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Hybrid time series and
ANN-based ELM model on
JSE/FTSE closing stock prices

Onalenna Moseane , Johannes Tshepiso Tsoku * and

Daniel Metsileng

Faculty of Economic and Management Sciences, Department of Business Statistics and Operations

Research, North-West University, Mmabatho, South Africa

Given the numerous factors that can influence stock prices such as a company’s

financial health, economic conditions, and the political climate, predicting stock

prices can be quite di�cult. However, the advent of the newer learning algorithm

such as extreme learning machine (ELM) o�ers the potential to integrate ARIMA

and ANN methods within a hybrid framework. This study aims to examine

how hybrid time series models and an artificial neural network (ANN)-based

ELM performed when analyzing daily Johannesburg Stock Exchange/Financial

Times Stock Exchange (JSE/FTSE) closing stock prices over 5 years, from 15

June 2018 to 15 June 2023, encompassing 1,251 data points. The methods

used in the study are autoregressive integrated moving average (ARIMA), ANN-

based ELM, and a hybrid of ARIMA-ANN-based ELM. The ARIMA method

was used to model linearity, while nonlinearity was modeled using an ANN-

based ELM. The study further modeled both linearity and non-linearity using

the hybrid ARIMA-ANN-based ELM model. The model was then compared

to identify the best model for closing stock prices using error matrices. The

error metrics revealed that the hybrid ARIMA-ANN-based ELMmodel performed

better than the ARIMA [1, 6, 6] and ANN-based ELM models. It is evident

from the literature that better forecasting leads to better policies in the future.

Therefore, this study recommends policymakers and practitioners to use the

hybrid model, as it yields better results. Furthermore, researchers may also delve

into assessing the e�ectiveness of models by utilizing additional conventional

linear models and hybrid variants such as ARIMA-generalized autoregressive

conditional heteroskedasticity (GARCH) and ARIMA-EGARCH. Future studies

could also integrate these with non-linear models to better capture both linear

and non-linear patterns in the data.

KEYWORDS

artificial neural networks, ARIMA, extreme learningmachine, hybrid models, stock price

prediction

1 Introduction

The study investigated the hybrid time series and artificial neural network (ANN)-
based extreme learning machine (ELM) model on Johannesburg Stock Exchange/Financial
Times Stock Exchange (JSE/FTSE) closing stock prices. Traditional linear time series
forecasting methods, such as the autoregressive integrated moving average (ARIMA)
[1], the autoregressive conditional heteroskedasticity (ARCH) [2], the generalized
autoregressive conditional heteroskedasticity (GARCH) [3], and many more have been
proven to be effective for linear forecasting while providing poor performance for
nonlinear forecasting [4]. The ARIMA model is a highly influential and commonly
employed linear time series model [5]. ARIMA’s popularity originates from its statistical
properties, as well as the well-known Box–Jenkins (BJ) methodology, used in model
development [6].
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Numerous nonlinear models, such as support vector regression
(SVR) [7–9], ANNs [10–12], and deep learning [13–15] have been
proposed as alternative approaches for addressing the issue of
nonlinearity, with ANNs being one of the most recognized and
significant models [16]. Neural networks (NNs) are appealing for
predicting tasks because they offer several benefits over traditional
forecasting models. First, ANNs have adaptive nonlinear feature
mapping properties that may accurately estimate any continuous
measurable function with arbitrary accuracy. Second, as ANNs
are nonparametric and data-driven models, they place minimal
preconditions on the fundamental mechanism by which data are
produced. This characteristic makes ANNs less prone to the model
misspecification issue than many parametric nonlinear techniques
[17]. Third, ANNs are naturally adaptable; the adaptability suggests
that the network’s generalization skills continue to be reliable
and accurate in a non-stationary environment with changing
environmental conditions [18]. Finally, while classic trigonometric
expansions, polynomials, and splines employ exponentially various
parameters to attain the same estimation rate, ANN models only
utilize linearly various parameters [19].

Furthermore, some features obtained using the ANNs method
become less valuable over time due to changes in the functional
relationships between price series [20]. The limitations of the
ANN methodology include a rapid rate of convergence and a high
likelihood of becoming stuck in local minima, an excessive number
of tunable parameters, a slow learning rate, long calculation
time, and over-tuning [21]. To tackle these restrictions, the
ELM model was created, which has been reported to have a
high predictive capacity [22]. Manssouri et al. ([23], p. 7445)
defined ELM as “a learning algorithm for feedforward NNs with a
single hidden layer.” This method, including the backpropagation
(BP) learning technique [24], offers various advantages over
conventional learning techniques.

