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Cholera is a disease of poverty a�ecting people with inadequate access to

safe water and basic sanitation. Conflict, unplanned urbanization and climate

change all increase the risk of cholera. In this article, an optimal control

deterministic mathematical model of cholera disease with cost-e�ectiveness

analysis is developed and analyzed considering both direct and indirect contact

transmission pathways. The model qualitative behaviors, such as the invariant

region, the existence of a positive invariant solution, the two equilibrium points

(disease-free and endemic equilibrium), and their stabilities (local as well as

global stability) of the model are studied. Moreover, the basic reproduction

number of the model is obtained. We also performed sensitivity analysis of the

basic parameters of themodel. Then an optimal control problem is designedwith

a control functional having five controls: vaccination, treatment, environment

sanitation and personal hygiene, and water quality improvement program.

We examined the existence and uniqueness of the optimal controls of the

system. Through the implementation of Pontryagin’s maximum principle, the

characterization of the optimal controls optimality system is established. The

numerical simulation results the integrated control strategies demonstrated that

strategy 2, 7, and 12 are e�ective programs to combat cholera disease from the

community. Based on the local circumstances, available funds, and resources, it

is recommended to the government stakeholders and policymakers to execute

any one of the three integrated intervention programs.
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1 Introduction

Cholera poses a global public health concern among communicable diseases.

Currently, it is still prevalent in regions affected by natural disasters, humanitarian crises,

and/or low levels of hygiene across the world. It is an acute watery diarrheal disease caused

by ingestion of food or water contaminated with the bacterium Vibrio cholerae [1, 39].

In endemic locations, cyclic outbreaks occur twice a year, and the disease is exceedingly

virulent and rapidly fatal, posing a serious threat to public health in developing nations

[26]. TheWorld Health Organization (WHO) estimates that each year, cholera causes 1.4−

4.3 million illnesses and 30,000–140,000 deaths globally [16]. There were about 3 million

deaths from cholera epidemics globally based on trend analysis from 1990 to 2019 [16].
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Cholera affects the poorest people of the world, who already have

been rendered vulnerable due to conflict and poverty [25]. The

current cholera outbreak occurred largely on the African continent,

particularly in the sub-Saharan regions [36]. More than 14 African

countries (including Nigeria, Cameroon, Democratic Republic of

Congo, South Sudan, Somalia, Ethiopia, Kenya, Tanzania, Zambia,

Malawi, Mozambique, Zimbabwe, South Africa, Eswatini, and

Burundi) have reported cholera cases since the beginning of

2023 [21].

The transmission of cholera can occur through direct human-

to-human contact as well as indirect human-to-environment

contact [41]. Family members of cholera patients are particularly

vulnerable to infection, potentially as a result of contaminated

family water storage containers or contaminated food preparation

[12, 21]. The main way that cholera is spread from the environment

is through the consumption of contaminated water that harbors the

Vibrio cholera bacteria. Usually, cholera bacteria are found in food

or water sources that have been contaminated by a cholera patient’s

excreta [39]. Places with inadequate sanitation, poor hygiene, and

inadequate water treatment are the most likely to contact and

transmit cholera [21].

The key to controlling cholera and lowering deaths in a

humanitarian setting is a complex approach that combines the use

of oral cholera vaccines, quick surveillance, social mobilization,

treatment, water sanitation, and hygiene [9]. In cholera outbreaks,

household spraying is a commonly implemented intervention

where cholera patients’ homes are disinfected with chlorine, with

the aim of reducing the immediate risk of cholera transmission to

other householdmembers via surfaces and/or objects contaminated

with V. cholerae [20].

Epidemiologists and other researchers use mathematical

modeling and numerical simulation for a scientific understanding

of the dynamics and preventive method of an infectious disease,

for determining sensitivities, changes of parameter values, and

forecasting. They use the most recent information to extrapolate

the state and progress of an outbreak and make predictions.

Several mathematical models on cholera were developed by

different authors. From these research findings, some of the

scholars used deterministic, stochastic, and fractional models.

Nyabadza et al. [31] studied the dynamics of cholera in the

presence of limited resources. They showed that their model

exhibits backward bifurcation and multiple equilibrium points.

They also concluded that the cases of cholera infection decrease

if there are a sufficient number of hospital beds. A mathematical

model for the transmission of cholera dynamics with a class

of quarantined and vaccination parameter as control strategies

is proposed by Ezeagu et al. [17]. They reached a conclusion

that effective quarantine, vaccination, and proper sanitation

reduce the disease contact rates, which eliminate the spread

of cholera. Onitilo et al. [32] considered an SIR-V type of

infection model for cholera dynamics considering environment-

to-human and human-to-human transmission. They predicted

the intervention strategies without applying the optimal control

theory. However, they recommended that non-governmental

organizations (NGOs) and relevant authorities properly educate

the public about the risks associated with swimming in drinking

water sources and urinating in public. The other scholars used

fractional order modeling [4, 35]. They formulated an susceptible-

exposed-infected-recovered (SEIR) and studied by incorporating

the saturated incidence rate into the model. From the results, they

recommended that in order to stop the spread of cholera in a

particular population, responsible organizations need to conduct

education programs.

An area of study known as optimal control emerged in order

to establish the best methods for managing dynamic systems.

A few research scholars used optimal control strategies for

cholera disease to minimize the number of infected individuals.

Njagarah and Nyabadza [30] formulated a nine-compartment

deterministic cholera model and an optimal control theory is

applied to ascertain the level of effect of the controls in reducing

susceptible, exposed, infected individuals and causative pathogen

population. Pontryagin’s maximum principle is used to prove

the optimal solution of the model, and the optimal system was

derived and numerically solved. Simulations were made with

graphs that show the effects of the controls on susceptible, exposed,

infected, and V. cholerae population. Their findings conclude that

simultaneous application of the three controls can be one of the

fast and effective ways of controlling cholera. If two controls

are to be selected, hygiene consciousness and vaccine are the

best combination. The study conducted in 2015 [30] created and

examined a mathematical model for the dynamics of cholera

transmission between two interconnected villages that included

allowable controls. According to the findings, both impacted

groups benefited from the application of controls such good

sanitation, hygiene, and immunization.

Bakare and Hoskova-Mayerova [5] developed a deterministic

and stochastic mathematical models of cholera transmission

and control dynamics, with the aim of investigating the effect

of the three control interventions against cholera transmission

to find the optimal control strategies. Numerical experiments

showed that to effectively control cholera transmission, mortality,

and morbidity, a combination of all three control interventions

(the use of hygiene promotion and social mobilization; the

use of treatment by drug/oral re-hydration solution; and

the use of safe water, hygiene, and sanitation) is needed.

Cheneke et al. [13] presented a cholera model with fractional

derivative and optimal control analysis. According to the cost-

effectiveness analysis, the three or four feasible combinations of

controlling measures–hygiene, vaccination, ineffective remedy,

and chlorination–for cholera contamination intervention show

that these three are the best combinations to control the spread of

the infection.

