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Malaria remains a critical public health challenge in Africa, demanding innovative

control strategies. This study introduces a novel approach using Microsporidia

MB-infected mosquitoes and stochastic optimal control within a Lévy process

framework to regulate mosquito release strategies. The primary goal is

to optimize Microsporidia MB prevalence within mosquito populations to

disrupt Plasmodium transmission to humans. By incorporating Lévy noise into

the modeling process, we capture the inherent randomness of mosquito

dynamics, improving intervention accuracy. Themodel, guided by theHamilton–

Jacobi–Bellman (HJB) equation, optimizes release protocols while accounting

for key environmental factors like seasonality and temperature fluctuations.

Results show that intervention success depends on local climatic conditions,

underscoring the need for flexible, region-specific strategies in malaria-

endemic areas. Focus regions include Kenya, Ghana, Niger, and Benin, where

Microsporidia MB has been confirmed. Findings suggest that targeted mosquito

releases could significantly reduce malaria transmission, o�ering valuable

insights for public health e�orts.

KEYWORDS

malaria, vector control, stochastic control, HJB equation, Microsporidia MB, Lévy
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1 Introduction

Malaria is a mosquito-borne disease that results from an individual being infected by

any of the five Plasmodium species known as P. falciparum, P. vivax, P.ovale, P. malariae

and P.knowlesi [1–3]. Approximately 50 mosquito species from the genus, Anopheles

have been identified as major vectors of the disease [2]. According to the World Health

Organization [4], malaria deaths have been estimated at more than 600,000 during the year

2021. The 2022 World Malaria Report states that the disease continues to persist in the

African region more than any other region of the world as the region accounts for the

highest cases and deaths, especially among children.

To control the spread of malaria, control and intervention measures have been applied

over the years and these efforts have helped in lowering the prevalence of malaria in most

regions across the globe. As an effort to lower the disease infection and transmission,

insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are primarily used in

order to control malaria vectors [5]. However, the rising issues of resistance threaten the

progress and efforts achieved [6].
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TheWorld Health Organization has put forward its support for

the development of improved, innovative, and sustainable methods

to reduce and eliminate malaria. One of the aforementioned

involves the use of endosymbionts as plasmodium transmission

blockers in mosquitoes. In literature, the bacteria Wolbachia has

been proposed and explored as an endosymbiont for malaria

control [7, 8]. Another possible endosymbiont is a microsporidian

denoted Microsporidia MB that has been discovered to impair

plasmodium transmission [9]. This Microsporidia MB species

has been identified in association with Anopheles arabiensis,

Anopheles gambiae, and Anopheles coluzzii, as evidenced by

research conducted in Kenya, Ghana, and, more recently, in Niger

and the Republic of Benin [9–12]. In the pursuit of effective malaria

control strategies, researchers have explored the intriguing role of

microsporidia-infected mosquitoes. Fox and Weiser’s investigation

intoAnopheles gambiae infected withNosema stegomyiae shed light

on natural infections in Liberia [13]. Meanwhile, laboratory studies

by other scientists focused on Plistophora culicis infections in Culex

pipiens fatigans mosquitoes, revealing altered mosquito biology

and reduced Plasmodium development [14]. Additionally, a recent

study examined the effects of Nosema algerae on Plasmodium

yoelii nigeriensis in Anopheles stephensi, emphasizing the intricate

interactions within the mosquito host [15]. Notably, Bano’s work

highlighted the partial inhibitory effect of P. culicis on the

sporogonic cycle of P. cynomolgi [16]. While these studies don’t

directly prescribe a solution, they contribute valuable knowledge

for advancing biocontrol strategies against malaria transmission.

Although information on Microsporidia MB is limited, past

literature suggests that microsporidia could serve as a promising

malaria vector control strategy, warranting further investigation.

The potential for these advancements is both challenging

and exciting; however, practical application requires careful

consideration of deploying endosymbiont-infected mosquitoes

into natural environments. Various mathematical models have

been employed to study vector-borne diseases, providing valuable

insights into effective control strategies. For instance, models

depicting the release of Wolbachia-infected mosquitoes have

demonstrated practical guidance for implementing release

strategies to achieve desirable mosquito populations in the field

[17–20]. Additionally, optimal control strategies using sterile

mosquitoes [21–26] and genetically modified mosquitoes have

been explored [27, 28]. Furthermore, recent studies have employed

fractional differential equations to model vector-borne diseases

such as dengue fever, capturing complex behaviors and memory

effects in disease transmission dynamics [29–33]. While these

approaches provide valuable insights, they often do not fully

account for the inherent variability and uncertainty driven

by environmental factors. This is where stochastic methods

become essential. By incorporating stochastic elements, such as

Stochastic Differential Equations (SDEs), we can better capture the

unpredictable dynamics of mosquito populations, influenced by

environmental fluctuations. SDEs have been widely used across

various fields tomodel systems under uncertainty. In epidemiology,

they are pivotal for understanding disease transmission dynamics

and informing control strategies, making them highly relevant

for developing effective frameworks for malaria vector control.

Beyond epidemiology, SDEs have proven their utility in finance,

engineering, ecology, and even agriculture, where they are used to

model complex systems influenced by random factors [34–38]. By

integrating stochastic elements with the dynamics ofMicrosporidia

MB, our approach aims to create a more realistic and effective

framework for malaria vector control, better equipped to handle

the variability of real-world environments.

Building upon previous work in vector control, this study

introduces a novel approach by utilizing Microsporidia MB-

infected mosquitoes, rather than transgenic mosquito populations,

to block malaria transmission. The primary objective is to optimize

this biological intervention by incorporating stochastic elements

into the modeling of mosquito population dynamics, with the

ultimate goal of enhancing microbe prevalence in mosquito

populations to disrupt Plasmodium transmission to humans. A

key innovation of our methodology is the use of Lévy noise,

which captures the inherent randomness and unpredictability in

mosquito population fluctuations. This stochastic framework is

crucial for accurately modeling how different release frequencies

and patterns of infected mosquitoes affect overall population

dynamics, overcoming the limitations of traditional deterministic

models. Additionally, we expand our analysis spatially by mapping

optimal infection prevalence rates across selected West African

countries-namely Niger, Ghana, and Benin-where malaria is

endemic, and also including Kenya. This geographical focus

addresses the need for tailored vector control strategies that account

for regional variability in mosquito behavior, infection prevalence,

and environmental conditions. By using advanced simulations

and mapping techniques, our research highlights the complexities

of controlling mosquito populations, particularly under varying

environmental and seasonal conditions. We examine stochastic

growth rates, infection prevalence ratios, and uninfected mosquito

proportions to deliver insights into the effectiveness of mosquito

release strategies. This study is particularly innovative in its

application of stochastic processes to epidemiological modeling

and its focus on Microsporidia MB-based biological interventions,

offering a promising alternative to traditional transgenic methods.

This research applies stochastic optimal control and Lévy

processes to develop an optimized strategy for releasing

Microsporidia MB-infected mosquitoes to block malaria

transmission. By integrating mathematical modeling with

ecological and biological insights, we address the complexities of

mosquito population dynamics and environmental variability. Our

approach formulates a stochastic control problem, solved using the

Hamilton–Jacobi–Bellman (HJB) equation under jump diffusions,

to determine the optimal mosquito release strategy. In Section 2, we

define the theoretical framework by introducing the Lévy process

and its applications, outlining stochastic control with Lévy jumps,

and formulating the dynamics of mosquito populations influenced

by both white and Lévy noise. This section also establishes

the framework for the stochastic optimal mosquito release

problem, detailing the data sources for temperature measurements

and model validation. Section 3 progresses to the analytical

derivation of optimal release strategies, including Python-

based simulations, visualization maps based on temperature

variations, and validation of these strategies. Section 4 discusses

the implications of our findings within the broader context of

malaria control and concludes by summarizing our research

outcomes, along with suggesting future directions for vector-borne

disease management.
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2 Materials and methods

Our methodology applies a Lévy process-based mathematical

model to analyze the population dynamics of Anopheles

mosquitoes, distinguishing between Microsporidia MB-infected

and uninfected groups. Themodel combines traditional population

dynamics with stochastic elements, such as white noise and Lévy

noise, to address environmental fluctuations and unpredictable

changes. Central to our approach is the strategic release of

infected mosquitoes to influence the wild population and enhance

symbiont prevalence, thus supporting malaria control efforts.

Key parameters of the model, including growth rates, mortality,

and environmental factors, are essential for understanding and

optimizing this strategy [39].

2.1 Area of study

This research examines the population dynamics of Anopheles

mosquitoes in selected regions of West Africa-namely Niger,

Ghana, and Benin Republic and Kenya, East Africa (Figure 1).

These areas are home to key malaria vectors such as Anopheles

gambiae, Anopheles coluzzii, Anopheles funestus, and Anopheles

arabiensis. In these mosquito species, symbiotic microbes known

to inhibit the malaria parasite Plasmodium have been identified.

The discovery of these microbial inhibitors presents a promising

strategy for controlling malaria transmission.

Given the significant variability in environmental factors such

as temperature across these geographic areas, our approach tailors

the release strategies to align with local ecological conditions. This

regional customization aims to optimize the conditions under

which microbe-infected mosquitoes are released, enhancing the

prevalence and effectiveness of themicrobial symbionts in reducing

malaria transmission. By examining how different environmental

settings impact the success of these strategies, we aim to identify the

most suitable environments for effective mosquito releases, thereby

maximizing the potential for controlling malaria in diverse settings.