Based on the shortcomings of the existing approaches, the
current study proposes a hybrid approach of ARIMA and ANN-
based ELM since the proposed ARIMA model is incapable of
handling nonlinear interactions and the ANN-based ELM model
is unable to handle both nonlinear and linear patterns equally on
its own. The hybrid approach was developed to increase the degree
of accuracy of time series forecasts. The hybrid approach proposed
in this study is an approach integrated with good adaptability
to both linear and nonlinear situations, which are commonly
encountered in complexly structured periodical time series. The
hybrid approach will be generalized to other settings and therefore
only limited to ARIMA and ANN-based ELM using the closing
stock prices.

Due to the large number of factors that can affect stock prices,
including the financial prosperity of the firm, the state of the
economy, and the political environment, making predictions about
stock prices can be challenging. The introduction of the relatively
recent learning algorithm ELM opens up the possibility of direct
ARIMA and ANN methods within a hybrid framework. This
enables the development of a novel hybrid forecasting model that
merges linear ARIMA with the nonlinear capabilities of ELM.
Therefore, the objective of this study is to propose a model that
can be used to effectively model the South African (JSE/FTSE
closing) stock prices. The rest of the study is organized as follows:
Section 2 presents the literature review, Section 3 presents the

research methodology, Section 4 discusses the data analysis and
interpretation of results, and Section 5 provides the conclusion.

2 Literature review

Khan and Alghulaiakh [25] employed and compared ARIMA
models using 5 years of historical Netflix stock data and two
customized ARIMA (p, d, q) models to create a precise stock
forecasting model. The model’s accuracy was determined and
compared using autocorrelation functions (ACFs), PACFs, and
the mean absolute percentage of error (MAPE). After numerous
tests, ARIMA (1, 1, 33) demonstrated correct outcomes in its
calculations, demonstrating the capability of the ARIMA model on
time series to provide reliable stock forecasts that will assist stock
investors in their investment decisions.

Khanderwal and Mohanty [26] provided a thorough
explanation of how to construct an ARIMA model for predicting
stock prices. The selected ARIMA (0,1,0) model experimental
findings demonstrated evidently that ARIMA models can estimate
stock costs in a short-run manner with adequate accuracy. This
could help stock market investors make effective investment
decisions. With the results obtained, ARIMA models were
completely effective in the short-term prediction market with
emerging prediction techniques.

Milačić et al. [24] carried out a study to develop and utilize an
ANN with an ELM to predict the gross domestic product (GDP)
growth rates. The GDP-added values from the manufacturing,
agricultural, industrial, and service sectors were used to forecast
GDP growth rates. The predicted capacities of the ANN models
proposed were compared using the root mean square error
(RMSE), Pearson coefficient (r), and coefficient of determination
(R2) indicators. The back propagation (BP) and ELM were
compared with the predicted values’ accuracy level. The results of
the simulation showed that, depending on the inputs used, ANN
with ELM can forecast GDP positively. When it comes to GDP
applications, particularly GDP estimates, the ELM approach may
work well.

To enhance the precision of time series forecasting, the study
by Pan et al. [27] employed an autoregression (AR) and NN-
based ELM hybrid model. Two unknown prediction sets were
employed along with the known portion of the set (TR), which
is assumed to span the years ranging from 1700 to 1920. From
1921 to 1955, the first (PR1) and, from 1956 to 1979, the second
(PR2) were used to test the proposedmethod’s forecasting accuracy.
The findings obtained from the hybrid model were contrasted with
those produced by the AR and the NN-based ELM. In this study,
Pan et al. [27] applied Normalized Mean Square Error (NMSE) and
RMSE statistical measures to the experiment. The findings showed
that the hybrid model outperformed the NN-based ELM and AR
models when evaluated against various types of time series data.

