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A discrete-time model that
weakly converges to a
continuous-time geometric
Brownian motion with Markov
switching drift rate
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This research is devoted to studying a geometric Brownian motion with drift
switching driven by a 2 × 2 Markov chain. A discrete-time multiplicative
approximation scheme was developed, and its convergence in Skorokhod
topology to the continuous-time geometric Brownian motion with switching
has been proved. Furthermore, in a financial market where the discounted
asset price follows a geometric Brownian motion with drift switching, market
incompleteness was established, and multiple equivalent martingale measures
were constructed.
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1 Introduction

In this article, we study a geometric Brownian motion with Markov switching in the

drift coefficient. Assume that (Xt)t≥0 follows a linear stochastic differential equation

dXt = (δ0Yt + δ1(1− Yt))Xtdt + σXtdWt , X0 = x0, (1)

where x0 > 0 is non-random, δ0, δ1 ∈ R, (Wt)t≥0 is a Brownian motion, and (Yt)t≥0

is an independent of W continuous-time Markov jump process with the values in the set

{0, 1}, with the initial value Y0 = 0 and with an infinitesimal matrix

A =

(

−λ0 λ0

λ1 −λ1

)

, (2)

for some positive λ0 and λ1. Moreover, let the processes (Yt)t≥0 and (Wt)t≥0 be defined

on a stochastic basis with filtration (�,F, (Ft)t≥0,P), where Ft = σ {Ws,Ys, 0 ≤ s ≤ t}. It

is well known that the strong solution of Equation (1) can be represented as an exponent

of the form

Xt = X0 exp

(∫ t

0
(δ0Ys + δ1(1− Ys))ds+ σWt −

σ 2

2
t

)

. (3)

Drift-switching models have been applied in finance and economics for several

decades. Early applications of drift switching in the context of time-series econometrics can
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be found in Quandt [1] or Quandt and Goldfeld [2]. Hamilton [3]

used drift switching tomodel the business cycle, where the expected

growth rates of a national product switch according to a Markov

chain. In finance, geometric Brownian motion with a Markov

chain-modulated drift rate has become popular for modeling asset

price dynamics. For instance, Ang and Timmermann [4] and

Sotomayor and Cdenillas [5] studied regime-switching models in

finance, while Dai et al. [6] and Dai et al. [7] investigated optimal

trend-following trading strategies for an asset price modeled by a

stochastic differential (Equation 1). In this context, the switching

drift rates correspond to bull and bear market conditions. Maheu

et al. [8] focus on the identification and estimation aspects of such

models. In a similar setting, Décamps et al. [9] and Klein [10]

examine optimal investment timing in a risky project with a sunk

cost. The study by Aingworth, Das and Motwani [11] was devoted

to pricing equity options with Markov switching. Elliott et al. [12]

also studied option pricing in models with Markov switching. Bae

et al. [13] investigate the problem of asset allocation under regime

switching and Ekström and Lu [14] study an optimal irreversible

sale of an asset, while Ekström and Lindberg [15] analyze optimal

closing strategies for momentum trades. Henderson et al. [16]

study exercise patterns of American call executive stock options

written on a stock whose drift parameter falls to a lower value at

an exponentially distributed random time.

This study focuses on discretizing a geometric Brownian

motion with a Markov switching drift rate, as described by

Equation (1). Since explicit solutions to models with switching drift

rates are rare, rigorous discretization and an understanding of

its properties are essential for implementing numerical methods

such as binomial and multinomial trees, PDE solvers, or Monte

Carlo simulations for these models. Furthermore, in time-series

econometrics, a discrete-time version of Equation (1) is typically

used from the outset, albeit with only a vague connection to

the continuous-time model. Our analysis rigorously connects

the continuous- and discrete-time models and provides their

convergence properties.

Note that a wide class of theorems on diffusion approximation

of additive schemes were proved in the book of Liptser and

Shiryaev [17] and generalized to multiplicative schemes in the

book of Mishura and Ralchenko [18]. The present study is, in a

context, a modification of the functional limit theorems obtained in

Chapter 1 of the book [18]. However, to the best of our knowledge,

multiplicative Markov switching schemes and their corresponding

functional limit theorems have not been previously established.

In addition to the problem of the approximation (in the context

of functional limit theorems) of a market with switching, we also

investigated the question of the incompleteness of such a market.

Intuitively, this incompleteness is obvious, since we have one risky

asset with two independent sources of randomness. At the same

time, it is easy to construct the so-called minimum martingale

measure. It is more difficult to construct a class of equivalent

martingale measures other than the minimal one. We managed to

construct a fairly wide class of such measures, although it is obvious

that all equivalent martingale measures are not exhausted by such a

construction.