2.2 Data

2.2.1 Temperature data
We utilized the Bio1 bioclimatic variable dataset from

WorldClim, offering annual mean temperature data spanning

the period 1970–2000. This dataset, characterized by a spatial

resolution of 30 s (∼1 km2), served as a foundational component

for our study. To tailor the dataset to our study’s specific

requirements, we employed QGIS to clip the raster layer to our

designated study sites, ensuring a focused analysis of the relevant

geographic areas.

2.2.2 Validation data
For the validation process, Microsporidia-infected mosquito

data was collected in Kenya from the years 2022 to 2023 after

the rainy seasons. The data specifically focus on Anopheles

mosquitoes-An. Gambiae, An. Funestus, An. Arabiensis, and An.

Coluzzii known for transmitting the Plasmodium parasite across

diverse regions in Africa. The alignment of this information with

our mapped regions of malaria transmission potential enhances the

robustness of our validation process.

2.3 Preliminaries

In this section, we introduce the fundamental concepts

of stochastic optimal control, focusing on the application of

Lévy processes and jump-diffusion methods in the modeling

of evolutionary dynamics in population biology. We also

provide preliminary results that demonstrate how our proposed

model integrates these stochastic elements to effectively capture

the complex variabilities and interactions within biological

populations.

2.3.1 Lévy Process
Definition 2.1. Let us define a Lévy process on a filtered probability

space (�,F , (Ft)t≥0,P), where � is the sample space, F is the

σ -algebra, (Ft)t≥0 is the filtration representing the evolution

of information over time, and P is the probability measure. A

stochastic process {Xt}t≥0, taking values in R and adapted to the

filtration Ft , is termed a Lévy process if it satisfies the following

three conditions:

1. Initialization: X0 = 0 almost surely, establishing the process at

the origin with probability one.

2. Stochastic Continuity: For any ǫ > 0 and for any s ≥ 0,

limt→s P(|Xt − Xs| > ǫ) = 0, ensuring that the process is

continuous in probability, allowing for jumps but not “wild"

behavior.

3. Independent and Stationary Increments: The process exhibits

increments that are independent and stationary; that is, for any

0 ≤ s < t, the increment Xt − Xs is independent of Fs and

the distribution of Xt − Xs depends only on t − s, not on the

actual values of t or s. This property indicates that the process

evolves in a way where the future increment is independent of

the past, with its distribution reliant solely on the length of the

time interval.

2.3.1.1 The dynamics of Itô-Lévy processes

Within the framework of stochastic calculus, the Itô-Lévy

process stands out for its ability to model complex systems

influenced by both continuous fluctuations and discrete jumps.

Herein, we present a foundational theorem characterizing the

evolution of such processes:

Theorem 2.2 (Evolution of Itô-Lévy Processes). Consider a

process X(t), taking values in R, defined on a probability space.

The dynamics of X(t) as an Itô-Lévy process are captured by the

differential equation:

dX(t) = λ(t,ω)dt + σ (t,ω)dW(t)+
∫

R

γ (t, y,ω)Ñ(dt, dy),

where Ñ(dt, dy) is a compensated Poisson randommeasure defined

by:

Ñ(dt, dy) =
{

N(dt, dy)− ϑ(dy)dt, for |y| < R,

N(dt, dy), for |y| ≥ R,
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FIGURE 1

Selected regions of West Africa, including Niger, Ghana, and Benin, along with Kenya in East Africa, are the focus of this study, as Microsporidia MB

has been identified in these areas.

with R ∈ [0,∞] demarcating the threshold for jump sizes. Let

h :R2 → R be a twice continuously differentiable function, and

define a new process Z(t) = h(t,X(t)). The differential of Z(t),

embodying the Itô-Lévy dynamics, is then given by:

dZ(t) =∂h
∂t

(t,X(t))dt + ∂h
∂x

(t,X(t))
[

λ(t,ω)dt + σ (t,ω)dW(t)
]

+ 1

2
σ 2(t,ω)

∂2h

∂x2
(t,X(t))dt

+
∫

|y|<R

[

h(t,X(t−)+ γ (t, y,ω))− h(t,X(t−))

− ∂h
∂x

(t,X(t−))γ (t, y,ω)
]

ϑ(dy)dt

+
∫

R

[

h(t,X(t−)+ γ (t, y,ω))− h(t,X(t−))
]

N(dt, dy).

This theorem elucidates the nuanced behavior of Itô-Lévy

processes, highlighting their capacity to integrate both gradual

trends and abrupt shifts in state, thereby offering a robust model

for systems exhibiting complex dynamics.

2.3.1.2 Control state dynamics and the generator in

Lévy-driven systems

The dynamics of a controlled system influenced by Lévy

processes can be characterized by its state equation and the

associated infinitesimal generator, which together describe how

the system evolves under a given control policy. The state

equation incorporates both continuous and jump components,

while the generator captures the system’s local behavior under the

control policy.
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Definition 2.3 (Controlled Lévy Process State Equation). Consider

a controlled stochastic system where the state dynamics are

governed by a Lévy-driven Stochastic Differential Equation (SDE)

in the form:

dX(t) = λ(t,X(t), u(t))dt + σ (t,X(t), u(t))dW(t)

+
∫

R

γ (t,X(t−), z, u(t))Ñ(dt, dz), (1)

where X(t) ∈ R
n represents the state of the system at time t,

u(t) ∈ U denotes the control action applied at time t, chosen

from a set of admissible controls U , W(t) is a standard Brownian

motion, and Ñ(dt, dz) is the compensated Poisson randommeasure

reflecting the jumps.

Definition 2.4 (Infinitesimal Generator of a Controlled Lévy Process).

The infinitesimal generator Au associated with a controlled Lévy

process under policy u(t) is defined for a sufficiently smooth

function h :Rn → R as:

A
uh(x) = lim

δ→0

E
[

h(X(t + δ))|X(t) = x, u(t) = u
]

− h(x)

δ
,

which, under the Lévy process dynamics, can be explicitly written

as:

A
uh(x) =

n
∑

i=1
λi(t, x, u)

∂h

∂xi
(x)+ 1

2

n
∑

i,j=1

[

σσT
]

ij
(t, x, u)

∂2h

∂xi∂xj
(x)

+
∫

Rn

[

h(x+ γ (t, x, z, u))

−h(x)−
n
∑

i=1
γi(t, x, z, u)

∂h

∂xi
(x)

]

ϑ(dz).

Here, λi, σ , and γi are the components of the drift, diffusion, and

jump intensity functions, respectively, and ϑ is the Lévy measure

that characterizes the jump distribution.

The infinitesimal generator Au plays a crucial role in

the formulation of dynamic programming and the Hamilton–

Jacobi–Bellman (HJB) equation for controlled Lévy processes. It

encapsulates the expected rate of change of a function of the

system’s state under a specific control policy, providing a vital

link between the stochastic dynamics and the optimization of the

control policy.

2.3.1.3 Dynamic programming for controlled Lévy

di�usions

Dynamic programming forms the cornerstone of solving

stochastic control problems, particularly when the system’s

dynamics exhibit both continuous fluctuations and discrete jumps.

Herein, we present a concise definition tailored to controlled Lévy

diffusions:

Definition 2.5. Let us consider a controlled Lévy diffusion process

Z(t), initiated at Z(0) = z ∈ R
k, evolving according to:

dZ(t) = b(Z(t), u(t))dt + σ (Z(t), u(t))dW(t)

+
∫

Rk
γ (Z(t−), u(t−), y)N0(dt, dy), (2)

where the drift b, volatility σ , and jump intensity γ are functions

defining the system’s dynamics under a control policy u(t) from a

set of admissible controls U. N0(dt, dy) denotes the compensated

Poisson measure, capturing the jump behavior.

The objective is encapsulated in the performance criterion

Ju(z), expressed as:

Ju(z) = E
z

[∫ τS

0
h(Z(t), u(t))dt + i(Z(τS))I{τS<∞}

]

,

aiming to optimize over the course until exit time τS = inf{t >
0;Zu(t) /∈ S}, with h and i being the cost functions.

A control u is deemed admissible if it ensures a unique strong

solution of the diffusion process for any initial condition in S and

satisfies the integrability condition for the negative parts of h and i.

The essence of the stochastic control problem lies in

determining the optimal value function 8(y) and identifying an

optimal control policy u∗ ∈ U , fulfilling:

8(y) = sup
u∈U

Ju(y) = Ju
∗
(y).

For Markov controls, where u = u(z), the diffusion Z(t) under

u transforms into a Lévy diffusion characterized by the generator

Au, defined as:

Auφ(z) =
k
∑

i=1
bi(z, u(z))

∂φ

∂zi
(z)+ 1

2

k
∑

i,j=1
(σσT)ij(z, u(z))

∂2φ

∂zi∂zj
(z)

+
∫

Rk
1φ(z; y)ϑ(dy), (3)

where1φ(z; y) = φ(z+γ (z, u(z), y))−φ(z)−∇φ(z) ·γ (z, u(z), y),
incorporating the jump effects through the Lévy measure ϑ .

Theorem 2.6. Hamilton–Jacobi–Bellman criterion for jump

diffusion systems. Consider a controlled jump diffusion system

within a domain S ⊂ R
k, subject to the following conditions:

1. Let φ be a function such that φ ∈ C2(S) for the interior of S and

continuous on S, the closure of S. It must satisfy:

(a) For every control v ∈ U and state z ∈ S, the inequality

Avφ(z)+ h(z, v) ≤ 0

holds, where Av denotes the infinitesimal generator under

control v.

(b) The process exits S through its boundary ∂S with certainty

if the exit time τS is finite, and

lim
t↑τS

φ(Z(t)) = i(Z(τS))I{τS<∞},

almost surely, for all admissible controls.