Nonlinear and linear models can be used independently or
in combination with a variety of methods for forecasting time
series. Research shows that combining nonlinear and linear models
can improve forecast accuracy. Büyükşahin and Ertekin [28],
in this study, present a novel hybrid ARIMA-ANN algorithm
that functions in broader contexts. GbpUsd, Lynx, Sunspot, and
Intraday are the four datasets used to estimate the outcomes of
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the suggested hybrid strategy and the other methodologies (ANN,
ARIMA Zhang’s, Khashei–Bijari’s, Naïve, and Babu–Reddy’s). To
compare accuracy and performance, mean absolute error (MAE),
mean square error (MSE), and mean absolute scaled error (MASE)
are used. The findings of the experiments demonstrate that
approaches for deconstructing the primary data and integrating
models that are both linear and nonlinear through the process of
hybridization are significant indicators of the methods’ forecasting
capability. These results are used to combine the Empirical
Mode Decomposition (EMD) approach with the suggested hybrid
method, producing more predictable components. The results of
this study demonstrate that integrating a hybrid technique with
EMD with any of the other methods applied independently can
also be a helpful technique for improving the level of prediction
precision achieved with traditional hybrid techniques.

3 Materials and methods

The current study uses daily JSE/FTSE All Index closing price
data from 15th June 2018 to 15th June 2023. The data were obtained
from the Index Market Data on the JSE’s website (jse.co.za). The
analysis was carried out using Python and R Studio software
packages. The following subsections discuss the models that are
used in the study.

3.1 ARIMA

The modern approach to time series analysis is defined by the
Box and Jenkins [29] process. The Box and Jenkins (BJ) method
seeks to construct an ARIMA model from an observed time series.
In particular, the technique focuses on stationary processes, passing
over helpful preliminary transformations of data [30]. The ARIMA
models have dominated time series forecasting for a very long time
in several fields [31]. According to Carvajal et al. [32], the model
assumes that a variable’s future value is a linear function of multiple
recent observations and random errors, where p is the number of
AR terms, d is the number of non-seasonal differences, and q is
the number of moving average (MA) lags. The “integrated” step,
which changes the time series to turn a non-stationary time series
into a stationary time series, allows it to handle non-stationary time
series data [33]. The general form of the ARIMA model is denoted
as ARIMA (p, d, q), and the model is given as follows:

Yt = ∅1Yt−1 +∅2Yt−2 + . . . +∅pYt−p + et + θ1et − 1

+ θ2et − 2+ . . . + θqet−q, (1)

where Yt is the response variable being predicted at time t,
Yt−1,Yt−2, . . . ,Yt−p is the response variable at time lags t − 1, t −
2, . . . , t−p, respectively,∅1, ∅2, · · · ,∅p and∅p and θ1, θ2, . . . , θq
are the AR and MA parameters, respectively, and e′s are the white
noise. This study used three iterative BJ procedures, as explained
below. The first step in the Box–Jenkins process is to determine
whether or not the time series data is stationary by plotting the
graph to obtain a general idea of the data and to understand the
trend. If the mean and variance of a series do not change over time,
then the series has stationarity. The sample ACF also makes the

data visible, in addition to using the graphic representations of the
data across time to assess if they are stationary or non-stationary.
If the time series data is not stationary, it will be transformed for
stationarity. This study places a greater emphasis on logarithm
differencing. Even though there have been a lot of stationarity
tests suggested in the literature, this study will use the Augmented
Dickey–Fuller (ADF) and the Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) tests. Additionally, the study will also use correlograms in
support of the formal tests.

3.1.1 ADF test
Dickey and Fuller [34] researched stationarity testing originally

and conceptualized the technique as “testing for a unit root.” The
hypothesis for the ADF unit root test is as follows:

H0 :β0 = 0 (The data is non− stationary or is a unit root) (2)

H1 :β1 6= 0 (The data is stationary or there is no unit root) (3)

The ADF test statistic has the following form:

DFt =
y

SE
(

y
) (4)

where y is the least squares (LS) coefficient estimate of the y

coefficient and SE(y) is the standard error of the LS estimate of the
y coefficient from the regression model.

3.1.2 The Kwiatkowski, Phillips, Schmidt and Shin
test

Kwiatkowski et al. [35] proposed a Lagrange Multiplier (LM)
test (the KPSS test) to evaluate the trend and/or level of stationarity.
In other words, the null hypothesis assumes a stationary process.
A conservative testing approach would assume the unit root as an
alternative to the null hypothesis and consider it as a stationary
process. Therefore, when the null hypothesis is not accepted, it is
evident that the series has a unit root [36]. The KPSS test hypothesis
is as follows:

H0 : σ
2
e = 0 (5)

H1 : σ
2
e 6= 0 (6)

Under H0 of et ∼ NIID(0, σ 2
e ), the KPSS test statistic has the

following form:

LM =

∑T
t=1 S

2
t

σ̂ 2
e

(7)

where,

σ̂ 2
e =

∑T
t=1 e

2
t

T
(8)

and

St =

t
∑

i=1

eI , t = 1, . . .T (9)

where ei are the residuals obtained from the regression of Yt on a
constant and a time trend [36].
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TABLE 1 Behavior of ACF and PACF.