This study is organized as follows: In Sections 2 and 3, we

develop a discretization for the switching component of the process

(Equation 1) and prove the weak convergence of the respective

probability measures, generated by the prelimit and limit processes,

respectively. Section 4 is devoted to the weak convergence of

the measures corresponding to the component responsible for

volatility. Then, due to the independence of these processes and,

consequently, of respective probability measures, we get the weak

convergence of the products of these measures, or that is, of

the sequence of probability measures generated by the prelimit

sequence of probability measures, to the measure corresponding

to the limit process. Note also the following: while prelimit and

limit Markov processes (chains) are discontinuous, we can establish

their weak convergence in Skorokhod topology. However, their

integral sums and also the components that are responsible for the

weak convergence to geometric Brownian motion converge even

in the uniform topology. So, finally, our processes converge in the

uniform topology. Finally, Section 5 is devoted to the construction

of a wide class of equivalent martingale measures for the market,

where Equation (1) represents the discounted price of a risky asset.

2 Discrete-time multiplicative
approximation of the di�usion model
with Markov switching

The main goal of this study is to construct a sequence of

discrete-time versions of X, the geometric Brownian motion with

Markov modulated drift given by Equation (1) and Equation (3),

such that these discretized versions weakly converge in Skorokhod

topology (in fact, convergence will be even in the uniform topology)

to the process X on the fixed time interval [0,T].

So, following this direction, we consider the limit process

(Xt)t∈[0,T] on the fixed time interval [0,T], where T > 0 is a

maturity date, and create a series of discrete-timemodels numbered

by N ∈ N. Our Nth discrete-time market corresponds to the

partition of the interval [0,T] into N subintervals of the form
[

(k−1)T
N , kTN

]

, 1 ≤ k ≤ N. Let X
(N)
0 = x0, and X

(N)
k

be a

strictly positive discounted price of the asset at a time kT
N of Nth

discrete-time market, 1 ≤ k ≤ N.

Taking into account the multiplicative nature of the limit

model, together with the assumption of independence of Y andW

on [0,T], we can assume that the ratio
X
(N)
k

X
(N)
k−1

, 1 ≤ k ≤ N can be

represented as a product

X
(N)
k

X
(N)
k−1

=
(

1+ R
(1,N)
k

) (

1+ R
(2,N)
k

)

, (4)

where random variables R
(i,N)
k

, i ∈ {1, 2}, 1 ≤ k ≤ N are

independent and R
(i,N)
k

> −1 almost surely (a.s.) Taking logarithms

in Equation (4), we can write

U
(N)
k

= log(X
(N)
k

) = log(X0)+

k
∑

j=1

log
(

1+ R
(1,N)
j

)

+

k
∑

j=1

log
(

1+ R
(2,N)
j

)

, (5)
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where 1 ≤ k ≤ N and U
(N)
0 = log(x0). We

assume that the process X(N) is defined on the stochastic basis

(�(N),F(N),R
(1,N)
k

(F
(N)
t )t∈[0,T],P

(N)), where filtration is generated

by the respective random variables R
(i,N)
k

, i = 1, 2 so that X
(N)
k

is

F
(N)
kT
N

-measurable. In this model, random variables R
(1,N)
k

represent

non-volatile net profit rates generated by the price process on

the time intervals
[

(k−1)T
N , kTN

]

, 1 ≤ k ≤ N in a model with

switching. Recall that we consider (Ys)s≥0, which is the jump

Markov process with values in the set {0, 1} and an infinitesimal

matrix (Equation 1). This process governs the switching in a

continuous-time model. Recall also that state 0 generates income

with intensity δ0 and state 1 generates income with intensity δ1.

Once we consider a discrete-time model, we have to introduce a

discrete-time switching process (note that in such a model, the

switching of the interest rate may only occur at times kT
N ). Let

(

Y
(N)
k

)

k≥0
be a discrete-time, 2 × 2 Markov chain defined on the

same probability space as R(1,N), R(2,N), and U(N) which is defined

in Equation (5). It is independent of the processes R(2,N) andU(2,N).

The chain takes values in the set {0, 1} and has initial values Y
(N)
0 =

0 and Y
(N)
k

= 0, implying that the intensity of the interest on the

kth interval of the Nth discrete-time market equals δ0. Similarly,

Y
(N)
k

= 1 means that such intensity equals δ1.

The definition of the transition probabilities matrix for the

process Y(N) follows from the requirement for occupation times

of Y(N) to be close to those of (Ys)s≥0. This leads to the following

definition of the transition probabilities of the chain Y(N) for i ∈

{0, 1}:

P(N)
(

Y
(N)
k+1

= i|Y
(N)
k

= i
)

= P

(

Ys = i,
Tk

N
≤ s ≤

T(k+ 1)

N
| Y Tk

N
= i

)

= P(Ys = i, 0 ≤ s ≤ T/N | Y0 = i) = e−
λiT
N ,

where we used theMarkov property of the process (Ys)s≥0. Such

probabilities define a one-step transition probability matrix

(

e−λ0
T
N 1− e−λ0

T
N

1− e−λ1
T
N e−λ1

T
N

)

. (6)

Using the switching process Y(N), we can define random

variables R
(1,N)
k

, 0 ≤ k ≤ N, as follows:

R
(1,N)
k

=
δ0T

N
Y
(N)
k

+
δ1T

N
(1− Y

(N)
k

). (7)

Definition 7 has the following financial interpretation: Since

R
(1,N)
k

, 1 ≤ k ≤ N is a profit rate generated by the risky asset on the

kth time interval, the accrual on this interval equals to

1+ R
(1,N)
k

= exp

(

δ0T

N

)

Y
(N)
k

+ exp

(

δ1T

N

)

(1− Y
(N)
k

). (8)

Equation (8) can be written as:

R
(1,N)
k

=

(

exp

(

δ0T

N

)

− 1

)

Y
(N)
k

+

(

exp

(

δ1T

N

)

− 1

)

(1−Y
(N)
k

).