Lemos-Paião et al. [28] proposed a mathematical model for

cholera with treatment through quarantine in the Department of

Artibonite (Haiti) in 2010 with an optimal control problem and

analyzed, with a goal of obtaining a successful treatment through

quarantine. In order to reduce the number of infectious individuals,

the concentration of bacteria, and the associated costs, they

recommended implementing the most effective quarantine plan.

In 2022, He and Whang [23] developed a fractional model

for the transmission dynamics of cholera with an optimal strategy

considering treatment, vaccination, and awareness programs

to reduce the number of infections. From the numerical

simulations and cost-effectiveness analysis, the results showed
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that the best strategy was the combination of treatment and

awareness programs.

With the help of optimal control theory and actual data on

cholera cases from Ethiopia’s Oromia Region, the cholera dynamics

model with continuous controls–which consists of two controls

is theoretically studied by Berhe [7]. The author used average

cost-effectiveness ratio and the incremental cost-effectiveness ratio.

The use of treatment as control was found out to be the most

cost-effective strategy.

We noted that none of the researches reviewed above

assumed the combined effect of cholera disease transmission

(direct and indirect) with explicit intervention program in the

transmission dynamics of the disease considering Hollying type

II functional response for infection from bacteria contaminated

food or water and standard incidence rate for human to

human infection and an optimal control intervention with

five intervention programs. According to the optimal control

model created by the previously assessed works, the researchers

employed one, two, or possibly three of the intervention

programs, which incorporate treatment, vaccination, awareness

programs, and implementation of proper hygiene. The goal

of this study is to determine the best control approach to

reduce the spread of cholera, which included environmental

hygiene. In this research, we used five intervention control

strategies including environmental sanitation in formulating the

corresponding optimal control model which was not considered

in optimal control model formulation in previous research. In

this article, we consider the above gaps in the development of

a cholera transmission dynamics mathematical model with an

optimal control strategy.

The rest of the manuscript is organized as follows: In Section

2, the full description and formulation of the model is stated.

Section 3 establishes the model positivity and the invariant

region. In addition, the sensitivity analysis of the parameters is

demonstrated and the local and global stability of the Disease

Free Equilibrium (DFE), calculations are done to determine the

reproduction and disease-free numbers. Section 4 is devoted

to the optimal control model formulation and its analysis.

Section 5 dwells on on the numerical simulation and calibration

of the model. Our conclusions and discussions are provided

in Section 6.

2 Model formulation and description

We divided the population denoted by N(t) according

to the infection status into S(t)- susceptible, I(t)- infected,

R(t)- recovered, and H(t)- hospitalized individuals at given

time t.

N(t) = S(t)+ I(t)+ H(t)+ R(t)

Moreover, C(t) is the amount of concentration of V. cholerae in

an environment at time t.

The population in the susceptible compartment will be

increased with a recruitment rate of 5 and from recovered

population at the immunity loss rate η. However, its number

decreases due to natural death at a rateµ and infected compartment

TABLE 1 Description of parameters of the model (1).

Parameter Description

5 Recruitment rate of individuals

β1 Contact rate of susceptible individuals with Vibrio

cholera

β2 Contact rate of susceptible individuals with infected

humans

τ Disease induced death rate of infected individuals

ϑ Clearance rate of the Vibrio cholera bacteria.

ϕ Recovery rate of hospitalized individuals.

ω Proportion of infected individuals leaving the

compartment for treatment or immune recovery.

σ Shading rate of infected individuals of the environment

µ Natural death rate

α Proportion of infected individuals to recovered.

with a force of infection that uses standard incidence rate of

infection between humans andHollying type II functional response

for food or water contaminated with bacteria, which is given by

λ = β1C
a+C + β2I

N , where a is concentration of V. cholerae in

the contaminated environment. The population in the infected

compartment will be increased by the contact rate of λ and

also its number decreases by the natural causing death rate of

µ, cholera causing death rate τ , and moving to the hospitalized

compartment with the treatment rate of (1 − α)ω and the

remaining αω proportion get the recovered sub-population. The

population in the hospitalized compartment increases from the

infected compartment with the treatment rate of (1 − α)ω and

decreases as a result of treatment with the recovery rate of ϕ and

the natural causing death rate ofµ. The population in the recovered

compartment also increases as the recovery from the hospitalized

sub-population increases at a treatment rate of ϕ and from infected

individuals at a rate recovery αω, but its number decreases by the

natural causing death rate of µ and loss of immunity at a rate

of η. Infected individuals in the community shed the pathogen

population of V. cholera into the aquatic environment at a rate

of σ and at the rate of ϑ V. cholera pathogen population dies

and leave the community. Table 1 shows the description of model

parameters.

With regards to the above assumptions, the model

is governed by the following system of differential

equation:

dS
dt

= 5+ η R−
(

β1C
a+C +

β2I
N

)

S− µ S

dI
dt

=
(

β1C
a+C +

β2I
N

)

S− (ω + τ + µ) I
dH
dt

= (1− α)ωI − (µ+ ϕ)H
dR
dt

= α ωI + ϕH − (µ+ η)R
dC
dt

= σ I − ϑC,

(1)

with the initial condition

S(0) = S0 > 0, I(0) = I0 ≥ 0 H(0) = H0 ≥ 0,

R(0) = R0 ≥ 0,C(0) = C0 ≥ 0.
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3 Model analysis

3.1 Positivity of solutions

Theorem 3.1. If S(0) > 0, I(0) ≥ 0,H(0) ≥ 0,R(0) ≥

0,C(0) > 0 are positive in the feasible set �, then the solution set

(S(t), I(t),H(t),R(t),C(t)) of system (1) is positive for all t ≥ 0.

Proof. We let τ̂ = sup{t > 0 : S0(ν) ≥ 0, I0(ν) ≥ 0, H0(ν) ≥

0, R0(ν) ≥ 0, C0(ν) ≥ 0 for all ν ∈ [0, t]}. Since S0(t) > 0, I0(t) ≥

0, H0(t) ≥ 0, R0(t) ≥ 0 and C0(t) ≥ 0, hence τ̂ > 0. If τ̂ < ∞,

then automatically S0(t) or I0(t) or H0(t) or R0(t)or C0(t) is equal

to zero at τ̂ . Taking the first equation of the model

dS

dt
= 5+ η R−

(

β1C

a+ C
+
β2I

N

)

S− µ S. (2)

Let λ(t) = β1C
a+C +

β2I
N , it follows that,

dS

dt
+
(

λ(t)− µ
)

S = 5+ η R(t), (3)

which can be written as

d

dt

[

s(t)eµt+
∫ t
0 (λ(τ̂ ))dτ̂

]

=
(

5+ η R(t)
)

eµt+
∫ t
0 (λ(τ̂ ))dτ̂ (4)

Hence,

s(t1)e
µt1+

∫ t1
0 (λ(τ̂ ))dτ̂ =

∫ t1

0

(

5+ η R(t)
)

[

eµz+
∫ z
0 (λ(τ̂ ))dτ̂

]

dz (5)

Therefore,

s(t1) = s(0)e−µt1−
∫ t1
0 (λ(τ̂ ))dτ̂ +

[

eµz+
∫ z
0 (λ(τ̂ ))dτ̂

]

×
∫ t1
0

[

eµz+
∫ z
0 (λ(τ̂ ))dτ̂

(

5+ η R(z)
)

]

dz ≥ 0
(6)

From the second equation of the system (1)

dI

dt
=

(

β1C

a+ C
+
β2I

N

)

S−(ω + τ + µ) I ≥ − (ω + τ + µ) I. (7)

Integrating both sides of this inequality and applying the

technique of separation of variables along with initial condition for

Equation 7 yields,

I(t) = I(0)e−(ω+τ+µ)t ≥ 0, ∀t ≥ 0. (8)

Similarly















H(t) = H(0)e−(ϕ+µ)t ≥ 0, ∀t ≥ 0,

R(t) = R(0)e−(η+µ)t ≥ 0, ∀t ≥ 0,

C(t) = I(0)e−ϑt ≥ 0, ∀t ≥ 0.