AR(p) MA(q) ARMA (p, q)

ACF Dies down Cuts off after lag p Dies down

PACF Cuts off after lag q Dies down Dies down

Source: Suwardo et al. [55].

3.1.3 Correlograms
The autocorrelation function (ACF) and partial autocorrelation

function (PACF) are used to provide formal test techniques in
addition to graphical stationarity checking. To analyse the time
series data and attempt to identify the functional form of the
data, ACF and PACF are plotted in the correlograms [37]. The
AR

(

p
)

and MA
(

q
)

are determined from the analysis of the ACF
and PACF; and d indicates the number of differences applied. The
AR coefficients ∅

′
s and MA coefficients θ

′
s are estimated from

the model based on p, d, and q [38]. The time series values are
considered to have stationarity if the ACF of the time series swiftly
decays or dies off. If the ACF plot decays very slowly, the time
series values are non-stationary. Table 1 illustrates how the various
models behave on the ACF and PACF.

In the second step, the parameters of the models identified
(defined) in the first step are estimated. The maximum likelihood
(ML) approach is employed in the model estimation. In a standard
Gaussian, the likelihood function is given as follows:

LogL = −
T

L
ln (2π) −

T

L
ln σ 2 −

1

2σ 2

T
∑

i=1

ε2t (10)

where T is the time at t = 1, 2 . . . ,T of time series data and σ and
ε are the constant variance and the error term, respectively. The
logarithm of the probability of the observed data from the fitted
model is shown by the log-likelihood [37]. The model with the
maximum log-likelihood is chosen. To select the most appropriate
ARIMA model, the Akaike Information Criterion (AIC) is applied
to all competing models. The AIC proposed by Akaike [39] is a
method that uses in-sample fit to determine the likelihood of a
model forecasting future values [40]. The model with the lowest
AIC value is the best one among all the other estimatedmodels [41].
The equation used to estimate the AIC is as follows:

AIC = −2∗In (L) + 2∗k (11)

where L is the value of the likelihood and k is the number of
estimated parameters.

In the Box–Jenkins technique, the third step is diagnostic
testing, which entails standard testing procedures on the
estimations and the error terms’ statistical properties (weak white
noise assumption and normality assumption) [42]. The adequacy
of the model can be evaluated using both formal testing techniques
and graphical testing methods. The Ljung–Box [43] test will be
used to check the overall acceptability of the overall model. The
hypothesis for Ljung–Box is formulated as follows:

H0 = model is adequate (12)

H1 = model is not adequate (13)

The test statistic for Ljung–Box is computed using the
following equation:

Q∗ = n1
(

n1 + 2
)

k
∑

l=1

1

n1 − l
r2l

(

â
)

(14)

where n1 = n − d, n is the number of observations used
in the estimated model and d is the level of non-seasonal
differencing employed in transforming the initial time series data
into stationary data. The r2

l

(

â
)

represents the square of the
residual’s autocorrelation at lag l. If Q∗ is larger (significantly larger
from zero), it is that the autocorrelation residuals are considerably
distinct from 0 as a collection, and the estimated model’s random
shocks are autocorrelated. Since the model will be rejected, one
should consider repeating the model-building cycle [30]. The
Jarque–Bera test, which will be used to test the normality of the
residuals of the model, is a common statistical test used to test for
normality in return series. This assumption refers to the degree to
which data follows a normal distribution. The JB test for normality
comes from a Chi-square distribution, which is calculated using the
skewness and kurtosis with two degrees of freedom. The following
is the formulation of the hypothesis that will be tested:

H0 :E
(

ε2
)

= 0 (Dataisnormally distributed) (15)

H1 :E
(

ε2
)

6= 0 (Non− normaldistributionof data) (16)

The JB test statistic is computed using the following equation:

JB = N∗

[

skewness

6
+

(

kurtosis− 3
)2

4

]

(17)

where N is the number of observations. The likelihood that the
given series is drawn from a normal distribution decreases with
increasing JB value.