(9)

Using the Taylor formula, we can write R
(1,N)
k

as follows:

R
(1,N)
k

=

(

δ0T

N
+ o

(

δ0T

N

))

Y
(N)
k

+

(

δ1T

N
+ o

(

δ1T

N

))

(1−Y
(N)
k

).

By neglecting asymptotically small terms o
(

δ0T
N

)

and o
(

δ1T
N

)

,

we arrive at the definition (Equation 8).

Now, we turn our attention to R
(2,N)
k

. This random variable

represents the pure volatility in the model. In our discrete-time

markets, the sums
k
∑

j=1
log(1 + R

(2,N)
j ), roughly speaking, will

approximate the process σWt −
σ 2

2 t.

Now, as we defined discrete-time markets and prelimit

processes
(

U
(N)
k

, 0 ≤ k ≤ N
)

, we can give a mathematical

formulation for the main goal of this study, which is the

convergence of discrete-time markets to the market described

by Equation (1). By “convergence of discrete-time markets," we

mean weak convergence of probability measures associated with

stochastic processes that drive such markets, or convergence of

random processes in Skorokhod or uniform topology. It will be

specified explicitly in any theorem.

Next, we define the logarithm of the limit price process by

Ut = log(Xt) = log(X0)+

∫ t

0
(δ0Ys + δ1(1− Ys))ds+ σWt −

σ 2t

2
,

t ∈ [0,T]. It is convenient to separate the components of Ut and

U
(N)
k

as follows:

Ut = logX0 + U
(1)
t + U

(2)
t ,

U
(N)
k

= logX0 + U
(1,N)
k

+ U
(2,N)
k

,

where

U
(1)
t =

∫ t

0
(δ0Ys + δ1(1− Ys))ds, U

(2)
t = σWt −

σ 2t

2
,

U
(i,N)
k

=

k
∑

j=1

log
(

1+ R
(i,N)
j

)

, i ∈ {1, 2}, 1 ≤ k ≤ N,U
(i,N)
0 = 0.

Let us define for t ∈
[

(k−1)T
N , kTN

)

,

U
(N)
t = U

(N)
k−1

, U
(N)
T = U

(N)
N ,

U
(i,N)
t = U

(i,N)
k−1

, U
(i,N)
T = U

(i,N)
N ,

R
(N)
t = R

(N)
k−1

,R
(N)
T = R

(N)
N ,

Y
(N)
t = Y

(N)
k−1

, Y
(N)
T = Y

(N)
N , 1 ≤ k ≤ N,

(10)

i ∈ {1, 2}, 1 ≤ k ≤ N. So, we consider step-wise discrete-

time approximations of the limit process U. Thus, our goal is to

prove the weak convergence of the sequence of stochastic processes
(

U
(N)
t

)

t∈[0,T]
to the process (Ut)t∈[0,T]. To this end, we will

establish the convergence of
(

Y
(N)
t

)

t∈[0,T]
to (Yt)t∈[0,T] (Theorem

3), then the convergence of
(

U
(i,N)
t

)

t∈[0,T]
to
(

U
(i)
t

)

t∈[0,T]
, i ∈

{1, 2} (Theorems 4 and 5), and the desired result then follows

because of the independence of probability measures respective
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to Markov chains and the components that converge to the

geometric Brownian motion. Therefore, the respective products

of the probability measures weakly converge to the product of

probability measures corresponding to the limit Markov chain and

the limit geometric Brownian motion, respectively.

3 Weak convergence of discrete-time
Markov chains to the limit Markov
process

In this section, we prove that the sequence of processes
(

Y(N)
)

t∈[0,T]
introduced in Section 2 converges in Skorokhod

topology to the process (Yt)t∈[0,T]. As a consequence, we will obtain

the convergence of the processes
(

U(1,N)
)

t∈[0,T]
to
(

U(1)
)

t∈[0,T]
,

however, even in the uniform topology.

LetNt be the number of jumps of a process (Ys, s ≥ 0) on a time

interval [0, t]. Let us introduce the occupation times

θ0 = inf{t > 0|Yt 6= Y0}, θn = inf{t > θn−1 :Yt 6= Yθn−1}

− θn−1, n ≥ 1,

and jump times

τk =

k
∑

j=0

θk, k ≥ 0.

Recall that the Markov chain (Y
(N)
k

, k ≥ 0), introduced in

Section 2, has an initial value of Y
(N)
0 = 0 and the transition

probability matrix (Equation 6). For this chain, let us define the

total number of jumps on the time interval [0,T]

νN =

N−1
∑

j=0

∣

∣

∣
Y
(N)
j+1 − Y

(N)
j

∣

∣

∣
,

occupation times

θ
(N)
0 = inf

{

k > 0|Y
(N)
k

6= Y
(N)
0

}

,

θ (N)
n = inf

{

k > θ
(N)
n−1 :Y

(N)
k

6= Y
(N)

θ
(N)
n−1

}

, n ≥ 1,

and jump times

τ
(N)
k

=

k
∑

k=0

θ
(N)
j , k ≥ 0.