(c) The expectation of the absolute value of φ at the exit time

and the accumulated generator and gradient terms over the

interval [0, τS] is finite, i.e.,

E
z

[

|φ(Z(τ ))| +
∫ τS

0

(

|Aφ(Z(t))|
)

dt

]

<∞,

for all admissible controls u and stopping times τ .
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(d) The negative part of φ(Z(τ )) is uniformly integrable up to

τS.

Then, φ(z) serves as an upper bound for the value function

8(z) for all z ∈ S, i.e,

φ(z) ≥ 8(z) ∀y ∈ S.

2. Furthermore, if there exists a feedback control û such that for

any y ∈ S,

(a) Applying û(y) yields Aûφ(y)+ h(y, û(y)) = 0,

(b) The process under ûmaintains the uniform integrability of

φ up to τS.

Then, the strategy û, when applied as u∗(t) = û(Z(t−)),
constitutes an optimal control. Consequently, we have that

φ(y) equals the optimal value function8(y), and thus satisfies:

φ(y) = 8(y) = Ju
∗
(y) ∀y ∈ S.

Proof. See proof in [39].

2.4 Model formulation

2.4.1 Population dynamics of anopheles
mosquitoes X(t)

We use a stochastic differential equation based on ecological

modeling principles to explore the dynamics of Anopheles

mosquito populations. Initially adhering to a fundamental growth

model with death rate λ, expressed as

dX(t)

dt
= rX(t)

(

1− X(t)

K

)

− λX(t), (4)

where r signifies the intrinsic growth rate and K denotes the

carrying capacity, we extend our exploration to encapsulate more

nuanced dynamics. That is integrating stochastic perturbation into

Equation 4 such as :

X :−λ→−λ+ σ dW(t)

dt
. (5)

Therefore the population dynamics of Anopheles become:

dX(t) =
(

r

(

1− X(t)

K

)

− λ
)

X(t)dt + σX(t)dW(t), (6)

where σ captures random fluctuations driven by the infinitesimal

increments of a Wiener process or simply white noise dW(t).

This model provides a foundational understanding of how the

population grows and is constrained by environmental capacity and

natural mortality.

However, to account for additional complexities such as the

release of mosquitoes and other sudden ecological perturbations,

we adapt this model by incorporating a more dynamic

representation of the growth rate. This adaptation is crucial to

reflect more accurately the variability and unpredictability inherent

in real-world ecological systems. Consequently, the logistic growth

TABLE 1 Parameters of the anopheles mosquito population dynamics

model.

Parameter Description

K Carrying capacity of the environment

λ Mortality rate of the mosquito population

σ Volatility term representing environmental fluctuations

ζ Scaling constant for the intensity of Lévy jumps

a, b, c Parameters of the Cox-Ingersoll-Ross (CIR) model for β(t)

dynamics

ρ Correlation coefficient between the Wiener processes dW(t)

and dV(t)

X0 Initial population size

β0 Initial value of the growth factor β(t)

term r
(

1− X(t)
K

)

is approximated by a time-dependent factor

β̃(t), such that,

β̃(t)dt = β(t)dt + ζ
∫

R

y Ñ(dt, dy), (7)

where β(t) is modeled using the Cox-Ingersoll-Ross (CIR):

dβ(t) = a(b− β(t)) dt + c
√

β(t) dV(t), β(0) = β0. (8)

Therefore (6) becomes:

dX(t) =
(

X(t) · β(t)− λX(t)
)

dt + σX(t) dW(t)

+ ζX(t)

∫

R

y Ñ(dt, dy), X(0) = X0. (9)

The stochastic nature of β(t) captures intrinsic growth

adjustments and external shocks, thus refining the population

dynamics model to more accurately reflect sudden changes

and interventions. Additionally, the correlation between the

stochastic processes dW(t) and dV(t), quantified by the correlation

coefficient ρ, introduces further complexity. This enhances the

model’s capability to represent the interconnected ecological and

environmental factors affecting mosquito populations.

This comprehensive approach stands on the shoulders of

pioneering work by Allen [34], Capocelli and Ricciardi [40], Turelli

[41], and Nipa et al. [42], who, in various contexts, enriched

our understanding of population dynamics by incorporating

stochastic elements and exploring diverse growth rate equations.

Their collective contributions underscore the versatility of these

modeling frameworks, transcending disciplinary boundaries and

fostering a more profound comprehension of the intricate interplay

of factors influencing population growth.

For clarity, the parameters used in our model are summarized

in the Table 1.

2.4.2 Dynamics of infected and uninfected
mosquito populations

We categorize the mosquito population into two groups:

X1(t), representing those infected with Microsporidia MB, and
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X2(t), comprising the uninfected or wild mosquitoes. The total

population is X(t) = X1(t)+ X2(t).

The dynamics of these populations are described by a stochastic

differential equation with Lévy noise:

dXk(t) =
(

αk

(

1− X(t)

K

)

− λk
)

Xk(t)dt + σkXk(t)dWk(t)

+ ζkXk(t)

∫

R

y Ñk(dt, dy) (10)

This model captures the growth αk, mortality λk, and

stochastic influences within each mosquito population, providing

a foundation for optimizing symbiont-infected mosquito release

strategies for malaria control.

2.4.3 Interaction between infected and
uninfected mosquitoes

This section explores the interactions between two key

mosquito populations: those infected with Microsporidia MB,

a symbiont known for inhibiting malaria transmission, and

the uninfected ones. Understanding the dynamics and potential

coexistence of these populations is crucial for developing effective

malaria control strategies. Drawing from the works of Rafikov et

al. [28] and Wyse et al. [43], we model these dynamics using a

stochastic differential equation with Lévy noise:

dXk(t)

Xk(t−)
=





n
∑

j=1
αkγk,jθj(t)

(

1−
∑n

k=1 Xk(t)

K

)

− λk



 dt

+ σkdWk(t)+ ζk
∫

R

yÑk(dt, dy), (11)

where

θk(t) =
Xk(t)

∑n
k=1 Xk(t)

(12)

signifies the proportion of class k mosquitoes within the total

population.

Focusing on a specific case with n = 2 classes (infected and

uninfected), we define the total mosquito population as X(t) =
X1(t)+ X2(t). The fractions of infected and uninfected mosquitoes

are represented as

θ1(t) =
X1(t)

X1(t)+ X2(t)
, (13)

and

θ2(t) =
X2(t)

X1(t)+ X2(t)
. (14)

Accordingly, Equation 11 can be reformulated for this two-class

scenario as follows:

dXk(t)

Xk(t−)
=





n
∑

j=1
γk,jθj(t)β(t)− λk



 dt + σkdWk(t)

+ ζk

∫

R

yÑk(dt, dy). (15)

The parameters in this equation are defined as follows:

• γk,j: Interaction coefficients

– γ11: Infected-Infected Mating Rate

– γ12: Infected-Uninfected Mating Rate

– γ21: Uninfected-Infected Mating Rate

– γ22: Uninfected-Uninfected Mating Rate

• θj: Proportional rates

– θ1: Infection prevalence ratio

– θ2: Uninfected ratio

• λk: Mortality rate of the mosquito population

• σk: Volatility term for random population fluctuations

• dWk(t): Wiener process for standard Brownian motion

• Ñk(dt, dy): Lévy measure for impulsive behavior in the

population

In the following, we consider that the diffusion term of σ2
and the scaling constant for the intensity of Lévy jumps ζ2 for the

wild (uninfected) mosquitoes are null, and that the corresponding

intensity of Lévy jumps for infected mosquitoes ζ1 is the unit.

2.4.4 Release control problem formulation
In the context of this study, the performance function is

formulated as follows:

H
R,θ1
f

(s, x1, x2) = E
s,x1 ,x2

[∫ τS

0
e−α(s+t)g(X(t), u(t)) dt

]

(16)

Here, α > 0 and γ ∈ (0, 1) are constants, and E
x1 ,x2 denotes

the expectation with respect to the probability law P
x1 ,x2 of the state

vector (X1,X2) given initial conditions (X1(0
−),X2(0

−)) = (x1, x2).

The function g :S × A → R is given by
Rγ

γ
, where S is a fixed

domain in R andA is a given subset of R2.

Let us consider u(t) =
(

R(t), θ1(t)
)

∈ [0,∞) × [0, 1] as the

control applied at time t, chosen from a set of admissible controlsU .

Furthermore, biological constraints impose that the total mosquito

population X(t) = X1(t)+ X2(t) is non-negative for all t ≥ 0.

The objective is to identify an optimal release control strategy,

defined as follows:

Find 9(s, x1, x2) and u ∈ U such that

9(s, x1, x2) = sup
u∈U

H
u
f (s, x1, x2) = H

u∗
f (s, x1, x2).

(17)

This is subject to the dynamic equation:

dXu(t) =
(

(m1(θ)β(t)−m2(λ))X
u(t)− R(t)

)

dt

+ σ1θ1X
u(t) dW(t)+ ζ1θ1Xu(t)

∫

R

y Ñk(dt, dy) (18)

Here, X(0−) = x = x1 + x2 > 0, and β(t) describes

a mean-reverting process. The functions m1(θ) and m2(λ) are
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defined as follows:

m1(θ) = γ11θ21 + (γ12 + γ21)θ1θ2 + γ22θ22 , (19)

m2(λ) = λ1θ1 + λ2θ2. (20)

2.4.4.1 Stopping time τS

The stopping time τS is defined as the first time at which the

mosquito population reaches zero:

τS = inf{t ≥ 0 :X(t) = 0}. (21)

Assumption 2.7. The generator of the Lévy diffusion process

Z(t) =
[

s+ t

X(t)

]

for t ≥ 0 and initial condition Z(0−) =
[

s

x

]

is

given by:

A
uψ = ∂ψ

∂s
+2(x)

∂ψ

∂x
+ 1

2
62(x)

∂2ψ

∂x2

+
∫

R

{

ψ(s, x(1+ θ1y))− ψ(s, x)− θ1xy
∂ψ

∂x
(s, x)

}

ϑ(dy).