3.2 ANN-based ELM

Tokar and Johnson [44] defined ANN-based ELM as a “fast-
training artificial intelligence (AI) approach for prediction that
employs a Single Layer Feedforward Neural Network (SLFN) to
build a relationship between complicated nonlinear dependent
and independent variables”. This method has the advantage of
not requiring any knowledge of the complexity of the process
under study. The adoption of a nonlinear activation function and
the capability of randomly learning input weights increased the
popularity of this technique among researchers [45].When training
input, the layer’s ANN-based ELM hidden node is independent
of the hidden layer. This indicates that hidden nodes were
independent of the input training set [46]. For N arbitrary distinct
inputs samples (ui, ti), where u = [ui1, ui2 . . . . . . uin]T ∈ Rn and
ti = [ti1, ti2 . . . . . . tim]T ∈ Rm. The following formula can be used
to represent SLFNs with hidden neurons:

N̂
∑

i=1

βigi (ui) =

N̂
∑

i=1

βig
(

wi • uj + bi
)

= 0j j = 1, . . . .,N (18)
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FIGURE 1

The flowchart of the hybrid model.

where wi = [wi1, wi2, . . . . . . ,win]T is the weight vector between
the input nodes and the ith hidden node, β = [βi1,βi2, . . . . . . ,βin]
is the weight vector between the ith hidden node and the output
nodes, bi denotes the threshold of the ith hidden node, andwi •ui is
the inner product of wi and ui [45, 47]. The SLFN can approximate
n vectors means that there exist bi,wi such that

Ñ
∑

j=1

∥

∥Oj − Tj

∥

∥ = 0 (19)

The term βi of Equation 18 is estimated as follows:

N̂
∑

i=1

βig
(

wi • uj + bi
)

= tj, j = 1 . . . . . . ,N (20)

Equation 20 can also be written as follows:

Hβ = T, (21)

where H is the hidden layer output matrix of the NNs given by

H =
(

wi . . .wn, b1 . . . bn, u1 . . . . . . un
)

= (22)








g
(

w1 • u1 + b1
)

& . . .&g
(

wñ • u1 + bÑ
)

...& · · ·&
...

g
(

w1 • uN + b1
)

& · · ·&g
(

wÑ • uN + bÑ
)









N×Ñ

(23)

where β is the weights connecting the hidden and output layers
computed using the following:

β =









βT
1
...

βT
Ñ









Ñ×M

(24)

where T is the target values of N vectors in the training dataset
given by

T =









tT1
...
tTN









N×M

(25)

TABLE 2 The results of the descriptive statistics of JSE/FTSE closing

prices.

Mean 62,625.840

Median 59,408.680

Maximum 80,791.360

Minimum 37,963.010

Standard deviation 8,751.866

Skewness 0.220

Kurtosis −0.887

Observations 1,251

where H0 is referred to as the generalized Moore-Penrose inverse
of matrix H. When the number of hidden neurons and training
samples is equal, SLFNs may approximate the training samples
with no error. Numerous techniques, such as singular value
decomposition (SVD), iterative approaches, orthogonal projection
methods, and orthogonalizationmethods, can be used to determine
Ho. It was shown that SLFNs with randomly generated hidden
nodes and with a pervasive piecewise continuous activation
function may universally approximate any continuous target
function. The SVD approach is employed to compute H0 [45].

3.3 Hybrid ARIMA-ANN-based ELM

The goal of hybrid models is to lower the probability of
employing an incorrect model by fusing different models to lower
the chance of failure and provide more accurate results [19].
The ARIMA and ANN-based ELM models have found success
in their respective nonlinear or linear areas. However, none of
these is a universal model that can be applied to all situations.
Traditional models’ approximation to complicated nonlinear issues
and ANN-based ELM approximation to linear problems may be
completely incorrect, especially in situations with both nonlinear
and linear correlation structures. Unlike previously introduced
hybrid forecasting models, which normally handle the original
forecasting models as distinct linear or nonlinear units, the
suggested hybrid model is an integrated model that can respond
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FIGURE 2

Time series plot of JSE/FTSE closing prices.

TABLE 3 ADF and KPSS test results of JSE/FTSE closing prices.

Returns ADF
test
statistics

Probability KPSS
test
statistics

Probability

JSE/FTSE
at level

−2.866 0.212 12.212 0.010

JSE/FTSE
at log
difference

−10.600 0.000 0.064 0.100

well to both linear and nonlinear conditions, which are common in
complex frequent time series.