(9)

Therefore, for all non-negative starting conditions, all solutions

of system 1 remain non-negative.

3.2 Invariant region

Let us determine a region in which the solution of

model 1 is bounded. For this model the total population is

N(S(t), I(t),H(t),R(t)) = S(t)+ I(t)+H(t)+ R(t) and C(t). Then,

differentiating N with respect to time we obtain:

dN

dt
=

dS

dt
+

dI

dt
+

dH

dt
+

dR

dt
= 5− τ I − µN.

If there is no death due to the disease, we get

dN

dt
≤ 5− µN. (10)

Let N∗(t) be the solution of the ODE in Equation 10. Thus,

Equation 10 has a unique solution with initial value N∗(0) and

applying separation of variable on the differential equation, we get

N∗(t) = N∗(0)e−µt +
5

µ

(

1− e−µt
)

. (11)

We now apply the comparison theorem [27] on the differential

Equation 11 and then N(t) ≤ N∗(t). Thus,

N(t) ≤ N∗(t) = N∗(0)e−µt +
5

µ

(

1− e−µt
)

. (12)

and evaluating it as t −→ ∞, the population size N(t) −→
5
µ
.Therefore,

N(t) ≤
5

µ
, for 0 ≤ N∗(0) ≤

5

µ
, ∀t ≥ 0. (13)

On the other hand, if N∗(0) ≥ 5
µ
the solution decrease to 5

µ
as

t −→ ∞. Similarly, from the last equation of the model 1, we have

dC

dt
= σ I − ϑC ≤ σ

5

µ
− ϑC. (14)

Thus

C(t) ≤ C∗(t) = C∗(0)e−ϑt +
σ5

ϑµ

(

1− e−ϑt
)

. (15)

and as t −→ ∞, C(t) −→ σ5
ϑµ

. Hence,

C(t) ≤
σ5

ϑµ
, for 0 ≤ C∗(0) ≤

σ5

ϑµ
, ∀t ≥ 0. (16)

Hence, the invariant region and the biologically feasible region

for the model 1 is given by:

� =
{

(S, I,H,R,C) ∈ R5
+ : 0 ≤ N(t) ≤

5

µ
, 0 ≤ C(t) ≤

σ5

ϑµ

}

.

Therefore, every solution of the differential equation model

with initial conditions in� remains� ∀t ≥ 0.
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3.3 E�ective reproduction number and
cholera free equilibrium point (DFE)

When there is no disease in the population, that is I = C = 0,

the disease free equilibrium occur and is obtained by taking the

right side of system of Equation 1 equal to zero. Therefore, the

disease free equilibrium point is given by:

E0 =

(

5

µ
, 0, 0, 0, 0

)

(17)

We calculate the effective reproduction number R0 of the

system by applying the next generation matrix method as laid out

in [40]. Considering only the infective compartments in the model

equations to compute REff as F = (I,C), then we have dF
dt

=

Q(t)− P(t) obtained from the system given below:

Q =

(
(

β1C
a+C + β2I

N

)

S

0

)

,

P =

(

(ω + τ + µ) I

−σ I + ϑC

)

The Jacobian matrices of F and V at DFE, respectively, is

given as

Q =

(

β2
β15
aµ

0 0

)

,

P =





ω + τ + µ 0

−σ ϑ





Then, the next generation matrix is computed by:

QP−1 =





β2
ω+τ+µ + σ β15

aµϑ(ω+τ+µ)
β15
ϑ aµ

0 0





Therefore, the Effective reproduction number of our model is

the spectral radius of the matrix FV−1 and given by:

REff =
aµϑ β2 +5σ β1

aµϑ (ω + τ + µ)

= RC
Eff +RI

Eff

whereRI
Eff =

β2
ω+τ+µ &RC

Eff =
5σ β1

aµϑ(ω+τ+µ)

REff is a threshold value that indicates the average number

of infections brought about by a single infectious person within

a susceptible population as well as the interactions between the

susceptible population and the contaminated environment [40].

Theorem 3.2. The DFE point is locally asymptotically stable if

REff < 1 and unstable ifREff > 1.

Proof. The Jacobian matrix, evaluated at the disease-free

equilibrium E0 is:

J =















−µ −β2 0 η −
β15
aµ

0 β2 − ω − τ − µ 0 0 β15
aµ

0 (1− α)ω −µ− ϕ 0 0

0 ω α ϕ −µ− η 0

0 σ 0 0 −ϑ















From the Jacobian matrix we obtained some of the eigenvalues

are−µ,−(µ+ η) and−(µ+ϕ) the other eigenvalues are obtained

from characteristic polynomial as

λ2 + ψ1λ+ ψ2, (18)

where

ψ1 = (ϑ + ω + τ + µ)(1−RI
Eff )

and

ψ2 = ϑ(+ω + τ + µ)(1−REff ).

We applied Routh–Hurwitz criteria and by the principle the

polynomial in Equation 18 has strictly negative real root iffψ1 > 0,

ψ2 > 0 and ψ1ψ2 > 0. We see that both ψ1 and ψ2 are positive

wheneverREff < 1. Hence, the DFE is locally asymptotically stable

ifREff < 1.

Theorem 3.3. The equilibrium point E0 of the model 1 is globally

asymptotically stable ifREff < 1 otherwise unstable.

Proof. The method proposed by [11] is used to analyze the global

stability of the disease-free equilibrium point within the feasible

region� ∈ R5
+. The system 1 can be expressed in the form:

{

dP
dt

= W(P,M),
dM
dt

= T(P,M),T(P, 0) = 0,
(19)

where P = (S,H,R), and M = (I,C) which represents the

uninfected and infected compartments, respectively. In applying

the principle [11], the DFE point of the model E0 = (P∗, 0) is

guaranteed to be globally asymptotically stable if Reff < 1 (locally

asymptotically stable), and conditions (C1) and (C2) are satisfied.

The two conditions (C1) and (C2) are:

C1 : For dP
dt

= W(P, 0), P∗ is globally asymptotically stable.

C2 : T(P,M) = BM − T̂(P,M), T̂(P,M) ≥ 0 for (P,M) ∈ D.

with B = DMT(P∗, 0) is M-matrix off-diagonal entries of B are

non-negative, andD is the set at which the system becomes feasible.

The disease-free equilibrium, E0 =
(

5
µ
, 0, 0, 0, 0

)

, is globally

asymptotically stable if R0 < 1.