(22)

For simplicity and to avoid compromising the theoretical

integrity of the control problem, we assume that the derivative

of ψ with respect to β is not directly captured in the generator.

Consequently, we use the simplified generator as shown above.

In this context, β(t) is a stochastic function representing the

mosquito growth rate, and X(t) represents the population of

infected and uninfected mosquitoes. While β(t) was originally a

deterministic function, making it stochastic adds realism to the

model. However, we choose to simplify the problem by not directly

including β(t) in the generator. This is justified because β(t)

influences the system implicitly through its effect on X(t), and its

direct stochastic influence can be captured indirectly.

By focusing on the primary stochastic process X(t) and

simplifying the model, we make the problem more tractable for

analysis and control without significantly compromising accuracy.

This assumption allows us to balance model complexity with

practical applicability, especially when empirical evidence supports

that the effects of β(t) can be captured indirectly through X(t).

3 Mathematical analysis

3.1 Analytical results

In this section, we rigorously analyze the solution to the

stochastic optimal control problem via dynamic programming,

a methodology crucial for optimizing the Hamiltonian–Jacobi–

Bellman (HJB) equation. The HJB equation serves as the

fundamental equation governing the release control problem,

underpinning our analytical framework.

Proposition 3.1. The solution to the dynamic (9) representing the

total mosquito population is given by:

X(t) = X0. exp

((

∫

|y|<R

(

ln(1+ ζy)− ζy
)

ϑ(dy)

−
(

λ+ 1

2
σ 2

))

t + σW(t)

)

× exp
(

31(t)+32(t)
)

,

(23)

with :

31(t) =
∫ t

0
β(s)ds, (24)

32(t) =
∫ t

0

∫

R

ln(1+ ζy)Ñ(ds, dy). (25)

In particular, if−1 < ζy ≤ 0,

X(t) = X0. exp

(

31(t)−
(

λ+ 1

2
σ 2 + ζ

∫

R

yϑ(dy)

)

t

)

× exp
(

σW(t)+32(t)
)

. (26)

Proof. Consider Z(t) = h(t,X(t)) such that h(t,X(t)) = ln(X(t)) is

an Ito-Lévy process. Using the Ito-Lévy formula, we get,

dZ(t) = ∂h

∂t
(t,X(t))dt + ∂h

∂x
(t,X(t))

[(

X(t) · β(t)− λX(t)
)

dt

+σX(t) dW(t)
]

+ 1

2
σ 2X(t)2

∂2h

∂2x2
(t,X(t))dt

+
∫

|y|<R

{

h(t,X(t−)+ ζyX(t−))− h(t,X(t−))

−∂h
∂x

(t,X(t))ζyX(t−)

}

ϑ(dy)dt +
∫

R

(

h(t,X(t−)

+ζyX(t−))− h(t,X(t−))
)

Ñ(dt, dy)

= ∂h

∂t
(t,X(t))dt + ∂h

∂x
(t,X(t))

[(

β(t)− λ
)

dt + σdW(t)
]

X(t)

+ 1

2
σ 2X(t)2

∂2h

∂2x2
(t,X(t))dt

+
∫

|y|<R

{

h(t, (1+ ζy)X(t−))− h(t,X(t−))

−∂h
∂x

(t,X(t))ζyX(t−)

}

ϑ(dy)dt

+
∫

R

(

h(t, (1+ ζy)X(t−))− h(t,X(t−))
)

Ñ(dt, dy).

By replacing h by ln(x), dZ(t) is expressed as follows:

dZ(t) = 0.dt + 1

X(t)

[(

β(t)− λ
)

dt + σdW(t)
]

X(t)

+ 1

2
σ 2X(t)2

1

X2(t)
dt +

∫

|y|<R

{

ln((1+ ζy)X(t−))

−ln(X(t−))− 1

X(t)
ζyX(t−)

}

ϑ(dy)dt

+
∫

R

(

ln((1+ ζy)X(t−))− ln(X(t−))
)

Ñ(dt, dy)

=
(

β(t)− (λ+ 1

2
σ 2)

)

dt + σdW(t)

+
∫

|y|<R

{

ln(1+ ζy)− ζy
}

ϑ(dy)dt

+
∫

R

(

ln(1+ ζy)
)

Ñ(dt, dy).

Thus, by integrating both sides of the previous equality, we have :

Z(t) = Z(0)+
∫ t

0

(

β(s)− (λ+ 1

2
σ 2)

)

ds+ σW(t)

+
∫ t

0

∫

|y|<R

(

ln(1+ ζy)− ζy
)

ϑ(dy)ds
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+
∫ t

0

∫

R

(

ln(1+ ζy)
)

Ñ(ds, dy)

= Z(0)+
∫ t

0
β(s)ds−

(

λ+ 1

2
σ 2

)

t + σW(t)

+
(

∫

|y|<R

(

ln(1+ ζy)− ζy
)

ϑ(dy)

)

t

+
∫ t

0

∫

R

(

ln(1+ ζy)
)

Ñ(ds, dy)

= Z(0)+
((

∫

|y|<R

(

ln(1+ ζy)− ζy
)

ϑ(dy)

)

−
(

λ+ 1

2
σ 2

))

t + σW(t)+
∫ t

0
β(s)ds

+
∫ t

0

∫

R

(

ln(1+ ζy)
)

Ñ(ds, dy).

Taking the exponential of both sides facilitates deriving the

solution presented in Equation 23. For further details, the reader is

referred to the comprehensive discussions in Øksendal and Sulem

[39] and Nunno et al. [44].

Proposition 3.2. A solution to the release control problem (17) is

given by :











R∗ = (Cγ )
1

γ−1 x

θ∗1 =
((γ12 + γ21)θ2)β − λ1
σ 2
1 (1− γ )− 2γ11β

−
∫

R

y
[

1− (1+ θ1y)γ−1
]

σ 2
1 (1− γ )− 2γ11β

ϑ(dy),

(27)

where C is a constant determining the corresponding fraction over

the total mosquito required for the release. An explicit formula for

the constant is given in the following proposition.

Proof. Consider the following controlled process

Z(t) =







s+ t

X(t)

β(t)






; t ≥ 0,Z(0−) =







s

x

β






.

The corresponding generator to Z(t) denoted byAu is given by:

A
uψ(z) =∂ψ

∂s
+
(

(m1(θ)β −m2(λ))x− R
) ∂ψ

∂x
+ a(b− β)∂ψ

∂β

+ 1

2
σ 2
1 θ

2
1 x

2 ∂
2ψ

∂x2
+ 1

2
c2β

∂2ψ

∂β2
+ σ1θ1c

√

β
∂2ψ

∂x∂β
ρ(x,β)

+
∫

R

{

ψ(s, x(1+ θ1y),β)− ψ(s, x,β)

−θ1xy
∂ψ

∂x
(s, x,β)

}

ϑ(dy).

Choose

ψ(z) = ψ(s, x,β) = e−αsφ(x,β).

Based on Assumption 2.7, we have

A
uψ(z) = e−αsAu

0φ(x),

with

A
u
0φ(x) =− αφ(x)+

(

(m1(θ)β −m2(λ))x− R
)

φ′(x)

+ 1

2
σ 2
1 θ

2
1 x

2φ
′′
(x)+

∫

R

{

φ(x(1+ θ1y))

−φ(x)− θ1xyφ′(x)
}

ϑ(dy).

Setting φ(x) = Cxγ we get,

A
u
0φ(x)+ g(x, u) =− αCxγ

+
(

(m1(θ)β −m2(λ))x− R
)

Cγ xγ−1

+ C
1

2
σ 2
1 θ

2
1 x

2γ (γ − 1)xγ−2+

Cxγ
∫

R

{

(1+ θ1y)γ − 1− γ θ1y
}

ϑ(dy)+ Rγ

γ
.

Let us define the function H(R, θ1) as follows:

H(R, θ1) =− αCxγ +
(

(m1(θ)β −m2(λ))x− R
)

Cγ xγ−1

+ C
1

2
σ 2
1 θ

2
1 x

2γ (γ − 1)xγ−2

+ Cxγ
∫

R

{

(1+ θ1y)γ − 1− γ θ1y
}

ϑ(dy)+ Rγ

γ
.

(28)

For any release value Rv ≥ R and prevalence ratio θv,1 ≥ θ1

simultaneously,

H(Rv, θv,1) ≥ H(R, θ1).

This implies that H(R, θ1) is a non-decreasing function with

respect to R and θ1. Furthermore,H is concave in (R, θ1) and attains

its maximum, that is:

∂H

∂R
= −Cγ xγ−1 + Rγ−1 = 0, (29)

∂H

∂θ1
= Cγ xγ−1

(

(2γ11θ1 + (γ12 + γ21)θ2)β − λ1
)

x

+Cσ 2
1 θ1x

2γ (γ − 1)xγ−2

+Cxγ
∫

R

[

γ y(1+ θ1y)γ−1 − γ y
]

ϑ(dy) = 0. (30)

The relation (29) implies that,

R = (Cγ )
1

γ−1 x. (31)

Moreover, from (30) we have

0 =Cγ xγ
(

(2γ11θ1 + (γ12 + γ21)θ2)β − λ1
)

+ Cσ 2
1 θ1γ (γ − 1)xγ

+ Cxγ
∫

R

[

γ y(1+ θ1y)γ−1 − γ y
]

ϑ(dy).

0 =Cγ xγ
[

(2γ11θ1 + (γ12 + γ21)θ2)β − λ1 + σ 2
1 θ1(γ − 1)

+
∫

R

[

y(1+ θ1y)γ−1 − y
]

ϑ(dy)

]

.