According to a few researchers in hybrid linear and nonlinear
models, it would be reasonable to assume that a time series is made
up of a linear autocorrelation structure and a nonlinear component
[48], which is given as follows:

yt = Nt + Lt (26)

where Lt represents the linear component and Nt represents the
nonlinear component. The data must be used to estimate these two
components. The study first allows ARIMA to model the linear
component, and only the nonlinear relationship will be present
in the residuals from the linear model [48]. Let et represent the
residual at time t from the linear model, then

et = yt − L̂t (27)

where L̂t is the forecast value for time t from the estimated
relationship. By modeling the residuals using ANN-based ELM, the
nonlinear relationship can be revealed [48].With n input nodes, the
ANN-based ELMmodel for the residuals will be as follows:

et = f (et−1, . . . , et−n) + εt (28)

where f is the nonlinear function that is established by the NN and
et is the random error. It should be noted that the error term may
not be random if the model f is inappropriate [48]. Consequently, it

is crucial to identify the right model. The forecast from Equation 28
is represented as N̂t , then the combined forecast will be as follows:

ŷt = L̂t + N̂t (29)

The hybrid model uses the unique characteristics and strengths
of both the ANN-based ELM and the ARIMA models to identify
various patterns. To improve the overall effectiveness of modeling
and forecasting, it may be useful to model linear and nonlinear
patterns independently using several models before combining the
forecasts [48, 49]. The flowchart of the hybrid model is presented in
Figure 1.

3.4 Model evaluation

Three evaluation metrics, such as MAPE, MSE, and MAE, are
employed to measure the predictability of the methods, which are
computed from the following equations:

MAPE =
1

N

N
∑

i=t

|xi − x̂i|

|xi|
× 100% (30)

MSE =
1

N

N
∑

i=1

(xi − x̂i)
2 (31)

MAE =
1

N

N
∑

i=t

|xi − x̂i|

|xi|
(32)

where n is the number of values and x̂ is the forecast value
[50]. The model with the lowest values of MAPE, MSE, and
MAE will be selected and proposed as an adequate algorithm for
predicting purposes.

4 Results and discussion

This section of the study presents the results of the data analysis
and the discussion of the results obtained from the data analysis.
Table 2 presents the results of the descriptive statistics. Descriptive
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FIGURE 3

Time series plot of the log di�erenced data.

FIGURE 4

ACF and PACF plots of the log di�erenced data.

TABLE 4 Model selection of ARIMA models for log-di�erenced data.

Returns Models AIC

JSE/FTSE ARIMA [1, 6, 6] −7,366.347

ARIMA [1, 6, 7] —

ARIMA [1, 6, 7] –7,365.513

ARIMA [1, 7, 7] –7,366.271

statistics are used to describe the dataset used in the study. The
results in Table 2 revealed that both the mean and median are
positive, suggesting that the closing prices increase slightly over
time. The skewness coefficient shows that time series data is skewed
to the right. A negative kurtosis demonstrates that the distribution
is relatively flat. The kurtosis value of the time series data is less
than 3, which reveals that the distribution has characteristics of a
platykurtic distribution. The standard deviation value is 8,751.866,

and this large value suggests that the data points are more spread
apart from the mean. This signifies that the time series data has a
higher level of variability or dispersion.

4.1 The findings from the Box–Jenkins
procedure

The Box–Jenkins procedure used in the study follows a
three-step approach. The three-step approach is outlined in the
following subsections.

4.1.1 Model identification
To create a BJ model, first determine whether the series is

stationary and observe any patterns. The plot provides a first
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TABLE 5 Parameter estimates of fitted ARIMA [1, 6, 6].

Estimate SE z-value Pr (>|z|)

ar 1 −1.691 0.778 −2.172 0.029

ar 2 −1.566 1.240 −1.263 0.207

ar 3 −1.543 1.095 −1.409 0.159

ar 4 −0.880 1.081 −0.815 0.415

ar 5 −0.069 0.557 −0.123 0.901

ar 6 −0.012 0.045 −0.278 0.781

ma 1 0.697 0.778 0.897 0.369

ma 2 −0.110 0.474 −0.232 0.816

ma 3 0.063 0.136 0.465 0.642

ma 4 −0.694 0.073 −9.503 <2e−16

ma 5 −0.876 0.554 −1.581 0.114

ma 6 −0.081 0.628 −0.128 0.898

TABLE 6 JB test results of the fitted ARIMA [1, 6, 6] model residuals.

Returns JB test statistics Probability

Residuals 2,867.500 <2.2e-16

TABLE 7 Diagnostic test results of the fitted ARIMA model residuals.