From the system described by Equation 19, we obtain the

following:

W(P,M) =







5+ η R−
(

β1C
a+C +

β2I
N

)

S− µ S

(1− α)ωI − (µ+ ϕ)H

α ωI + ϕH − (µ+ η)R






. (20)

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2024.1462701
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Alemneh et al. 10.3389/fams.2024.1462701

Based on Equation 20, we have,

dP

dt
= W(P, 0) =







5− µ S

0

0






(21)

The solution to Equation 21, for disease-free variables becomes,

S(t) = 5
µ

− [5
µ

− S(0)]e−µt . As t goes to infinity, the values of

S(t) converge to 5
µ
. Thus, E0 = (P∗, 0) = (5

µ
, 0) is the globally

asymptotically stable equilibrium point for Equation 21. As a result,

condition C1 is satisfied.

The disease class differential equation in Equation 19 can be

expressed as follows:

dM

dt
= T(P,M) =

(
(

β1C
a+C + β2I

N

)

S− (ω + τ + µ) I

σ I − ϑC

)

. (22)

T(P,M) = BP − T̂(P,M), (23)

where

B =

(

β2 − (τ + ω +−µ) β15
aµ

σ −ϕ

)

, (24)

Ŵ(P,M) =

(

β2I(1−
1
N )+ β1C(

5
aµ − 1

a+C )

0

)

. (25)

Thus, Ŵ(P,M) ≥ 0, ∀(P,M) ∈ D for 1 ≤ 1
N

and 5
aµ ≥ 1

a+C . Furthermore, the nonnegativity of the off-

diagonal entries implies that B is an M-matrix. This also

suggests that condition C2 is satisfied. Therefore, the disease-

free equilibrium is globally asymptotically stable whenever

R0 < 1.

3.4 Sensitivity analysis

In this section, we have done the sensitivity analysis to

identify parameters that have an impact in the transmission

of cholera. We used the normalized sensitivity index

definition as defined in [8] as it is done in [2, 3].

The normalized forward sensitivity index of a variable,

REff , that depends differentiable on a parameter, p, is

defined as:

Λ
REff
p =

∂REff

∂p
×

p

REff

for p represents all the basic parameters. Here we have

REff =
aµϑ β2+5σ β1
aµ (ω+τ+µ)ϑ . For the sensitivity index of REff to the

FIGURE 1

The local elasticity indices of RE� with respect to parameters of the

model (1).

parameters:

Λ
REff

5 =
∂REff

∂5
×

5

REff
=

5σ β1

aµϑ β2 +5σ β1
> 0

Λ
REff

β1
=
∂REff

∂β1
×

β1

REff
=

5σ β1

aµϑ β2 +5σ β1
> 0

Λ
REff

β2
=
∂REff

∂β2
×

β2

REff
=

aµϑ β2

aµϑ β2 +5σ β1
> 0

Λ
REff
σ =

∂REff

∂σ
×

σ

REff
=

5σ β1

aµϑ β2 +5σ β1
> 0

Λ
REff
a =

∂REff

∂a
×

a

REff
= −

5σ β1

aµϑ β2 +5σ β1
< 0

Λ
REff
µ =

∂REff

∂µ
×

µ

REff
=

−2 σ 5
(

µ+ 1
2 τ +

1
2ω
)

β1 − aµ2ϑ β2

(aµϑ β2 +5σ β1) (ω + τ + µ)

< 0

Λ
REff
τ =

∂REff

∂τ
×

τ

REff
= −

τ

ω + τ + µ
< 0

Λ
REff
ω =

∂REff

∂ω
×

ω

REff
= −

ω

ω + τ + µ
< 0

Λ
REff

ϑ =
∂REff

∂ϑ
×

ϑ

REff
= −

5σ β1

aµϑ β2 +5σ β1
< 0

Figure 1 shows the reproduction number’s sensitivity indices in

relation to the basic parameters.

From this result, we should work to reduce the rate of intake

of V. cholera from the environment (β1) and contact with infected

person (β2) as well as increasing the shading rate of the infected

individuals to V. cholera in the environment(σ ), which increases

the reproduction number when an incremental work in their value

is done while increasing those parameters with negative indices

such as increasing the rate of treatment ( ω) of infected individuals

from cholera and increasing a mechanism of clearance rate ( ϑ) of

V. cholera decreases the reproduction number of cholera infection

in the community.
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To mitigate the transmission risk, concerted efforts should be

directed toward minimizing the intake of V. cholera from the

environment (β1) and limiting contact with infected individuals

(β2). Simultaneously, a reduction in the prevalence of V.

cholera in the environment, achievable through effective shading

measures, contributes significantly to diminishing the reproduction

number. Strategic interventions yielding negative impacts on the

reproduction number involve enhancing the treatment rate (ω)

among individuals afflicted with cholera. Additionally, augmenting

the mechanism of clearance rate (ϑ) for V. cholera is identified as a

pivotal parameter that decisively curtails the reproduction number.

4 The optimal control problem

In this section, we explore the dynamics of the optimal control

model system utilizing the optimal control theory. Our objective

is to lower the rate of cholera incidents while simultaneously

lowering the expenses associated with it. Now we introduced the

time dependent controls in the model 1 for the aim of controlling

cholera and study the strategies that control the epidemic. We

apply optimal control strategies on the model to identify the best

intervention to reduce the disease in the specified time. The optimal

control model is an extension of the cholera model in Equation 1

by including the following five controls defined as: (i) the use

of vaccination into communities, as an effective time-dependent

control measure u1; the water quality improvement program

as control u2; and another preventive measure control as the

implementation of proper hygiene, u3, in order to control person-

to-person contact; implementation of immunity loss control effort

that is treatment of the infected and hospitalized individuals

denoted by u4; and sanitation of the environment denoted by u5
for the control of the disease.

After incorporating, ui, i = 1, ..., 5 in cholera model Equation 1,

we obtain the following optimal control model of cholera disease:

dS
dt

= 5+ η R−
(

(1−u2)β1C
a+C +

(1−u3)β2I
N

)

S− (µ+ u1)S

dI
dt

=
(

(1−u2)β1C
a+C +

(1−u3)β2I
N

)

S− (ω + u4 + τ + µ) I
dH
dt

= (1− α) (ω + u4)I − (µ+ ϕ + u4)H
dR
dt

= u1S+ α (ω + u4)I + (ϕ + u4)H − (µ+ η)R
dC
dt

= σ I − (ϑ + u5)C

(26)

The purpose of introducing controls in the model is to find the

optimal level of the intervention strategy preferred to minimize the

spread of infection and cost of implementation of the control. The

control variables u1, u2, u3, u4, and u5 are minimized subject to the

differential Equation 26 and formulate the objective functional as

J =

tf
∫

0

[

a1I + a2C + a3Nh +
1

2

5
∑

i=1

wiu
2
i

]

dt (27)

where tf is the final time, a1, a2 and a3 are weight constants of

the infected human and cholera concentration, respectively, while

wi, i = 1, ..., 5, are weight constants for each individual control

measures. We choose a nonlinear cost on the controls based on

the assumption that the cost take nonlinear form as applied in

[24, 37]. Optimal control function (u∗1 , u
∗
2 , u

∗
3 , u

∗
4 , u

∗
5) need to be

found such that

J(u∗1 , u
∗
2 , u

∗
3 , u

∗
4 , u

∗
5)

= min{J(u1, u2, u3, u4, u5)|(u1, u2, u3, u4, u5) ∈ U}, (28)

where U = {(u1, u2, u3, u4, u5) | ui(t) is lebesgue measurable on

[0, tf ], 0 ≤ ui(t) ≤ 1, i = 1, ..., 5} is the closed set.