For a given t ∈ [0,T] and integer N, define kt,N ∈ {0, . . . ,N}

in the following way: kT,N = N, and for t ∈ [0,T), we have

t ∈
[

kt,NT
N ,

(kt,N+1)T
N

)

. We will also use the notation t(N) =
kt,NT
N .

Lemma 1. For all k ≥ 1, the following inequality holds:

P(NT = k) ≤ dCk exp

(

−
|λ1 − λ0|T

2
k

)

, (11)

where

d = max

{

(

λ0

λ1

)
1
2

, 1

}

max
{

e−λ0T , e−
|3λ1−λ0 |

2 T , e−
|λ0−λ1 |

2 T
}

,

(12)

and

C =
e|λ1−λ0| − 1

|λ1 − λ0|
(λ0λ1)

1
2 . (13)

Proof. We have the following relations:

P(NT = 2m)

=

∫ T

0

∫ T

t0

. . .

∫ T

t2m−1

λ0e
−λ0t0λ1e

−λ1(t1−t0)λ0e
−λ0(t2−t1)

. . . λ1e
−λ1(t2m−1−t2m−2)e−λ0(T−t2m−1)dt0 . . . dt2m−1

≤

∫

[0,T]2m
λ0e

−λ0t0λ1e
−λ1(t1−t0) . . . e−λ0(T−t2m−1)dt0 . . . dt2m−1

= (λ0λ1)
me−λ0T

∫

[0,T]2m

exp
(

(λ1 − λ0)(t0 − t1 + t2 . . .+ t2m−1)
)

dt0 . . . dt2m−1

= (λ0λ1)
me−λ0T

2m−1
∏

j=0

∫ T

0
e(−1)j(λ1−λ0)tjdtj

= (λ0λ1)
me−λ0T

2m−1
∏

j=0

(−1)j(e(−1)j(λ1−λ0)T − 1)

λ1 − λ0

= (λ0λ1)
me−λ0T

(e(λ1−λ0)T − 1)m(1− e−(λ1−λ0)T)m

(λ1 − λ0)2m

= (λ0λ1)
me−λ0T

(

e(λ1−λ0)T − 1

λ1 − λ0

)2m

e−(λ1−λ0)Tm.

In the case when λ1 > λ0, from these relations, we immediately

get inequality (Equation 11) for k = 2m. In the case when λ0 > λ1,

we can rewrite previous estimates as

P(NT = 2m)

≤ (λ0λ1)
me−λ0T

(

e(λ1−λ0)T − 1

λ1 − λ0

)2m

e−(λ1−λ0)Tm

= (λ0λ1)
me−λ0T

(

1− e(λ1−λ0)T

λ0 − λ1

)2m

e−(λ1−λ0)Tm

= (λ0λ1)
me−λ0T

(

e(λ0−λ1)T − 1

λ0 − λ1

)2m

e−(λ1−λ0)Tm+2(λ0−λ1)Tm

= (λ0λ1)
me−λ0T

(

e(λ0−λ1)T − 1

λ0 − λ1

)2m

e−(λ0−λ1)Tm,

and also get the inequality (Equation 11).

Let us now switch to the case k = 2m − 1. Following the same

process as before, we obtain the inequality

P(NT = 2m− 1)

≤ λ0(λ0λ1)
m−1e−λ1T

(

e(λ1−λ0)T − 1

λ1 − λ0

)2m−1

e−(λ1−λ0)Tm.

If λ1 > λ0, then we can write

P(NT = 2m− 1) ≤

(

λ0

λ1

)
1
2

C2m−1 exp
(

−(λ1 − λ0)Tm− λ1T
)

≤ C2m−1 exp

(

−(λ1 − λ0)T
2m− 1

2
−

3λ1 − λ0

2
T

)

,

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2024.1450581
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Golomoziy et al. 10.3389/fams.2024.1450581

so that Equation (11) holds true in this case.

If λ0 > λ1, then

P(NT = 2m− 1)

≤ λ0(λ0λ1)
m−1e−λ1T

(

e(λ0−λ1)T − 1

λ0 − λ1

)2m−1

e−(λ0−λ1)Tm−(λ0−λ1)T

=

(

λ0

λ1

)
1
2

C2m−1e−(λ0−λ1)Tm

=

(

λ0

λ1

)
1
2

C2m−1 exp

(

−(λ0 − λ1)T
2m− 1

2
−
λ0 − λ1

2
T

)

,

and Equation (11) holds true.

Corollary 1.

E exp

(

|λ1 − λ0|T

4
NT

)

<∞. (14)

Proof. Let us define 3 = |λ1 − λ0| and let constants C and d be

as in Equations (13) and (12), respectively. From Lemma 1, we see

that

P(Nt = k) ≤ dCke−
3T
2 k, (15)

Inequality (14) is a direct consequence of Inequality (15),

indeed, we can put α : = 3T
4 > 0 and get that

EeαNT ≤ d

∞
∑

k=0

Cke−
3T
4 k <∞.

