

(k+ 1)uk+1δ
6k+7tk = −

∞
∑

k=0

∑

|τ |=k

(6τ4 + 1)(6τ4 + 2)

(6τ4 + 3)uτ1uτ2uτ3uτ4δ
6k+7tk, (4.30)

where τ = (τ1, τ2, τ3, τ4). Equating coefficients at δ6k+7tk in the

right-hand side of (4.30), we obtain

uk+1 = −(k+ 1)−1
∑

|τ |=k

(6τ4 + 1)(6τ4 + 2)(6τ4 + 3)uτ1

uτ2uτ3uτ4 .

Computer experiments demonstrate that the first 200 terms of

the sequence uk are integers. Although this sequence is not found

in the online encyclopedia of integer sequences [24], we formulate

the conjecture that uk ∈ Z for all k ∈ N0.

The following example shows that the condition K ⊃ Q is

essential for the assertion of Theorem 4.1.

Example 4.5. Let K ⊃ Q. Consider the following Cauchy problem

in K[x]′[[t]]:

∂u

∂t
= u

(

∂u

∂x

)2

, (4.31)

u(0, x) = δ(x). (4.32)

By Theorem 4.1, the Cauchy problem (4.31, 4.32) has a unique

solution in K[x]′[[t]] and this solution can be represented in the

form (4.1) for n = 4:

u(t, x) =
∞
∑

k=0

ukδ
4k+1tk, (4.33)

where u0 = 1. Substituting (4.33) into (4.31), we obtain

∞
∑

k=0

(k+1)uk+1δ
4k+5tk =

∞
∑

k=0

∑

|τ |=k

(4τ1+1)(4τ2+1)uτ1uτ2uτ3δ
4k+5tk,

(4.34)

where τ = (τ1, τ2, τ3).

Equating coefficients at δ4k+5tk in the right-hand side of

Equation 4.34, we obtain

uk+1 = (k+ 1)−1
∑

|τ |=k

(4τ1 + 1)(4τ2 + 1)uτ1uτ2uτ3 , k ∈ N0.

This implies that u1 = 1 and u2 = 11
2 /∈ Z. Therefore, the

Cauchy problem (4.31), (4.32) in Z[x]′[[t]] has no solutions.

5 Conclusion

We investigated the Cauchy problem of the nonlinear partial

differential equation

∂u

∂t
= aum0

(

∂u

∂x

)m1
(

∂2u

∂x2

)m2 (
∂3u

∂x3

)m3

,

m0,m1,m2,m3 ∈ N0,

3
∑

j=0

mj > 0, a ∈ K

in the ring of copolynomials. We have found a solution to this

Cauchy problem, as the series in powers of the δ-function. We

considered the Cauchy problem for the Euler–Hopf equation ∂u
∂t +

u ∂u
∂x = 0, for a Hamilton–Jacobi type equation ∂u

∂t =
(

∂u
∂x

)2

and for the Harry Dym equation ∂u
∂t = u3 ∂3u

∂x3
. In the first two

examples, an interesting connection between classical nonlinear

partial differential equations and well-known integer sequences is

revealed. The conjecture were formulated that all the coefficients

of an expanding in powers of the δ-function of the solution of the

Cauchy problem for the Harry Dym equation are integers.
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