4.1 Existence of an optimal control

Theorem 4.1. Given J(u1, u2, u3, u4, u5) subject to system

Equation 26, then there exist optimal controls u∗ =

(u∗1 , u
∗
2 , u

∗
3 , u

∗
4 , u

∗
5) and them corresponding optimal solution

(S∗, I∗,H∗,R∗,C∗), that minimizes J(u1, u2, u3, u4, u5) over U.

Proof. To verify the following basic conditions required for the set

of admissible controls U, we can use the theorem stated in [18].

H1: The set of the model state variables to the system 26 that

correspond to the control functions in U is non-empty.

H2: The control set U is closed and convex.

H3: Each right hand side of the state system is continuous, is

bounded above by a sum of the bounded control and the state and

can be written as a linear function of u = (u1, u2, u3, u4, u5) with

coefficients depending on time and the state.

H4: The integrated of the objective functional given by Equation 27

is convex.

H5: There exist constants D1,D2 > 0, and β > 1 such that

L > D1(|u1|
2 + |u2|

2 + |u3|
2 + |u4|

2 + |u5|
2)

β∗

2 − D2

such that the integrand of the objective functional

satisfies g.

The first required condition (H1) can be verified by using

Picard-Lindelfs theorem stated in [15, 22]. If the solutions to

the model state equations solutions are bounded, continuous and

satisfies Lipschitz conditions in the model state variables, then

there is a unique model solution corresponding to each admissible

control U. We have proved that the total human population and

the amount of concentration of V. cholerae in an environment

at time t, respectively, by 0 ≤ N(t) ≤ 5
µ
, and, 0 ≤ C(t) ≤

σ5
ϑµ

also each of the model state variables is bounded. The model

state variables are continuous and bounded. Similarly using the

method applied in [14], we can prove the boundedness of the

partial derivatives with respect to the state variables in the model,

which establishes that the model is Lipschitz with respect to the

state variables. This completes the verification that condition H1

holds.

By applying definition stated by [18], the control set U is

convex and closed this proved the required condition H2.That is,

consider

U = {u ∈ R
5
:‖u‖ ≤ 1, ‖.‖ is an Euclidean norm}

Moreover, for any two points y, z ∈ U

such that y = (y1, y2, y3, y4, y5) and z =

(z1, z2, z3, z4, z5).
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Then for any λ ∈ [0, 1], it

follows

λyi + (1− λ)zi ∈ Ui, i = 1, ..., 5

This implies that the control set U is convex and

closed.

Condition H3 is verified by observing the linear dependence

of the model equations on the control variables (u1, u2, u3, u4, u5).

To prove the boundedness, we use the method in [10]. To end

this, we use the fact that the super solutions of system Equation 10

given by

dŜ
dt

= 5+ η R̂
dÎ
dt

=
(

(1−u2)β1Ĉ

a+Ĉ
+

(1−u3)β2 Î
N

)

Ŝ

dĤ
dt

= (1− α) (ω + u4)Î
dR̂
dt

= u1Ŝ+ α (ω + u4)Î + (ϕ + u4)Ĥ
dC
dt

= σ Î

(29)

The system is linear in finite time with bounded coefficients,

then the supersolutions Ŝ, Î, Ĥ, R̂, Ĉ, and B̂ are uniformly bounded.

Since the solution to each state equation is bounded, we see

that

∣

∣f (t, x, u)
∣

∣ ≤

∣
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∣
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∣

∣

∣

∣















0 0 0 η 0

β1 + β2 β2 0 0 β1
0 (1− α)ω 0 0 0

0 ω α ϕ 0 0

0 σ 0 0 0





























Ŝ
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∣

∣
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≤ M1 |x| +M2 +M3 |u1| +M4 |u4|

where M1,M2,M3, and M4 depend on the coefficients of

the system. Thus, the assumption holds. Eventually, to justify

the required condition H4 use definition stated in [6, 33]

that says any constant, linear and quadratic functions are

convex. Hence, since the integrand of the objective functional

given by

L
(

(x, u, t
)

= a1I + a2C + a3Nh +
1

2

5
∑

i=1

wiu
2
i

is a quadratic function that is convex on U. To show the

bound on L(x, u, t) we want to prove for any θ ∈ (0, 1)

and u = (u1, u2, u3, u4, u5) v = (v1, v2, v3, v4, v5) are in U

such that

(1− θ)L(t, x, u)+ θL(t, x, u) ≥ L(t, x, (1− θ)u+ θv)

where,

(1− θ)L(t, x, u)+ θL(t, x, u) = a1I + a2C + a3Nh

+ (1−θ)
2

∑5
i=1 wiu

2
i +

θ
2

∑5
i=1 wiv

2
i

TABLE 2 Parameters of the model, providing their values and descriptions

in Equation 1.

Parameter
symbol

Value Dimension Source

5 3.5 Humans day−1 Assumed

β1 0.02 day−1 [7]

β2 0.02 day−1 [7]

a 105 cells/ L Assumed

σ 10 cells/ ml day−1 Assumed

ω 0.062 day−1 Assumed

α 0.44 day−1 [7]

µ 0.0014 day−1 [2]

ϑ 0.033 day−1 [7]

τ 0.015 day−1 [7]

ϕ 0.2 day−1 [38]

and

L(t, x, (1− θ)u+ θv) = a1I + a2C + a3Nh

+ 1
2

∑5
i=1 wi((1− θ)ui + θvi)

2

Now

(1− θ)L(t, x, u)+ θL(t, x, u)− L(t, x, (1− θ)u+ θv)

= (1−θ)
2

∑5
i=1 wiu

2
i +

θ
2

∑5
i=1 wiv

2
i

− 1
2

∑5
i=1 wi((1− θ)ui + θvi)

2

= 1
2

∑5
i=1 wi

[

(1− θ)u2i + θv
2
i + ((1− θ)ui + θvi)

2
]

= (1−θ)θ
2

∑5
i=1(ui − vi)

2 ≥ 0

Hence, (1 − θ)L(t, x, u) + θL(t, x, u) ≥

L(t, x, (1 − θ)u + θv) Therefore, L(t, x, u) is convex.

Finally,

L(x, u, t) = a1I + a2C + a3Nh +
1

2

5
∑

i=1

wi((1− θ)ui + θvi)
2.

The after some simplification

we have determined the result

given by

L(x, u, t) ≥ D1(u
2
1 + u22 + u23 + u24 + u25)− D2,

where, D1 = min?
{

1
2ω1,

1
2ω2,

1
2ω3,

1
2ω4,

1
2ω5

}

,

and D2 > 0, u = (u1, u2, u3, u4, u5), and

β∗ = 2.