0 =
[

(2γ11β + σ 2
1 (γ − 1))θ1 + ((γ12 + γ21)θ2)β − λ1

+
∫

R

[

y(1+ θ1y)γ−1 − y
]

ϑ(dy)

]

.
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Thus

(σ 2
1 (1− γ )− 2γ11β)θ1 = ((γ12 + γ21)θ2)β − λ1

+
∫

R

[

y(1+ θ1y)γ−1 − y
]

ϑ(dy).

Accordingly,

θ1 =
((γ12 + γ21)θ2)β − λ1
(σ 2

1 (1− γ )− 2γ11β)

+ 1

(σ 2
1 (1− γ )− 2γ11β)

∫

R

[

y(1+ θ1y)γ−1 − y
]

ϑ(dy)

= ((γ12 + γ21)θ2)β − λ1
(σ 2

1 (1− γ )− 2γ11β)
−
∫

R

y
[

1− (1+ θ1y)γ−1
]

(σ 2
1 (1− γ )− 2γ11β)

ϑ(dy).

From Equations 29, 30, and based on the HJB criterion for jumps

diffusion in Theorem (2.6), the optimal release R∗ and symbiont

transmission rate θ∗1 can be expressed as follows:

R∗ = (Cγ )
1

γ−1 x, (32)

θ∗1 =
((γ12 + γ21)θ2)β − λ1
σ 2
1 (1− γ )− 2γ11β

−
∫

R

y
[

1− (1+ θ1y)γ−1
]

σ 2
1 (1− γ )− 2γ11β

ϑ(dy).

(33)

Proposition 3.3. The constant C in Equation 32 is given by:

(Cγ )
1

γ−1 =















1

1− γ

[

α + 1

2
σ 2
1 θ

2
1 (1− γ )γ − γ (m1(θ)β −m2(λ))

]

, if ϑ = 0,

1

1− γ

[

α + 1

2
σ 2
1 θ

2
1 (1− γ )γ − γ (m1(θ)β −m2(λ))−

∫

R

f (y; θ1)ϑ(dy)
]

, if ϑ 6= 0.
(34)

where

∫

R

f (y; θ1)ϑ(dy) =
∫

R

{

(1+ θ1y)γ − 1− γ θ1y
}

ϑ(dy).

Remark 3.4. This constant, C, can be denoted as C(T) because

it depends on temperature T. This dependence arises from the

fact that the mosquito death rates λ1 and λ2 are functions of

temperature. Consequently, this makes the release strategy R∗ =
(Cγ )

1
γ−1 x temperature dependent, even though it can inherit the

dependency from x, which is already influenced by environmental

conditions. This ensures thatR is proportional to the total mosquito

population at any time, and that the proportionality factor reflects

the impact of temperature on the release.

As depicted in Figure 2, the release factor (Cγ )
1

γ−1 quantifies

the necessary adjustments in mosquito release quantities

throughout the year 2023. This model reflects how local

temperature fluctuations critically influence mosquito population

management strategies. The graph highlights the relationship

between temperature and the scaling of mosquito release,

underlining the importance of temperature in optimizing

biological control measures against mosquito-borne diseases. This

adaptive strategy aids in tailoring interventions to be more effective

and responsive to changing climatic conditions, enhancing the

efficacy of disease control efforts.

Proof. [Proposition 3.3] The release strategy R∗ = (Cγ )
1

γ−1 x
of infected mosquitoes by the symbiont microbe imposes that

A
u
0ψ(x)+ g(x, u) = 0. Therefore,

0 = −αCxγ +
(

(m1(θ)β −m2(λ))x− (Cγ )
1

γ−1 x
)

Cγ xγ−1

+ C
1

2
σ 2
1 θ

2
1 x

2γ (γ − 1)xγ−2 + Cxγ
∫

R

{

(1+ θ1y)γ − 1− γ θ1y
}

ϑ(dy)

+ ((Cγ )
1

γ−1 x)γ

γ
= −αCxγ +

(

(m1(θ)β −m2(λ))− (Cγ )
1

γ−1
)

Cγ xγ

+ 1

2
σ 2
1 θ

2
1Cγ (γ − 1)xγ + Cxγ

∫

R

{

(1+ θ1y)γ − 1− γ θ1y
}

ϑ(dy)

+ (Cγ )
γ
γ−1

γ
xγ .

Since the total mosquito population is assumed to be strictly

positive (x > 0), we have:

0 = −αC +
(

(m1(θ)β −m2(λ))− (Cγ )
1

γ−1
)

Cγ

+ 1

2
σ 2
1 θ

2
1Cγ (γ − 1)+ C

∫

R

{

(1+ θ1y)γ − 1− γ θ1y
}

ϑ(dy)+ (Cγ )
γ
γ−1

γ

= −α +
(

(m1(θ)β −m2(λ))− (Cγ )
1

γ−1
)

γ + 1

2
σ 2
1 θ

2
1 γ (γ − 1)

+
∫

R

{

(1+ θ1y)γ − 1− γ θ1y
}

ϑ(dy)+ (C)
1

γ−1 γ
γ
γ−1

γ

= −α +
(

(m1(θ)β −m2(λ))
)

γ + 1

2
σ 2
1 θ

2
1 γ (γ − 1)

+
∫

R

{

(1+ θ1y)γ − 1− γ θ1y
}

ϑ(dy)+ (1− γ ) (Cγ )
1

γ−1 .

Thus

(1− γ ) (Cγ )
1

γ−1 = α − γ
(

(m1(θ)β −m2(λ))
)

+ 1

2
σ 2
1 θ

2
1 γ (1− γ )

−
∫

R

{

(1+ θ1y)γ − 1− γ θ1y
}

ϑ(dy).

Accordingly, if ϑ = 0,

(Cγ )
1

γ−1 = 1

(1− γ )
(

α − γ
(

(m1(θ)β −m2(λ))
)

+ 1
2σ

2
1 θ

2
1 γ (1− γ )

)

. (35)

Now let us consider that ϑ 6= 0. If θ1 6= 0, define the function

f (y; θ1) as:

f (y; θ1) = (1+ θ1y)γ − 1− γ θ1y

such that f (y; θ1) 6= 0 for all y ∈ R. Therefore,

∫

R

f (y; θ1)ϑ(dy) 6= 0.

Hence, the following equation holds:

(Cγ )
1

γ−1 = 1
1−γ

[

α + 1
2σ

2
1 θ

2
1 (1− γ )γ − γ (m1(θ)β −m2(λ))

−
∫

R
f (y; θ1)ϑ(dy)

]

. (36)
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FIGURE 2

Temperature-Dependent Release Factor from January 1, 2023, to January 1, 2024: This plot displays the computed release factor (Cγ )
1

γ−1 as a

function of daily mean temperatures from Niger, Ghana, Benin and Kenya. Each data point illustrates the factor adjustment required to modulate

daily mosquito releases in response to environmental temperature variations.

Proposition 3.5. Given that θ1 and R are solutions to the release

problem, the following inequality holds:

|Auψ(t, x;β)| ≤ e−αtxγ
[

κ0 + ς(β)+ C
∫

R
|(1+ θ1y)γ − 1

−γ θ1y|ϑ(dy)
]

, (37)

where ς(β) is defined as:

ς(β) = κ1e−at + κ2
∫ t

0
e−a(t−s)

√

β(s) dV(s), (38)

and κ0, κ1, κ2 are constants.

Moreover, if there exists a finite value,

1 >

∫

R

∣

∣(1+ θ1y)γ − 1− γ θ1y
∣

∣ϑ(dy) (39)

such that:

E

[

∫ T

0
e−2αtX2γ (t)dt

]

= 1−
∫

R

∣

∣(1+ θ1y)γ − 1− γ θ1y
∣

∣ϑ(dy),

(40)

then the expected absolute value ofψ at the exit time, along with the

accumulated generator and gradient terms over the interval [0, τS],

is finite.

Proof.

A
u
0φ(x)+ g(x, u) = −αCxγ +

(

(m1(θ)β −m2(λ))x− R
)

Cγ xγ−1

+ C
1

2
σ 2
1 θ

2
1 x

2γ (γ − 1)xγ−2

+ Cxγ
∫

R

{

(1+ θ1y)γ − 1− γ θ1y
}

ϑ(dy)+ Rγ

γ
.

Therefore, we have

A
u
0φ(x) = −αCxγ +

(

(m1(θ)β −m2(λ))x− R
)

Cγ xγ−1

+ C
1

2
σ 2
1 θ

2
1 x

2γ (γ − 1)xγ−2

+ Cxγ
∫

R

{

(1+ θ1y)γ − 1− γ θ1y
}

ϑ(dy)

= xγ
[

−αC + (m1(θ)β −m2(λ))− (Cγ )
1

γ−1 Cγ + C
1

2
σ 2
1 θ

2
1 γ (γ − 1)

+ C

∫

R

{

(1+ θ1y)γ − 1− γ θ1y
}

ϑ(dy)

]

= xγ
[

(m1(θ)β −m2(λ))−
(

(Cγ )
γ
γ−1 + αC

)

+ C
1

2
σ 2
1 θ

2
1 γ (γ − 1)

+ C

∫

R

{

(1+ θ1y)γ − 1− γ θ1y
}

ϑ(dy)

]

.