Theorem 1. Denote by fm(t0, . . . , tm) a conditional density of

(τ0, . . . , τm) given NT = m and put

gm(t0, . . . , tm) = fm(t0, . . . , tm)P(NT = m).

Then, for any ε > 0, there exists an integer N(m) such that for all

N ≥ N(m) and all 0 ≤ t0 < . . . < tm ≤ T, we have
∣

∣

∣

∣

∣

gm(t0, . . . , tm)−

(

N

T

)m+1

p̂N(kt0 ,N , . . . , ktm ,N)

∣

∣

∣

∣

∣

< ε,

where p̂N(k0, . . . , km) = P(N){τ
(N)
0 = k0, τ

(N)
1 = k1, . . . , τ

(N)
m =

km, τ
(N)
m+1 > N}.

Proof. We prove the statement for evenm (so that we will write 2m

in the following theorem). The proof for the oddm is the same.

Let f̃2m(t0, . . . , t2m) be a conditional density of (θ0, . . . , θ2m)

given NT = 2m and g̃2m(t0, . . . , t2m) = f̃2m(t0, . . . , t2m)P(NT =

2m). Since {θj, 0 ≤ j ≤ 2m} are independent random variables with

alternating exponential distributions, we can write

g̃2m(t0, . . . , t2m)

= lim
h→0

1

(2h)2m+1
P
(

|θj − tj| < h, τ2m+1 > T, 0 ≤ j ≤ 2m
)

= P(θ2m+1 > T − (t0 + . . .+ t2m))

lim
h→0

2m
∏

j=0

(

1

2h
P(|θj − tj| < h)

)

= λ0e
−λ0t0λ1e

−λ1t1 . . . λ0e
−λ0t2me−λ1(T−(t0+...+t2m)),

for all tj ≥ 0, 0 ≤ j ≤ 2m, such that t0 + . . .+ t2m ≤ T. Recall

that θ0 = τ0 and θj = τj − τj−1, 1 ≤ j ≤ 2m. So we have for all

0 ≤ t0 < . . . < t2m ≤ T

g2m(t0, . . . , t2m)

= g̃2m(t0, t1 − t0, . . . , t2m − t2m−1)

= λ0e
−λ0t0λ1e

−λ1(t1−t0) . . . λ0e
−λ0(t2m−t2m−1)e−λ1(T−t2m)

= λ0(λ0λ1)
me−λ1T exp



(λ1 − λ0)

2m
∑

j=0

(−1)jtj



 .

To simplify the further derivations, let us omit indices in kti ,N
and simply write ki. Then we can rewrite p̂N(k0, . . . , km) as

p̂N (k0, . . . , k2m) = e−λ0
k0T
N

(

1− e
−λ0T
N

)

e−λ1
(k1−k0)T

N

(

1− e
−λ1T
N

)

× . . .×

×e−λ0
k0T
N

(

1− e
−λ0T
N

)

e
−λ1(N−k2m )T

N =
(

1− e
−λ0T
N

)m+1 (

1− e
−λ1T
N

)m

×

× exp

(

−
T

N

(

λ0k0 + λ1(k1 − k0)+ λ0(k2 − k1) . . .

+λ0(k2m − k2m−1)+ λ1(N − k2m)
)

)

=
(

1− e
−λ0T
N

)m+1 (

1− e
−λ1T
N

)m

e−λ1T exp



(λ1 − λ0)

2m
∑

j=0

(−1)j
kjT

N





=
(

1− e
−λ0T
N

)m+1 (

1− e
−λ1T
N

)m

e−λ1T exp



(λ1 − λ0)

2m
∑

j=0

(−1)jt
(N)
j



 .

Furthermore, the following limit holds:

(

T

N

)−(2m+1)
(

1− e−λ0
T
N

)m+1 (

1− e−λ1
T
N

)m

=

(

1− e−λ0
T
N

(T/N)

)m+1 (

1− e−λ1
T
N

(T/N)

)m

→ λm+1
0 λm1 ,

as N → ∞. For any ε1 > 0, we can now find an integer

N(m, ε1) such that for all N ≥ N(m, ε1), we have

∣

∣

∣

∣

∣

(

T

N

)−2m−1
(

1− e
−λ0T
N

)m+1 (

1− e
−λ1T
N

)m

− λm+1
0 λm1

∣

∣

∣

∣

∣

< ε1.

Put

ε2 = λm+1
0 λm1 ε1, and B = exp(|λ1 − λ0|T).

Note that

exp



(λ1 − λ0)

n
∑

j=0

(−1)jsj



 ≤ B,
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for all integer n > 0 and all 0 ≤ s0 < s1 < . . . < sn ≤ T. We

can now write

eλ1T

λm+1
0 λm1

∣

∣

∣

∣

∣

g2m(t0, . . . , t2m)−

(

N

T

)2m+1

p̂N(kt0 ,N , . . . , kt2m ,N)

∣

∣

∣

∣

∣

≤

≤

∣

∣

∣

∣

∣

∣

exp



(λ1 − λ0)

2m
∑

j=0

(−1)jtj





− exp



(λ1 − λ0)

2m
∑

j=0

(−1)jt
(N)
j





∣

∣

∣

∣

∣

∣

+

+ ε2 exp



(λ1 − λ0)

2m
∑

j=0

(−1)jt
(N)
j



 =

= B





∣

∣

∣

∣

∣

∣

exp



(λ1 − λ0)

2m
∑

j=0

(−1)j
(

tj − t
(N)
j

)



− 1

∣

∣

∣

∣

∣

∣

+ ε2





≤ B
(∣

∣

∣
B

2m+1
N − 1

∣

∣

∣
+ ε2

)

.