This completes the proved.

Therefore, the optimal control

u exists.

4.2 Characterization of the optimal
controls

In order to create an optimality system, we need to first

establish the essential requirements that the optimal control
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A B C

D E

FIGURE 2

Simulations of the cholera model for the stability of disease free equilibrium point: (A) Susceptible individuals; (B) infected individuals; (C) hospitalized

individuals; (D) recovered individuals; and (E) bacterial population.

and state must meet. All of these situations derive from

Pontryagin’s Maximum Principle [34]. This principle converts

the system of Equations 26, 27 into a problem of minimizing

point-wise a Hamiltonian (M), with respect to ui(t), i =

1, ..., 5 as

M =
dJ

dt
+ λ1

dS

dt
+ λ2

dI

dt
+ λ3

dH

dt
+ λ4

dR

dt
+ λ5

dC

dt

M = a1I + a2C + a3Nh +
1

2

5
∑

i=1

wiu
2
i + λ1

dS

dt
+ λ2

dI

dt
+ λ3

dH

dt

+ λ4
dR

dt
+ λ5

dC

dt

where λi, i = 1, ..., 5 are the adjoint variable functions

to be obtained properly by applying Pontryagin’s maximal

principle [34].

Theorem 4.2. For an optimal control set u1, u2, u3, u4, u5
that minimizes J over U, there is an adjoint

variables, λ1, ..., λ5 that satisfy the adjoint system

given by:

dλ1
dt

= −b3 − λ1
(

(1−u3)β2SI
N2 − (1−u2)β1C

a+C −
I(1−u3)β2

N − µ− u1

)

+
Iλ2(1−u3)β2

N2 − λ4u1

dλ2
dt

= −b1 − b3 − λ1

(

(1−u3)β2
N −

I(1−u3)β2
N2

)

S

−λ2

(

(1−u3)β2
N −

I(1−u3)β2
N2 − ω − u4 − τ − µ

)

−λ3 (1− α) (ω + u4)− λ4α (ω + u4)− λ5σ

dλ3
dt

= −b3 −
λ1(1−u3)β2SI

N2 +
Iλ2(1−u3)β2

N2

+λ3 (µ+ ϕ + u4)− λ4 (ϕ + u4)

dλ4
dt

= −b3 − λ1

(

η + (1−u3)β2SI
N2

)

+
Iλ2(1−u3)β2

N2

+λ4(µ+ η)

dλ5
dt

= −b2 + λ1

(

(1−u2)β1
a+C − (1−u2)β1C

(a+C)2

)

S

−λ2

(

(1−u2)β1
a+C − (1−u2)β1C

(a+C)2

)

+ λ5 (ϑ + u5)

With transversality conditions, λi(tf ) = 0, i = 1, ..., 5.

Furthermore, we obtain the control set (u∗1 , u
∗
2 , u

∗
3 , u

∗
4 , u

∗
5)
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A B C

D E

FIGURE 3

Simulations of the cholera model for the stability of endemic equilibrium point: (A) Susceptible individuals; (B) infected individuals; (C) hospitalized

individuals; (D) recovered individuals; and (E) bacterial population.

characterized by

u∗1 = max{0,min(1,
S (λ1 − λ4)

w1
)}

u∗2 = max{0,min(1,
β1SC (λ2 − λ1)

(a+ C)w2
)}

u∗3 = max{0,min(1,
β2SI (λ2 − λ1)

Nw3
)}

u∗4 = max{0,min(1,
Iλ2 − λ3 (I (1− α)− H)− λ4 (Iα +H)

w4
)}

u∗5 = max{0,min(1,
λ5C

w4
)}

Proof. The adjoint equation and transversality conditions

are standard results obtained from Pontryagin’s maximum

principle [34]. We differentiate Hamiltonian with

respect to states S, I, H, R, and C, respectively, and

applying adjoint variable conditions, we obtain the

following equations:

dλ1

dt
= −

∂M

∂S
dλ2

dt
= −

∂M

∂I
dλ3

dt
= −

∂M

∂H
dλ4

dt
= −

∂M

∂R
dλ5

dt
= −

∂M

∂C

dλ1
dt

= −b3 − λ1

(

(1−u3)β2SI
N2 − (1−u2)β1C

a+C −
I(1−u3)β2

N − µ− u1

)

+
Iλ2(1−u3)β2

N2 − λ4u1

dλ2
dt

= −b1 − b3 − λ1

(

(1−u3)β2
N −

I(1−u3)β2
N2

)

S

−λ2

(

(1−u3)β2
N −

I(1−u3)β2
N2 − ω − u4 − τ − µ

)

−λ3 (1− α) (ω + u4)− λ4α (ω + u4)− λ5σ

dλ3
dt

= −b3 −
λ1(1−u3)β2SI

N2 +
Iλ2(1−u3)β2

N2 + λ3 (µ+ ϕ + u4)

−λ4 (ϕ + u4) (30)
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A B

C

FIGURE 4

Simulations illustrating the changing e�ect of β1 on the model (2); (A) infected individuals; (B) hospitalized individuals; and (C) bacterial population.

dλ4
dt

= −b3 − λ1

(

η + (1−u3)β2SI
N2

)

+
Iλ2(1−u3)β2

N2

+λ4[µ+ η]

dλ5
dt

= −b2 + λ1

(

(1−u2)β1
a+C − (1−u2)β1C

(a+C)2

)

S

−λ2

(

(1−u2)β1
a+C − (1−u2)β1C

(a+C)2

)

+ λ5 (ϑ + u5)

With transversality conditions,

λi(tf ) = 0, i = 1, ..., 5 (31)

Also We determined the optimal conditions

using ∂M
∂ui

, i = 1, ..5 and can be written in

compact notation

u∗1 = max{0,min(1,ψ1)}

u∗2 = max{0,min(1,ψ2)}

u∗3 = max{0,min(1,ψ3)}

u∗4 = max{0,min(1,ψ4)}

u∗5 = max{0,min(1,ψ5)}. (32)

The optimality system is formed from the

optimal control system (the state system) and

the adjoint variable system by incorporating

the characterized control set and initial and

transversal condition.
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A B

C

FIGURE 5

Simulations illustrating the changing e�ect of β2 on the model (2); (A) infected individuals; (B) hospitalized individuals; and (C) bacterial population.

4.3 Uniqueness of the optimality system

We obtained the uniqueness of solutions of the optimality

system in Equations 26, 30 for the small time interval from the

analytical boundedness of the solutions of both the state and adjoint

functions and the resulting Lipschitz structure of these equations.

Hence the following theorem:

Theorem 4.3. For t ∈ [0, tf ], the bounded solutions to the

optimality system are unique. Refer the paper [19], for the proof

of the theorem.