A
u
0φ(x) = xγ

[

m1(θ)β −
(

(Cγ )
γ
γ−1 + αC + C

1

2
σ 2
1 θ

2
1 γ (1− γ )

+m2(λ)
)

+ C

∫

R

{

(1+ θ1y)γ − 1− γ θ1y
}

ϑ(dy)

]

= xγ
[(

γ11θ
2
1 + (γ12 + γ21)θ1θ2 + γ22θ22

)

β−
(

(Cγ )
γ
γ−1 + αC + C

1

2
σ 2
1 θ

2
1 γ (1− γ )+m2(λ)

)

+ C

∫

R

{

(1+ θ1y)γ − 1− γ θ1y
}

ϑ(dy)

]

(obtained by replacing m1(θ)).

|Au
0φ(x)| ≤ xγ |

[

δ

(

b+
(

β0 − b
)

e−at + c

∫ t

0
e−a(t−s)

√

β(s)dV(s)

)
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+ C

∫

R

{

(1+ θ1y)γ − 1− γ θ1y
}

ϑ(dy)

]

|

≤ xγ
[

δ

(

b+ β0e−at + c

∫ t

0
e−a(t−s)

√

β(s)dV(s)

)

+ |C
∫

R

{

(1+ θ1y)γ − 1− γ θ1y
}

ϑ(dy)|
]

≤ xγ
[

κ0 + κ1e−at + κ2
∫ t

0
e−a(t−s)

√

β(s)dV(s)

+C
∫

R

|(1+ θ1y)γ − 1− γ θ1y|ϑ(dy)
]

.

since Auψ(z) = e−αtAu
0φ(x), we obtain the following :

∫ ∞

0
E[|ψ(t)|1{t≤τ }]dt ≤

∫ ∞

0

√

E[ψ(t)21{t≤τ }]dt

≤ √τS .
√

∫ τS

0
E[ψ(t)2]dt (Cauchy-Schwarz inequality)

≤ √τS .C
√

(

1−
∫

R

∣

∣(1+ θ1y)γ − 1− γ θ1y
∣

∣ϑ(dy)

)

.

∫ τS

0
E|Auψ(X(t))|dt ≤

[

κ0 + κ2 + C

∫

R

∣

∣(1+ θ1y)γ − 1− γ θ1y
∣

∣ϑ(dy)

]

E

[∫ τ

0
e−αtXγ (t)dt

]

≤
[

κ + C

∫

R

∣

∣(1+ θ1y)γ − 1− γ θ1y
∣

∣ϑ(dy)

] ∫ τ

0
E
[

e−αtXγ (t)
]

dt

≤
[

κ + C

∫

R

∣

∣(1+ θ1y)γ − 1− γ θ1y
∣

∣ϑ(dy)

]

.
√
τS .

√

E

[∫ τ

0
e−2αtX2γ (t)dt

]

.

|Auψ(t, x)| = |e−αtAu
0φ(x)| (41)

= e−αt|Au
0φ(x)| (42)

≤ e−αtxγ
[

κ0 + κ1e−at + κ2
∫ t

0
e−a(t−s)

√

β(s)dV(s)

(43)

+ C

∫

R

∣

∣(1+ θ1y)γ − 1− γ θ1y
∣

∣ϑ(dy)

]

. (44)

By applying Fubini’s theorem, we interchange the expectation

and integral, justified by the non-negativity of the integrand:

E

[∫ τ

0
e−2αtX2γ (t)dt

]

= E

[∫ ∞

0
e−2αtX2γ (t)1{t≤τ }dt

]

=
∫ ∞

0
E
[

e−2αtX2(t)1{t≤τ }
]

dt.

Since ψ(t) = Ce−αtXγ (t), we have :

E[C2e−2αtX2γ (t)] = E[ψ(t)2].

Thus

∫ ∞

0
E[e−2αtX2γ (t)1{t≤τ }]dt =

1

C2

∫ ∞

0
E[ψ(t)21{t≤τ }]dt

= 1

C2

∫ τS

0
E[ψ(t)2]dt

= 1−
∫

R

∣

∣(1+ θ1y)γ − 1− γ θ1y
∣

∣ϑ(dy).

We get

∫ τS

0
E[ψ(t)2]dt = C

2

(

1−
∫

R

∣

∣(1+ θ1y)γ − 1− γ θ1y
∣

∣ϑ(dy)

)

.

(45)

Since ψ(t)2 ≥ 0, we have |ψ(t)| =
√

ψ(t)2. Applying Jensen’s

inequality for the concave function
√
x, we obtain:

E[|ψ(t)|1{t≤τ }] ≤
√

E[ψ(t)21{t≤τ }].

Therefore,

Considering the relation (44), we note that

Hence,

∫ τS

0
E

∣

∣

∣

∣

∣

∣

∣

∣

A
uψ(X(t))

[

κC +
∫

R

∣

∣(1+ θ1y)γ − 1− γ θ1y
∣

∣ϑ(dy)

]

∣

∣

∣

∣

∣

∣

∣

∣

dt

≤ √τS .C
√

(

1−
∫

R

∣

∣(1+ θ1y)γ − 1− γ θ1y
∣

∣ϑ(dy)

)

(46)

where κC is a positive constant.

Remark 3.6. Since θ∗1 + θ∗2 = 1, the expression (33) can be written

as :

θ∗1 (t) =
(γ12 + γ21)β − λ1

σ 2(1− γ )− (2γ11 − (γ12 + γ21))β

−
∫

R

y
[

1− (1+ θ1y)γ−1
]

σ 2(1− γ )− (2γ11 − (γ12 + γ21))β
ϑ(dy). (47)

Theorem 3.7. Suppose that for each mosquito population x ∈ S ,

there exists a release strategy v such that v : = û(x), satisfying the

condition:

A
vψ(x)+ G(x, v) = 0.

and that u∗(t) = û(X(t)). Then u∗(t) = (R∗(t), θ∗1 (t)) is an
optimal control given by the following:

R∗(t) = (Cγ )
1

γ−1 x(t), (48)
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θ∗1 (t) =
(γ12 + γ21)β(t)− λ1

σ 2(1− γ )− [2γ11 − (γ12 + γ21)]β(t)

−
∫

R

y
[

1− (1+ θ1y)γ−1
]

σ 2(1− γ )− [2γ11 − (γ12 + γ21)]β(t)
ϑ(dy).(49)

The value function for the release control problem described by

(17) is then expressed by

9(s, x1, x2) = ψ(s, x;β) = e−αsCxγ (s), (50)

where C is a constant determined by (34), which differentiates cases

where the measure ϑ(dy) is zero and non-zero. The term involving

the integral over R signifies contributions from jumps, with ϑ(dy)

representing a measure.

Proof. Let u ∈ U and for k = 1, 2, . . ., set τk = k ∧ τS.
Since Proposition 3.5 ensures that

E

[

|ψ(X(τ ))| +
∫ τS

0
|Auψ(X(t))| dt

]

<∞,

we can apply Dynkin’s Formula II to obtain

E
x
[

ψ(X(τk))
]

= ψ(x)+ E
x

[∫ τk

0
A
uψ(X(t)) dt

]

≤ ψ(x)− E

[∫ τk

0
G(X(t), u(t)) dt

]

.

Therefore,

ψ(x) ≥ E
x
[

ψ(X(τk))
]

+ E

[∫ τk

0
G(X(t), u(t)) dt

]

≥ E
x

[

ψ(X(τk))+
∫ τk

0
G(X(t), u(t)) dt

]

≥ lim inf
k→∞

E
x

[

ψ(X(τk))+
∫ τk

0
G(X(t), u(t)) dt

]

≥ E
x1 ,x2 ,β

[∫ ∞

0
G(X(t), u(t)) dt

]

.

Thus, for u ∈ U ,

ψ(x) ≥ H
u
f (s, x1, x2).

Accordingly,

ψ(x) ≥ sup
u∈U

H
u
f (s, x1, x2) = 9(x), ∀x ∈ S . (51)

FIGURE 3

Stochastic optimal control and seasonal dynamics in mosquito release: a zero Lévy measure simulation.
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Furthermore, since u∗ = û(x) then,

ψ(x) = E
x1 ,x2 ,β

[∫ ∞

0
G(X(t), v(t)) dt

]

(52)

≤ sup
u∈U

H
u
f (s, x1, x2,β) = 9(x), ∀x ∈ S . (53)

Therefore

ψ(s, x) = 9(s, x)

= 9(s, x;β)
= e−αsCxγ (s).

Using Propositions 3.2 and 3.3, the proof is completed.

Proposition 3.8. Assuming that θ∗1 and θ∗2 satisfy the conditions of

the release control problem and that γ11 and γ22 are distinct from
1
2 (γ12 + γ21), then the integral

Iβ =
∫

R

y
[

1− (1+ θ1y)γ−1
]

σ 2(1− γ )− (2γ11 − (γ12 + γ21))β
ϑ(dy), (54)

can take the form :

Iβ =
(γ12 + γ21)β − λ1

σ 2(1− γ )− (2γ11 − (γ12 + γ21))β
− 2γ22β − λ2
(

2γ22 − (γ12 + γ21)
)

β
.

(55)

Consequently, the infection prevalence ratio during release can

be articulated as follows :

θ∗1 (t) =















(γ12 + γ21)β(t)− λ1
σ 2(1− γ )− (2γ11 − (γ12 + γ21))β(t)

if ϑ = 0

2γ22β(t)− λ2
(

2γ22 − (γ12 + γ21)
)

β(t)
if ϑ 6= 0

(56)

Note that the integral Iβ is independent of θ1 and θ2.

Proof. Suppose that
∂H

∂θ2
= 0, where H is given by

H =− αCxγ +
(

(γ11θ
2
1 + (γ12 + γ21)θ1θ2 + γ22θ22 )β

−(λ1θ1 + λ2θ2))x− R
)

Cγ xγ−1

+ C
1

2
σ 2
1 θ

2
1 x

2γ (γ − 1)xγ−2 + Cxγ
∫

R

{

(1+ θ1y)γ

−1− γ θ1y
}

ϑ(dy)+ Rγ

γ
.