Clearly, we can now choose an integer N0 = N(m, ε) such that

for all N ≥ N0,
∣

∣

∣

∣

∣

g2m(t0, . . . , t2m)−

(

N

T

)2m+1

p̂N(kt0 ,N , . . . , kt2m ,N)

∣

∣

∣

∣

∣

< ε.

The theorem is proved.

Theorem 2. Let 0 ≤ t0 < t1 < . . . < tn ≤ T be fixed. Then, for any

ε > 0 there exists an integer N(n, ε) such that for all N ≥ N(n, ε),

we have
∣

∣

∣

∣

P
(

Yti = xi, 0 ≤ i ≤ n
)

− P(N)

(

Y
(N)

t
(N)
i

= xi, 0 ≤ i ≤ n

)
∣

∣

∣

∣

< ε,

(16)

where xi ∈ {0, 1}, 0 ≤ i ≤ m.

Proof. This result follows from Theorem 1 and Lemma 1. Indeed,

for every fixed ε > 0, we can find an integer m such that P(NT >

m) + P(N)(νN > m) < ε/2 for all N > 0, so that (Equation 16) is

reduced to

∣

∣P
(

Yti = xi, 0 ≤ i ≤ n,Nt ≤ m
)

(17)

−P(N)

(

Y
(N)

t
(N)
k

= xi, 0 ≤ i ≤ n, νN ≤ m

)
∣

∣

∣

∣

< ε/2.

Let us introduce the random variables rj of the form

rj = inf{k ≥ 0 : τk ≤ tj < τk+1}. (18)

In fact, rj is the index number of the occupation interval that

covers the fixed point tj. Note that rj is defined on the same

probability space as (Ys)s≥0, and forω ∈ {Nt ≤ m}, each rk(ω) takes

value in the set {0, 1, . . . ,m}. Put Am
n = {(r0(ω), . . . , rn(ω)), ω ∈

�} ⊂ Rn+1. It is clear that Am
n is a finite set, and

|Am
n | ≤ mn+1.

Then using formula (18), we get an equality

P
(

Yti = xi, 0 ≤ i ≤ n,Nt ≤ m
)

=
∑

(r0 ,...,rn)∈Am
n

P

(

τrj ≤ tj < τrj+1, 0 ≤ j ≤ n,Nt ≤ m
)

.

By Theorem 1, we can find an integer N(ε, n) such that for all

N ≥ N(ε, n)

∣

∣

∣
P

(

τrj ≤ tj < τrj+1, 0 ≤ j ≤ n,Nt ≤ m
)

−P(N)
(

τ (N)
rj

≤ tj < τ
(N)
rj+1, 0 ≤ j ≤ n,Nt ≤ m

)
∣

∣

∣

≤
ε

2mn+1
,

which proves Equation 17 and hence the statement of the

theorem follows.

Theorem 3. Processes
(

Y
(N)
t

)

t∈[0,T]
converge to (Yt)t∈[0,T], N →

∞ in Skorokhod topology.

Proof. In Theorem 2, we already proved the convergence of finite-

dimensional distributions. Therefore, by Theorem 4, Section VI.5

from Gikhman and Skokohod [19], we have to verify that for all

ε > 0

lim
h→0

lim sup
N→∞

sup
x∈{0,1},0≤s−t≤h

P(N)
(
∣

∣

∣
Y
(N)
s − Y

(N)
t

∣

∣

∣
> ε

∣

∣

∣
Y
(N)
t = x

)

= 0.

(19)

Let us examine the probability

P(N)
(
∣

∣

∣
Y
(N)
t+h

− Y
(N)
t

∣

∣

∣
> ε

∣

∣

∣
Y
(N)
t = 0

)

.

Since the chain Y(N) takes values in the set {0, 1}, the condition
∣

∣

∣
Y
(N)
th

− Y
(N)
t

∣

∣

∣
> εmeans that Y

(N)
t+h

= 1−Y
(N)
t . Thus, we can write

P(N)
(
∣

∣

∣
Y
(N)
t+h

− Y
(N)
t

∣

∣

∣
> ε

∣

∣

∣
Y
(N)
t = 0

)

= P(N)
(

Y
(N)
t+h

= 1| Y
(N)
t = 0

)

= P(N)
(

Y
(N)
h

= 1| Y
(N)
0 = 0

)

,

where the last equality follows from homogeneity.
Similarly,

P(N)
(

|Y
(N)
t+h

− Y
(N)
t | > ε | Y

(N)
t = 1

)

= P(N)
(

Y
(N)
t+h

= 0| Y
(N)
t = 1

)

= P(N)
(

Y
(N)
h

= 0| Y
(N)
0 = 1

)

.