5 Numerical simulations and
discussions

We perform some numerical simulations of system 1 to

support our theoretical findings. We employed Maple software for

simulation of themodel in Equation 1 and done withODE45. Using

the parameter values from Table 2, and the initial conditions S(0) =

1000, I(0) = 100, H(0) = 0 R(0) = 10, C(0) = 100. For model 1, we

considered three different initial conditions in order to investigate

our theoretical results given as follows:

IC1 : (S(0), I(0), H(0), R(0), C(0)) = (1000, 100, 10, 0,100),
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FIGURE 6

Simulations illustrating the changing e�ect of ω on the model (2); (A) infected individuals; (B) hospitalized individuals; and (C) bacterial population.

IC2: (S(0), I(0), H(0), R(0), C(0)) = (1200, 200, 50, 15,200),

IC3: (S(0), I(0), H(0), R(0), C(0)) = (1500, 300, 100, 30,300).

5.1 Numerical simulation of the model
without control

Figures 2A–E demonstrate that when R0 < 1 the susceptible

individuals S(t) and H(t) get to their normal value, while

I(t),R(t),C(t) approach zero as time increases for all initial

conditions IC1 − IC3. This means that the disease dies out

from the community. Then, the unique disease-free equilibrium

E0 = (π
µ
, 0, 0, 0, 0) is globally asymptotically stable and this result

confirms Theorem 3.3.

When the basic reproduction number is calculated R0 >

1, the solutions of the system starting from the three initial

conditions IC1 − IC3 converge to the endemic equilibrium E∗ =

(1000, 250, 1200, 25, 800) as it is shown in the Figures 3A–E. Hence,

E∗ exists and it is globally asymptotically stable. In this situation the

disease will become endemic.

In Figures 4A–C, we have seen the effect of varying the

contact rate of susceptible individuals with the V. cholera in

the environment β1. As the value of β1 increases from 0.01 to

0.04 the infected population (Figure 4A), hospitalized individuals

(Figure 4B), and bacteria in the environment (Figure 4C) increases

in their number as time runs. This is therefore, stakeholders should

work on mechanisms to fight against to infectious disease.

Figures 5A–C, showed the effect of considering different value

of contact rate of susceptible population with infected human

population β2. We observed from the simulations that the infected

population (Figure 5A), hospitalized individuals (Figure 5B), and

bacteria in the environment (Figure 5C) increases in their number
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FIGURE 7

Simulations illustrating the changing e�ect of σ on the model (2); (A) infected individuals; (B) hospitalized individuals; and (C) bacterial population.

as time runs as the infection rate β2 varies from 0.02 to 0.08.

Therefore, this requires us to work on intervention strategy in order

to decrease the contact between susceptible and infectious human

population in the community.

In the Figures 6A–C, we demonstrated the significance of

varying the recovery rate ω either through hospitalized treatment

or through natural immunity of infected individuals in the

community. From the simulation, it is observed that increasing the

immunity of infected individuals reduces the number of infected

individuals as shown in Figure 6A and it again decreases the

number of bacterial population in the community as shown in

Figure 6B. This is, therefore, bringing mechanisms that increases

the immunity of the infected population is an important strategy to

reduce the cholera disease from the community.

In Figures 7A–C, we showed the sensitivity of shading rate of

infectious individuals to cholera pathogen in the environment σ .

As the shading rate value of σ increases from 2 to 15 the cholera

pathogen in the environment increases as shown in Figure 7C.

This pathogen increment again increases the number of infected

population as it is depicted in the Figure 7A and hospitalized

populations in the Figure 7B. Therefore, it is important to reduce

the shading rate of infectious individuals in the environment to

reduce the disease burden in the community.

5.2 Numerical simulation of the optimal
control model

To investigate the efficacy of the control measures in slowing

of the progress, we compare the computational results of the

autonomous model 1 with the established model (26). We
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FIGURE 8

Simulations of the cholera model with controls for scenario A. (A) infected individuals; (B) hospitalized individuals; and (C) bacterial population.

accomplished this by using an iterative technique known as the

forward-backward sweep method, which is based on the Matlab

program’s fourth-order Runge-Kutta Method (FORKM), which is

explained in detail in a book by Lenhart and Workman [29]. In

order to solve the state equations across the interval [0, 10] using

forward FORKM, we start the process by estimating the control

variables. Afterward, we use the current iteration solution of (2) to

apply the backward FORKM to solve the adjoint equations. Until

the necessary convergence happens, the task is repeated to modify

the control values by averaging the prior value and the new value

from the control characterization (Equation 32). Table 2 lists the

parameter values that were used in the simulations.

A numerical demonstration of the optimal control problem

solution mentioned in System 30–32 and parameters in Table 2.

We investigate and compare the numerical findings about

the effectiveness of controls on the spreading of cholera

among communities.

(i) Scenario A (using combinations of two controls):

-Strategy 1: Applying u1 6= 0, u2 = 0, u3 = 0, u4 = 0, u5 6= 0

-Strategy 2: Applying u1 6= 0, u2 = 0, u3 = 0, u4 6= 0, u5 = 0

-Strategy 3: Applying u1 = 0, u2 6= 0, u3 6= 0, u4 = 0, u5 = 0

-Strategy 4: Applying u1 = 0, u2 = 0, u3 = 0, u4 6= 0, u5 6= 0

(ii) Scenario B (using three controls)

-Strategy 5: Applying u1 6= 0, u2 6= 0, u3 = 0, u4 = 0, u5 6= 0

-Strategy 6: Applying u1 6= 0, u2 6= 0, u3 6= 0, u4 = 0, u5 = 0

-Strategy 7: Applying u1 = 0, u2 6= 0, u3 6= 0, u4 6= 0, u5 = 0

-Strategy 8: Applying u1 = 0, u2 6= 0, u3 6= 0, u4 = 0, u5 6= 0

(iii) Scenario C (using four controls)

-Strategy 9: Applying u1 6= 0, u2 = 0, u3 6= 0, u4 6= 0, u5 6= 0
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FIGURE 9

Simulations of the cholera model with controls for scenario B. (A) infected individuals; (B) hospitalized individuals; and (C) bacterial population.

-Strategy 10: Applying u1 6= 0, u2 6= 0, u3 6= 0, u4 = 0, u5 6= 0

-Strategy 11: Applying u1 = 0, u2 6= 0, u3 6= 0, u4 6= 0, u5 6= 0

-Strategy 12: Applying u1 6= 0, u2 6= 0, u3 6= 0, u4 6= 0, u5 = 0

(iv) Scenario D (using all controls)

-Strategy 13: Using all controls means u1 6= 0, u2 6= 0, u3 6=

0, u4 6= 0, u5 6= 0

5.3 Scenario A: apply double controls of
triple controls

Under Scenario A, we consider combinations of two controls.

Numerical simulations are showed in Figures 8A–C. Figure 8A

shows that controls with vaccination and treatment of cholera

infected individuals (Strategy 2) and treatment of infected

individuals and next chemical control on V. cholera bacterial

in the environment (Strategy 4) are effective in controlling the

disease at the specified time. Here Strategy 2 has a potential

of decreasing the number of cholera-infected populations from

the community before 4 months. Figure 8B shows that controls

with vaccination and treatment effort for cholera disease (Strategy

2) decreases the number of hospitalized individuals and next

to it Strategy 4 is effective in the specified time. Figure 8C

shows that the Strategies 4 and 6 have more potential to

decrease number of V. cholera population bacteria in the

environment under the scenario A. In general, we conclude that

applying an optimized controls Strategies 2 or 4 can eradicate

cholera diseases from the community in a specified period

of time.