Model Ljung–Box Q∗ p-value

ARIMA [1, 6, 6] 25.679 0.177

indication of the expected nature of the time series as presented in
Figure 2.

The time series plot of JSE/FTSE closing prices is presented
above in Figure 2. The plot reveals irregular fluctuations, which
implies that the mean and variance change over time. This is
a demonstration that this time series is non-stationary by eye
inspection. Through logarithm differencing, trend behavior in non-
stationary data may be changed. As stated, this study places a
greater emphasis on logarithmic differencing. In any time series
study, it is significant to understand the concept of stationarity and
its definition regarding keeping statistical properties constant over
time. The stationarity test makes the study of model estimation and
forecasts easier. The study made use of ADF and KPSS tests.

The stationary test results for ADF and KPSS are presented in
Table 3. The null hypothesis of a unit root (non-stationary series)
is not rejected, since the p-value associated with the ADF test is
greater than the 5% significance level. This indicates that the time
series is not stationary and has a trend or other types of dependency
over time. Furthermore, the KPSS test findings have a p-value less
than the significant level of 5%, the null hypothesis is rejected, and
the time series data is non-stationary. Both tests provide evidence
that differencing/logarithm is necessary. The results of the ADF
test indicate that the time series is stationary after log differencing
since its p-value is less than the 5% significance level, thus rejecting
the null hypothesis of non-stationary. The KPSS results are also
consistent with the ADF test results, which also provide evidence
that, at a 5% significance level, the log-differenced time series is

indeed stationary. The time series plot of the log-differenced data
is presented in Figure 3.

The figure shows fluctuation around the mean of zero,
suggesting that the series remains constant to the mean. In addition
to graphical stationarity checking, the ACF and PACF are employed
for formal testing and identify the order of ARIMA models.

Considering Figure 4 of the ACF and PACF plots, it is observed
that the PACF plot suggests AR [6] and AR [7]. The ACF plot
also suggests MA [6] and MA [7]. In the ACF plot, spikes are
additionally observed at higher lags. The strikes from lag 8 have
been discarded since Tsoku et al. (42, p. 764) specified that “spikes at
greater lags are commonly ignored to simplify the initial tentatively
recognized model.” The plots indicated several AR and MA lags;
therefore, the AIC approach will be employed as the selection
criteria to select an ARIMA model.

4.1.2 Model estimation and selection
The findings indicated the existence of ARIMA models with

various lag orders. However, not all the ARIMA models found
could be used in this study. Hence, choosing an appropriate model
is crucial. Table 4 gives a summary of themodels that are compared.
According to the findings in Table 5, the chosen ARIMA model for
log-differenced data is ARIMA [1, 6, 6] based on the lowest AIC
value. The findings further revealed that ARIMA [1, 6, 7] did not
converge, therefore the model was not considered. The next step
is to compute the parameter estimation of the selected model. The
results presented in Table 5 show the coefficients of AR and MA
components that resulted from modeling the selected model using
the ML method.

Based on the coefficients summarized in Table 5, the estimated
parameters generate the following equation:

Yt = −1.691Yt−1 − 1.566Yt−2 − 1.543Yt−3 − 0.880Yt−4

− 0.069Yt−5 − 0.0123 Yt−6 + 0.697et−1 − 0.110et−2

+ 0.063et−3 − 0.6940et−4 − 0.876et−5 − 0.081et−6 + εt (33)

The next step is to run a diagnostic check to ensure that the chosen
model is appropriate for further analysis.

4.1.3 Diagnostic checking results
The best-fit model is determined by how well the residual

analysis is carried out in time series modeling [51]. The diagnostic
test results of the fitted ARIMA model are presented in Tables 6, 7
and Figures 5, 6.

The JB test was employed to determine the normality of the
residuals, and the findings are shown in Table 6. The findings
suggest that the null hypothesis of normality in the residuals is not
accepted, and the conclusion is that the residual distribution is not
normal. The graphical representations of residual diagnostics are
displayed in Figures 5, 6. It is evident from Figure 5 that almost
all the points are either on the 45-degree line or very near to it,
but a few of the points are slightly separated from the Quantile-
Quantile (QQ) line. Furthermore, the residuals of the fitted model
are slightly negatively skewed and normally distributed, as shown
by the histogram in Figure 6.
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FIGURE 5

Q-Q plot of the fitted ARIMA model residuals.

FIGURE 6

Histogram of the fitted ARIMA model residuals.