To evaluate the latter probabilities, we will need a general form

of n-step transition probability for a 2× 2 Markov chain, which has

the form

P(N)
(

Y(N)
m = 1| Y

(N)
0 = 0

)

= π
(N)
1 − π

(N)
1 (a(N) − 1)m,

P(N)
(

Y(N)
m = 0| Y

(N)
0 = 1

)

= π
(N)
0 − π

(N)
0 (a(N) − 1)m,

where a(N) = e−λ0
T
N + e−λ1

T
N (note that a(N) ∈ (0, 2)), and

π (N) = (π
(N)
0 ,π

(N)
1 ) =

(

1− e−λ1
T
N

2− a(N)
,
1− e−λ0

T
N

2− a(N)

)

is an invariant distribution for the chain Y(N) (see Appendix,

Equation A1). For a fixed h ∈ [0,T], recall the notation

h(N) =

⌊

hN

T

⌋

.
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Now, we can rewrite the left-hand side of Equation (19) as

lim
h→0

lim sup
N→∞

sup
x∈{0,1},0≤s−t≤h

P(N)
(

|Y
(N)
s − Y

(N)
t | > ε | Y

(N)
t = x

)

≤

≤ lim
h→0

lim sup
N→∞

sup
x∈{0,1},0≤s≤h

P(N)
(

Y
(N)
s = 1− x| Y

(N)
0 = x

)

≤ lim
h→0

lim sup
N→∞

sup
x∈{0,1},0≤s≤h

(

π
(N)
x − π

(N)
x (a(N) − 1)s

(N)
)

= lim
h→0

lim sup
N→∞

max
x∈{0,1}

(

π
(N)
x − π

(N)
x (a(N) − 1)h

(N)
)

≤ lim
h→0

lim sup
N→∞

(

1− (a(N) − 1)
hN
T

)

= lim
h→0

(1− e−(λ0+λ1)h) = 0.

Theorem 4. Processes
(

U
(1,N)
t

)

t∈[0,T]
converge to

(

U
(1)
t

)

t∈[0,T]
in

the uniform topology.

Proof. Using the Taylor formula for logarithm, we get the following

representation: for x > 0,

log(1+ x) = x+ ρ(x)x,

where |ρ(x)| ≤ h(N) when x ∈
(

0, CN
)

for some constant C, and

h(N) → 0, N → ∞. For any fixed t ∈
[

(k−1)T
N , kTN

)

we have

U
(1,N)
t =

k−1
∑

j=0

log
(

1+ R
(1,N)
j

)

=

k−1
∑

j=0

(

R
(1,N)
j + ρ

(

R
(1,N)
j

)

R
(1,N)
j

)

=

k−1
∑

j=0

(

δ0T

N
Y
(N)
j +

δ1T

N

(

1− Y
(N)
j

)

)

+

k−1
∑

j=0

ρ

(

R
(1,N)
j

)

R
(1,N)
j

=

∫
(k−1)T

N

0

(

δ0Y
(N)
s + δ1

(

1− Y
(N)
s

))

ds+

k−1
∑

j=0

ρ

(

R
(1,N)
j

)

R
(1,N)
j

=

∫ t

0

(

δ0Y
(N)
s + δ1

(

1− Y
(N)
s

))

ds

−

∫ t

(k−1)T
N

(

δ0Y
(N)
s + δ1

(

1− Y
(N)
s

))

ds

+

k−1
∑

j=0

ρ

(

R
(1,N)
j

)

R
(1,N)
j .

Next, we have a.s.

∣

∣

∣

∣

∣

∣

k−1
∑

j=0

ρ
(

R
(1,N)
j

)

R
(1,N)
j

∣

∣

∣

∣

∣

∣

≤ h(N)Tmax{δ0, δ1} → 0, N → ∞,

∣

∣

∣

∣

∣

∫ t

(k−1)T
N

(

δ0Y
(N)
s + δ1

(

1− Y
(N)
s

))

ds

∣

∣

∣

∣

∣

≤
max{δ0, δ1}T

N
→ 0, N → ∞.

Using Theorem 3, we may conclude that for each fixed t ∈
[0,T],

∫ t

0

(

δ0Y
(N)
s + δ1

(

1− Y(N)
s

))

ds →d

∫ t

0
(δ0Ys + δ1 (1− Ys)) ds, N → ∞.

We can now use the Slutsky theorem, and conclude that

U
(1,N)
t →d U

(1)
t ,

where by→d we denote a weak convergence in distribution. Let

us now consider a linear combination of the form

m
∑

j=0

αjU
(1,N)
tj

, αj ∈ R, m ≥ 0, 0 ≤ t0 < . . . < tm ≤ T.

Using the properties of the Riemann integral and Slutsky

theorem we can apply similar reasoning to conclude that

m
∑

j=0

αjU
(1,N)
tj

→d
m
∑

j=0

αjU
(1)
tj

, N → ∞,

which implies weak convergence of finite-dimensional

distributions of the process
(

R
(1,N)
t

)

t∈[0,T]
to that of

(

U
(1)
t

)

t∈[0,T]
.