5.4 Scenario B: apply triple controls

We examine three control combinations under Scenario B.

In Figures 9A–C, numerical simulations are displayed. Figure 9A

demonstrates that strategies 7, which involve prevention strategies
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FIGURE 10

Simulations of the cholera model with controls for scenario C. (A) infected individuals; (B) hospitalized individuals; and (C) bacterial population.

for susceptible population and treatment of cholera-infected

people, are successful in controlling the disease within the

allotted period. Here, Strategy 5 may be able to reduce

the community’s cholera-infected individuals using vaccination,

prevention of susceptible and V.cholera strategies, and application

of chemical control V. cholera population. From the Figure 9B

shows that controls with prevention strategies for susceptible

population and treatment of cholera-infected people is effective

for decreasing hospitalized population and next to it, strategy 5 is

effective in controlling the disease at a specified time. Figure 9C

shows that the Strategies 7, 5, and 8 have more potential to

decrease number of V. cholera population in the environment

under the scenario B. In general, we conclude that applying

an optimized control strategy 7 can eradicate cholera in a

specified time.

5.5 Scenario C: apply quadruplet controls

Under Scenario C, we look at four different control

combinations. Numerical simulations are shown in Figures 10A–C.

As seen in Figure 10A, approach 12, which focuses on vaccination

prevention and treatment control, together optimize the objective

function that reduces the cholera-infected patients, is an optimal

effective strategy in controlling the disease within the given

time frame. Next to this, Strategy 11 may be able to lower the

number of cholera-infected people in the community. Figure 10B

shows that hospitalized population decreases with the use of

strategy 12 and next to it strategy 11 is effective in controlling the

hospitalized population at a specified time. Figure 10C shows that

the Strategies 11, 10, and 9 have more potential to decrease number

of V. cholera population bacterial in the environment under the

Frontiers in AppliedMathematics and Statistics 17 frontiersin.org

https://doi.org/10.3389/fams.2024.1462701
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Alemneh et al. 10.3389/fams.2024.1462701

A B

C

FIGURE 11

Simulations of the cholera model with controls for scenario D. (A) infected individuals; (B) hospitalized individuals; and (C) bacterial population.

scenario C. In general, we conclude that applying an optimized

control strategies 11 and 12 have a good approach in reducing

the number of cholera infected populations in a specified period

of time.

5.6 Scenario D: apply quintuple controls

Under this scenario, we determined the difference between the

compartment with control and without control. We considered

all controls at the same time. Figure 11A shows that cholera-

infected individuals is rapidly decreased when we apply all the

controls. Also Figure 11B displays cholera-hospitalized individuals

is eradicated in a short time if we apply all controls. From the

Figure 11C, we can see that as V. cholrea populations with controls

are dramatically decreased.

A two control at a time, a combination of three controls at a

time, and a combination of four controls at a time, lastly we applied

all five control variables. Several combinations of the control

variables are compared to determine which combination is most

effective in the fight against cholera infection in the community.

The numerical simulation under Figure 12 shows the

comparison of the optimal integrated strategies from Scenario A

to Scenario D in controlling the cholera disease in the population.

Figure 12A shows that strategies 2, 7, and 12 are effective in

reducing the infected individuals from the disease and these

strategies also give the same effect on the hospitalized individuals

as shown in Figure 12B. From Figure 12C, the bacterial population

reduced better when we use all the control interventions. In

order to tackle cholera infections in the community, the three

intervention programs shown in the aforementioned scenarios are

the most effective.

6 Discussions and conclusions

The developed deterministic mathematical model of cholera

disease dynamics considered both direct and indirect contact

transmission pathways, encompassing five compartments:
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FIGURE 12

Simulations of comparison of the optimal integrated strategies from scenario A to scenario D, (A) infected individuals; (B) hospitalized individuals; and

(C) bacterial population.

susceptible humans, infectious humans, hospitalized humans,

recovered humans, and the V. cholera pathogen in the

environment. The qualitative behaviors of the model, including the

invariant region, and the existence of a positive invariant solution

were studied. Additionally, the basic reproduction number of

the model was obtained, providing insights into the potential for

disease spread. The stability of disease-free equilibrium point were

checked and it is locally asymptotically stable ifR0 < 1, this result

agrees with the works of [4, 23, 31]. The disease-free equilibrium

point is also globally asymptotically stable and this finding is

similar with the results in [38].

Furthermore, the study incorporated sensitivity analysis and

numerical simulations to enhance our understanding of the

model’s dynamics. The investigation extended to an optimal

control problem, exploring strategies for reducing the number

of infected and pathogenic populations while minimizing

implementation costs. The optimal control functional involved

five controls: vaccination, treatment, environmental sanitation,

personal hygiene, and the use of clean treated water.

The existence of optimal controls for the system was

demonstrated and the optimal controls were represented in terms

of solutions to the optimality system. This comprehensive analysis

contributes valuable insights into potential strategies for cholera

disease control and prevention. The numerical results reveal that

strategy 2 (combined application of vaccination and treatment)

from this integrated intervention program the application of

vaccination was recommended by the work of [36] and the

other component of strategy 2 is the application of treatment

intervention agrees with the work of Berhe [7] who uses

two interventions: treatment and sanitation. The recommended

treatment only is effective. Our results coincide with the treatment

intervention proposed by Lemos-Paião et al. [28]. However, they

used treatment intervention only for to examine cholera disease

control. However, the research work done by He and Wang [23]

did not recommend the vaccination intervention even though

they recommend treatment intervention with awareness program.

Most of the time, a single interventions is not recommended,

we recommend strategy 2 in order to reduce the prevalence

of cholera disease from the community. The other effective

integrated intervention programs to tackle the cholera outbreak is

Strategy 7 (the combined application of water quality improvement

program, proper hygiene with implementation of treatment to the

infected individuals). This integrated intervention agreed with the

results of the research work done by He and Wang [23] where

they recommend treatment and awareness programs to reduce

cholera outbreak in a community. The other significant integrated
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management approaches designed to tackle the spread of cholera is

Strategy 12 (application of vaccination, application of water quality

improvement program, proper hygiene with implementation of

treatment). This result agrees with the work done in Bakare

and Hoskova-Mayerova [5] who recommend strategy 12 except

vaccination program, which is due to the reason that they do not

propose as an intervention program in their optimal control model.

The other works that support intervention program 12 were the

work done in [1, 13]. We observed that the alternative intervention

Strategy 12 includes environmental sanitation.

6.1 Conclusions

The exploration of an optimal control problem offered

practical insights into the implementation of interventions to

mitigate cholera’s impact. The identified optimal controls, including

vaccination, treatment, sanitation, hygiene, and water quality

improvement, underscore the multifaceted approach required

for effective cholera management. The research provides a

comprehensive framework for informing decision-makers and

public health practitioners in the development of effective cholera

control strategies.

Therefore, the findings of the research advised government

stakeholders and policymakers should implement any of the three

integrated intervention programs based on the local contexts,

budget, and resources present with them.
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