FIGURE 4

Seasonality and non-zero Lévy measure in stochastic control of mosquito release.
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Thus,

((

(γ12 + γ21)θ1 + 2γ22θ2
)

β − λ2
)

Cγ xγ−1 = 0. (57)

Since θ∗1 = 1− θ∗2 , Equation 57 becomes:

((

(γ12 + γ21)(1− θ∗2 )+ 2γ22θ
∗
2

)

β − λ2
)

Cγ xγ−1 = 0. (58)

Therefore, we obtain:

(

(γ12 + γ21)β +
(

2γ22 − (γ12 + γ21)
)

βθ∗2 − λ2
)

Cγ xγ−1 = 0.

(59)

Given that the total mosquito populationX(t) and the constants

C and γ are non-zero, it follows that:

θ∗2 =
λ2 − (γ12 + γ21)β

(

2γ22 − (γ12 + γ21)
)

β
. (60)

This expression for θ∗2 (t) is derived by rearranging the terms

and solving for θ∗2 under the condition that the denominator is

non-zero, which should be verified in the context of the problem.

Therefore

1− θ∗2 (t) = 1− λ2 − (γ12 + γ21)β(t)
(

2γ22 − (γ12 + γ21)
)

β(t)
(61)

= 2γ22β(t)− λ2
(

2γ22 − (γ12 + γ21)
)

β(t)
(62)

= θ∗1 (t) (63)

= (γ12 + γ21)β(t)− λ1
σ 2(1− γ )− (2γ11 − (γ12 + γ21))β(t)

− Iβ . (64)

Hence,

Iβ =
(γ12 + γ21)β − λ1

σ 2(1− γ )− (2γ11 − (γ12 + γ21))β
− 2γ22β − λ2
(

2γ22 − (γ12 + γ21)
)

β
.

(65)

Furthermore the integral Iβ is independent of θ1 and θ2. This

completes the derivation of θ1 and θ2, as required by the release

control problem.

Proposition 3.9. (Sensitivity of the infection prevalence ratio) Let

θ1 and θ2 the fractions of infected and uninfected mosquitoes, such

that :

θ∗1 (t) =
(γ12 + γ21)β − λ1

σ 2(1− γ )− (2γ11 − (γ12 + γ21))β

−
∫

R

y
[

1− (1+ θ1y)γ−1
]

σ 2(1− γ )− (2γ11 − (γ12 + γ21))β
ϑ(dy) (66)

Therefore, as the growth rate β increases the infection

prevalence ratio θ1 increases. That is, for all β ∈ (0, 1)

∂θ1

∂β
> 0. (67)

Proof. Assume that γ11 and γ22 are different from
1
2 (γ12 + γ21).

(i) Considering the case where the Lévy measure ϑ = 0, by setting

θ1 = f (β) such that for β ∈ (0, 1) −
{

σ 2(1− γ )
2γ11 − (γ12 + γ21)

}

the

function is well defined,

Thus , if σ 2 >
λ1((γ11 − γ12)+ (γ11 − γ21))

(1− γ )(γ12 + γ21)

f ′(β) =

∣

∣

∣

∣

∣

γ12 + γ21 −λ1
−((γ12 + γ21)− 2γ11) σ

2(1− γ )

∣

∣

∣

∣

∣

[

σ 2(1− γ )− (2γ11 − (γ12 + γ21))β
]2
> 0.

(ii) In the same way for ϑ 6= 0, f ′(β) > 0 whenever γ22 6=
1
2 (γ12 + γ21).

3.2 Numerical results

3.2.1 Numerical simulation of mosquito
population dynamics

This section provides a comprehensive description of the

numerical methods used to simulate the dynamics of mosquito

populations influenced by stochastic factors and vector control

strategies, incorporating Lévy-driven stochastic differential

equations (SDEs). The simulations are performed using Python,

leveraging its robust libraries for numerical computations and

stochastic modeling.

1: Initialize Parameters:

2: Set simulation parameters: total time T, timestep

dt, initial mosquito population X0, and initial

rate r0.

3: Define parameters for the Cox-Ingersoll-Ross

(CIR) process with jumps: mean reversion speed κ,

long-term mean θ, volatility σ, number of jumps,

and jump intensity jump_sigma.

4: Simulate CIR Process with Jumps:

5: Initialize rate array r with zeros and set r[0] = r0.

6: Calculate the number of timesteps and define jump

intervals.

7: for i = 1 to number of timesteps do

8: dW ←
√
dt · N(0, 1) ⊲ Gaussian increment for

Brownian motion

9: dr← κ(θ −max(r[i− 1], 0))dt + σ
√
max(r[i− 1], 0)dW ⊲ CIR

update with diffusion

10: if i%jump interval = 0 then

11: jump← N(0,jump_sigma) ⊲ Random jump at

fixed intervals

12: r[i]← max(r[i− 1]+ dr + jump, 0) ⊲ Apply jump,

ensure non-negativity

13: else

14: r[i]← max(r[i− 1]+ dr, 0) ⊲ Regular update

without jump

15: end if

16: end for

Algorithm 1. Numerical simulation of mosquito population dynamics

using Lévy-driven SDEs - Part 1
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1: Compute θ1 and Normalize It:

2: For each r[i], compute θ1 using its dependency on

gamma and lambda parameters.

3: Normalize θ1:

4: θ1 ← (θ1 −min(θ1))/(max(θ1)−min(θ1)) ⊲ Ensure θ1 is

within [0,1]

5: Compute θ2 as 1− θ1 ⊲ Complement of θ1

6: Simulate Mosquito Population Dynamics:

7: Initialize mosquito population array X with X[0] =
X0.

8: for i = 1 to number of timesteps do

9: Compute R(t) using:

R(t) =
(

1

1− γ

)

(

α + 0.5σ 2
1 θ

2
1 (1− γ )γ

−γ (m1(θ)βt −m2(λ))
)

× X[i− 1]

⊲ Calculate release function R(t)

10: Update X[i]:

dX← (γ11θ
2
1 + γ12θ1(1− θ1)+ γ22(1− θ1)2)βtX[i− 1]dt

+σ1θ1X[i− 1]
√
dt · N(0, 1)− R(t) · dt

⊲ Population update with stochastic and

deterministic components

11: Nt ← Poisson(k · dt) ⊲ Determine number of jumps

based on Poisson process

12: for j = 1 to Nt do

13: Y ← N(0, 1) ⊲ Jump magnitude

14: dX← dX + ζ1θ1X[i− 1]Y ⊲ Apply jump impact on

population

15: end for

16: X[i]← max(X[i− 1]+ dX, 0) ⊲ Ensure non-negative

population

17: end for

18: Incorporate Seasonal Variation in Growth Rate:

19: Adjust growth rate βt using a sinusoidal function

to model seasonal effects.

20: Output and Visualization:

21: Generate plots to visualize dynamics of rate r,

infection ratios θ1 and θ2, and mosquito population

X.

22: Highlight impacts of seasonal changes on

population dynamics.

Algorithm 2. Numerical simulation of mosquito population dynamics

using Lévy-driven SDEs - Part 2

3.3 Numerical simulations of the optimal
control problem

In our study, we employ numerical simulations to investigate

the intricacies of stochastic optimal control in mosquito release

strategies, focusing on the effects of Lévy measures and seasonality.

While we do not present the cases with zero Lévy noise

and non-zero Lévy noise without seasonality, they serve as

baseline references to understand the infection dynamics under

more controlled conditions. The first simulation, depicted in

Figure 3, incorporates seasonal dynamics under a zero Lévy

measure. This simulation demonstrates how infection prevalence

and the ratio of uninfected individuals fluctuate with the

seasons, while also highlighting the necessary adjustments in

stochastic growth rates to optimize the release process. It

emphasizes the critical role of seasonality in the success of

mosquito control efforts, where timing and environmental

conditions are pivotal to strategic planning. In Figure 4, we

extend the analysis by introducing non-zero Lévy measures, in

combination with seasonality, to explore their joint impact on

mosquito release strategies. This simulation provides amultifaceted

view of how Lévy-driven fluctuations and seasonal variations

influence infection dynamics and control strategies. The results

underscore the complexity of designing effective mosquito release

strategies that must account for both ecological variability and

stochastic uncertainties.

3.4 Numerical illustration of the infection
prevalence ratio θ1

This section presents both 2D and 3D analyses to deepen

our understanding of how symbiont prevalence in mosquito

populations correlates with key environmental and biological

factors. Specifically, the 2D analyses (Figures 5A, B) explore the

relationships between symbiont prevalence, temperature, and the

stochastic growth rate β . These correlations provide insights into

the individual effects of temperature and growth rates on symbiont

spread within mosquito populations. Extending beyond this,

the 3D visualizations (Figures 5C, D) synthesize these variables,

offering a comprehensive view that highlights the intricate interplay

between environmental conditions and the efficacy of mosquito

release strategies. Through this multifaceted analytical approach,

we gain a clearer understanding of the factors that influence

symbiont prevalence, aiding in the optimization of mosquito

release methodologies.

3.4.1 Spatial representations based on
temperature

This part of the paper presents numerical simulations and

spatial illustrations that complement our analytical findings, while

also considering the biological and ecological implications of

our study. To ensure the model’s compatibility with biological

settings, we have adjusted the infection prevalence ratio using a

logistic transformation. Specifically, we normalize the symbiont

prevalence rate during release with the logistic function 1
1+exp(−y) .