To further test the model’s adequacy, this study performed
the Ljung–Box test for residuals. The Q∗ statistic (25.679) of
the residuals and p-value (0.177) are given in Table 7, where
the null hypothesis is not rejected since the p-value exceeds the
significant level of 5%. Therefore, it can be concluded that there is
sufficient statistical evidence that the selected model is adequate.
This suggests that the fitted ARIMA [1, 6, 6] model is sufficient
enough to be used for further analysis.

4.2 ANN-based ELM

As the second step of the analysis, ANN-based ELM was
applied. The dataset was divided into test data and training data
to assess the forecasting abilities of the model. The test data is used
to assess the forecasted model, while the training data is used to
build the model. The dataset was split into 80% training and 20%
testing. The log-differenced data set has test and train sizes of 250
and 1,000 rows, respectively. With an 80%/20% splitting approach,
predictive models can obtain better prediction performance, as
outlined by Abdulkareem et al. [52]. The model is trained using
the training data set, and then the test dataset is used to assess
its performance. The study evaluated the model’s performance
using three evaluation metrics, and the results are presented in
Table 8.

TABLE 8 Evaluation metrics for the di�erenced data.

Model MAPE MSE MAE

ARIMA [1, 6, 6] 99.999 2,499.970 49.999

ANN-based ELM 26.665 0.046 0.213

Hybrid ARIMA-ANN-based ELM 11.421 0.008 0.089

4.3 Hybrid ARIMA-ANN-based ELM

Different ARIMA models were obtained for the initial step of
building hybrid models in ARIMA-ANN-based ELM modeling,
but for better results, the log-differenced data were fitted using
the ARIMA [1, 6, 6] model. The hybrid model was performed by
modeling the residuals from the ARIMA [1, 6, 6] model using
an ANN-based ELM. The accuracy measurements, to show which
model was chosen, were used to determine which model can be
used for forecasting between ARIMA[1, 6, 6], ANN-based ELM,
and hybrid ARIMA-ANN-based ELM, and the results are provided
in Table 8. The results in Table 8 indicate that the hybrid ARIMA-
ANN-based ELM yields better prediction results for closing prices
since it has the lowest values of MAPE, MSE, and MAE. Therefore,
the hybrid ARIMA-ANN-based ELM was selected as a better-
performing model as compared to the individual models.
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5 Conclusion

The study modeled the closing stock prices using three models,
namely, ARIMA, ANN-based ELM, and a hybrid of ARIMA-ANN-
based ELM to determine the most appropriate model. The findings
demonstrated that there were four competing ARIMA models,
namely, ARIMA [1, 6, 6], ARIMA [1, 6, 7], ARIMA [1, 6, 7], and
ARIMA [1, 7, 7]. The chosen ARIMA model for log-differenced
data was found to be ARIMA [1, 6, 6] based on the lowest
AIC value.

The diagnostic test was computed and revealed that the chosen
model was adequate. The dataset was then divided into 80% for
training and 20% for testing for ANN-based ELM. The model
was trained using the training data set, and its performance
was evaluated using the test dataset. These methods, however,
may not be sufficient when modeling time series data with
both linear and nonlinear characteristics simultaneously, as stated
by Bulut and Hudaverdi [53]. Hence, this study proposed a
hybrid of both ARIMA and ANN-based ELM to model both
linearity and nonlinearity simultaneously. The study developed a
hybrid approach for time series prediction that aims to address
the limitations of prior hybrid methods by eliminating strong
assumptions. It was evident from the findings that the hybridmodel
performed better than the individual models. It was also evident
that the hybrid model improved the performance of the ARIMA
and ANN-based ELM when computed individually.

The study by Khan et al. [54] also integrated the ARIMA and
ANN models. The findings from the study by Khan et al. [54]
demonstrated that ANN performs more effectively in forecasting
than the ARIMAmodel, but when their forecasts are combined, the
hybrid ARIMA-ANN outperformed in terms of forecast accuracy,
ANN, and ARIMA. The study recommends policymakers and
practitioners to use the hybrid model as it yields better results. In
the future, researchers may delve into assessing the effectiveness
of models by using additional conventional linear models and
hybrid variants such as ARIMA-GARCH and ARIMA-EGARCH.
Future studies could also integrate these with nonlinear models
to better capture both linear and nonlinear patterns in the data.
This approach offers a promising avenue for enhancing model
performance and gaining deeper insights into complex phenomena.
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