This guarantees that the ratio remains non-negative and is

bounded between 0 and 1, which is essential for maintaining

the practical applicability and interpretability of our model in

real-world biological scenarios. The proportion θ1 represents the

infection prevalence ratio, influenced by temperature and varying

growth rates over time. Conversely, θ2 denotes the uninfected ratio,

reflecting the susceptibility of wild mosquitoes to the Plasmodium

parasite. This becomes critical in estimating the maximum malaria

prevalence during periods when the symbiont prevalence drops
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FIGURE 5

Interplay of environmental conditions and symbiont prevalence in mosquito releases: a 2D and 3D analytical perspective. (A) θ1_values with Levy

measure ϑ = 0 in 2D. (B) θ1_values with Levy measure ϑ 6= 0 in 2D. (C) θ1_values with ϑ = 0 in 3D. (D) θ1_values with ϑ 6= 0 in 3D.

or becomes inefficient, possibly due to environmental changes.

The simulations were conducted with both zero and non-zero

Lévy measures to demonstrate the varying effects under different

conditions. To define the infection prevalence ratio quantitatively,

we derive the formula for θ1 as follows:

θ∗1 (β(t),T) =
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(2γ22 − (γ12 + γ21))β(t)

















if ϑ 6= 0.
(68)

To map the malaria transmission potential risk area, we

consider the uninfected ratio θ∗2 , which can be represented by:

θ∗2 (β(t),T) = 1− θ∗1 (β(t),T) (69)

3.5 Spatial illustrations

In this subsection, we present spatial illustrations depicting the

areas of malaria transmission potential risk based on the variability

in symbiont prevalence over a year of release. This risk is closely

linked to the effectiveness of the release strategy.

The maps show variations in malaria transmission risks

across different study areas, illustrating the effects of mosquito

releases in Benin, Niger, Ghana, and Kenya on reducing malaria

transmission risks. At day 28 of the releases, the lowest transmission

risks observed are 82% for Benin (Figure 6A), 76% for Niger

(Figure 7A), 77% for Ghana (Figure 8A), and 76% for Kenya

(Figure 9A). By day 252, there is a notable decrease in malaria

transmission risks: 44% for Benin (Figure 6B), 37% for Niger

(Figure 7B), 37% for Ghana (Figure 8B), and 37% for Kenya

(Figure 9B). This demonstrates the impact of the release strategy

on malaria transmission dynamics, primarily influenced by vector

population densities. The green areas indicate low transmission

risk (Figures 6–9), while the red areas indicate high transmission

risk, highlighting regions where the release strategy has less

impact.

3.6 Validation

The integrity of our model was rigorously tested using data

on the prevalence of the microbe Microsporidia MB collected in
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FIGURE 6

Mapping malaria transmission risks in Benin: evaluating mosquito release strategy e�ciency. (A) 28 days. (B) 252 days. This map illustrates malaria

transmission risk areas in Benin, influenced by temperature variations, geographical location, and the timing and quantity of mosquito releases.

FIGURE 7

Mapping malaria transmission risks in Niger: evaluating mosquito release strategy e�ciency. (A) 28 days. (B) 252 days. This map shows malaria

transmission risk areas, impacted by temperature di�erences, geographical location, and the timing and quantity of mosquito releases.
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FIGURE 8

Mapping malaria transmission risks in Ghana: evaluating mosquito release strategy e�ciency. (A) 28 days. (B) 252 days. This map depicts malaria

transmission risk areas, a�ected by temperature variations, geographical location, and the timing and quantity of mosquito releases.

FIGURE 9

Mapping malaria transmission risks in Kenya: evaluating mosquito release strategy e�ciency. (A) 28 days. (B) 252 days. This map highlights malaria

transmission risk areas, shaped by temperature di�erences, geographical location, and the timing and quantity of mosquito releases.
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FIGURE 10

Correlating Microsporidia MB prevalence with low malaria transmission risk area: a validation of the model. This figure shows how the prevalence of

Microsporidia MB in mosquito populations reduces malaria transmission risk in various regions of Kenya, validating our model’s e�ectiveness.

Kenya. Figure 10 illustrates a direct correlation between symbiont

prevalence in mosquito populations and malaria transmission risk

across Kenya. The map highlights regions based on confirmed

prevalence and overlays these with malaria transmission risks,

providing a compelling visual validation of our model. Our

analysis mapped Microsporidia MB prevalence data against areas

of significant malaria transmission potential, identifying specific

zones of concern. The validation revealed that regions with higher

symbiont prevalence exhibit lower malaria transmission risks,

underscoring the importance of symbiont activity in mitigating

malaria transmission. In conclusion, our model’s validation

highlights the necessity for tailored strategies that address malaria

transmission challenges, including the innovative use of symbionts

for vector control.

TABLE 2 Parameters for mosquito population simulation.

Parameter Value Source

γ11 , γ12 , γ21 , γ22 , γ 0.2, 0.7, 1, 1, 0.2 [28]

λ1 , λ2 , σ1 , ζ1 0.2, 0.2, 0.1, 0.1 Assumed

k, α, X0 28, 0.1, 1,000 Assumed

3.6.1 Model parameter values
The sensitivity of the stochastic growth rate β and the

population of mosquitoes X(t) under the parameters in Tables 2,

3 are in Table 4 in Appendix.
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TABLE 3 Parameters for CIR process with jumps.

Parameter Description Value Source

Tcir Total time in years 365
365

Assumed

dtcir Time step 0.0001 Assumed

β0,cir Initial rate 0.03 Assumed

κcir Speed of reversion 0.2 Assumed

θcir Long-term mean 0.02 Assumed

σcir Volatility 0.1 Assumed

ζcir Total number of jumps 28 Assumed

ζσcir Standard deviation of jump sizes 0.0005 Assumed

J Quadratic temperature coefficient –0.03 [45]

K Linear temperature coefficient 1.31 [45]

L Constant offset –4.4 [45]

4 Discussion

This study investigated the use of stochastic optimal control

to manage the release of Anopheles mosquitoes infected with

Microsporidia MB, aiming to reduce malaria transmission.

By employing Hamilton–Jacobi–Bellman (HJB) Equation 17, we

identified the optimal daily release and symbiont prevalence

necessary for effectivemalaria control. Our results demonstrate that

an increase in the growth rate of Anopheles mosquitoes enhances

the infection prevalence ratio (Proposition 3.9) and reduces the

proportion of uninfected mosquitoes, thereby amplifying the

potential for disease control.

A key improvement in this study is the refined calculation of

the infection prevalence ratio using a sigmoid function, providing a

more accurate representation of biological and ecological realities.

This ratio, influenced by stochastic factors such as time and

temperature, highlights the variability in infection rates within

mosquito populations. The relationship between the optimal

infection prevalence (θ1) and the uninfected mosquito ratio

(θ2) illustrates malaria transmission risk dynamics, as shown in

Figures 6–9. Our spatial analysis across these regions reveals a

general reduction in malaria transmission following the release of

infected mosquitoes. However, this reduction is not uniform; it

varies with time, temperature, and geographical conditions, with

fluctuations reflecting the adaptation period of released mosquitoes

into wild populations.

Recent advances in malaria control emphasize the ongoing

need for innovative strategies. For example, the CDC recently

reported the effectiveness of vector control measures such as

pyrethroid-chlorfenapyr-impregnated nets, despite emerging

challenges like insecticide resistance [46]. Concurrently,

mathematical modeling has been pivotal in evaluating various

interventions. Notably, one recent study integrated machine

learning with transmission dynamics to optimize malaria

intervention strategies [47]. Similarly, Ozodiegwu et al. developed

a model incorporating drug resistance and preventive measures

to assess malaria dynamics in Nigeria [48]. In this context, our

study introduces a novel approach, leveraging stochastic optimal

control and mosquitoes infected with Microsporidia MB to disrupt

Plasmodium transmission. This strategy complements existing

interventions, reinforcing flexibility and adaptation to local

environmental conditions. Moreover, by integrating stochastic

elements such as white and Lévy noise, we have enhanced the

model’s capacity to account for diverse environmental variabilities,

offering a more comprehensive depiction of mosquito population

dynamics.

The implications of our findings are significant for public

health, particularly in malaria-endemic regions of West and East

Africa. The adaptability of the infected mosquitoes and the

variability in symbiont prevalence, influenced by environmental

and ecological factors, underscore the complexity of implementing

effective vector control strategies. Additionally, challenges related

to potential ecological impacts, logistical concerns, and public

acceptance must be carefully considered to ensure successful

implementation of this approach. Ongoing monitoring will

be essential to assess the ecological impacts and efficacy of

the releases over time. While this study does not explicitly

address the economic costs of mosquito releases, future research

should incorporate economic modeling to evaluate the cost-

effectiveness of various release strategies. This would aid in

optimizing the timing, frequency, and scale of releases, thereby

maximizing their impact while ensuring financial viability for

large-scale implementation.

Future studies should also explore additional factors that

influence the success of Microsporidia MB-infected mosquito

releases, such as the interaction between symbionts and insecticide-

resistant mosquito populations, potential ecological side effects,

and long-term sustainability. Incorporating more extensive field

data, especially from regions with varied climates, could further

refine the model and increase its applicability across different

malaria-endemic zones.

In conclusion, this research advances malaria vector control

strategies by employing stochastic optimal control under a Lévy

process to optimize the release of Microsporidia MB-infected

mosquitoes. Our model demonstrates the significant influence

of symbiont activity on mosquito population dynamics, affecting

both infection prevalence and malaria transmission risks. By

accounting for environmental factors such as seasonality and

incorporating Lévy noise, the model captures a more realistic

and dynamic picture of mosquito behavior under varying

conditions. Spatial analysis across Ghana, Niger, Benin, and

Kenya reveals the gradual impact of infected mosquitoes on

local populations, supporting the potential for integrated

approaches in malaria control. These findings underscore

the importance of adaptable, region-specific strategies, with

further research needed to explore economic feasibility and

the interplay between biological and ecological factors for

long-term success.
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