Let us consider the modulus of continuity of the sequences

of the processes
(

∫ t
0

(

δ0Y
(N)
s + δ1(1− Y

(N)
s

)

ds
)

t∈[0,T]
. Obviously,

for all 0 ≤ u < t ≤ T

∣

∣

∣

∣

∫ t

u

(

δ0Y
(N)
s + δ1(1− Y(N)

s

)

ds

∣

∣

∣

∣

≤ (t − u)max{δ0, δ1}.

The latter inequality implies that the family of processes
(

∫ t
0

(

δ0Y
(N)
s + δ1(1− Y

(N)
s

)

ds
)

t∈[0,T]
is tight in the uniform

topology. The statement of the theorem follows from this fact,

together with the convergence of finite-dimensional distributions.

4 Weak convergence to a geometric
Brownian motion with Markov
switching drift rate in the
multiplicative scheme of series

Conditions of weak convergence of the sequence of processes

U(2,N)
: = {U

(2,N)
t , t ∈ [0,T]}, N ≥ 1,

created in Equation 10, to the process U2(t) = σWt −
σ 2

2 t, are

classical. They can be deduced from the respective results contained

in the books [20] and [18]. However, for the reader’s convenience,

we describe them briefly, basing them on the Skorokhod theorem

about weak convergence of sums of independent random variables

to the continuous process with independent increments (see, e.g.,

Theorem 1, pages 452–453 from Gikhman and Skokohod [21]). So,

we consider the scheme of series of the formU
(2,N)
t = 0, t ∈ [0, TN ),

U
(2,N)
T =

N
∑

i=1
log

(

1+ R
(2,N)
i

)

, and

U
(2,N)
t =

[

Nt
T

]

∑

i=1

log
(

1+ R
(2,N)
i

)

, t ∈

[

T

N
,T

)

.

We can simplify these records by putting
∑0

i=1 and

U
(2,N)
t =

[

Nt
T

]

∑

i=1

log
(

1+ R
(2,N)
i

)

, t ∈ [0,T] .

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org

https://doi.org/10.3389/fams.2024.1450581
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Golomoziy et al. 10.3389/fams.2024.1450581

Assume that there exist two real-valued sequences

{αN ,βN ,N ≥ 1} such that −1 < αN < R
(2,N)
i < βN with

probability 1 and αn,βN → 0 as N → ∞. Then

U
(2,N)
t =

[

Nt
T

]

∑

i=1

(

R
(2,N)
i −

1

2

(

R
(2,N)
i

)2
)

+1N(t),

where |1N(t)| ≤ 1(αN ,βN)
N
∑

i=1

(

R
(2,N)
i

)2
, and real-valued

positive sequence 1(αN ,βN) → 0 as N → ∞. Recall

that we already assumed that
(

R
(2,N)
i , 1 ≤ i ≤ N

)

are mutually

independent.

Theorem 5. Assume that the following conditions hold:

(i) ER
(2,N)
i = 0, 1 ≤ i ≤ N,N ≥ 1.

(ii) For any t ∈ [0,T]

t(N)
∑

i=1

E

[

R
(2,N)
i

]2
→ σ 2t.

Then the sequence P
(2,N)
T of measures corresponding to

processes {U
(2,N)
t , t ∈ [0,T]} weakly converges to the measure P

(2)
T

corresponding to process {σWt −
σ 2

2 t, t ∈ [0,T]}.

Proof. Conditions (i) and (ii) mentioned in Theorem 5, together

with Theorem 5.53 from Föllmer et al. [20], imply that for any

0 ≤ s < t ≤ T, the distribution of the increment U
(2,N)
t −

U
(2,N)
s weakly converges to σ (Wt − Ws) −

σ 2

2 (t − s). Moreover,

these conditions, together with restrictions on the values of R
(2,N)
i ,

support Lindeberg’s condition in Theorem 1, pages 452–453 from

Gikhman and Skokohod [21], whence the proof follows.

5 Incompletenesses of the market
with switching

This section explores the incompleteness of the continuous-

time market with drift Markov switching, as described by

Equation 1. Although this topic is not directly related to the

convergence problem studied in the previous sections, it is of

interest to the financial applications of the model.

In this section, we assume that (Xt)t≥0 represents the

discounted asset price in an arbitrage-free market, which consists

of this risky asset and a risk-free asset. Since the risky asset

price involves two independent sources of randomness, the

financial market is incomplete. To demonstrate the incompleteness

explicitly, let us construct a MMM and separately a class of

martingale measures especially related to the Markov process.

First, fix the interval [0,T] and attempt to construct an equivalent

martingale measure Q ∼ P, whose Radon-Nikodym derivative

restricted to the interval [0,T] has the form

dQT

dPT
= exp

(

σ

∫ T

0
ϕ(u)dWu −

σ 2

2

∫ T

0
ϕ2(u)du

)

, (20)

where ϕ(u) is a Fu-adapted stochastic process satisfying

condition E

(

dQT
dPT

)

= 1 (in this case QT is indeed a probability

measure). Moreover, recall the notion of the MMM from Föllmer

and Schweizer [22]:

Definition 1. (Föllmer and Schweizer [22]) Let the discounted

asset price in a financial market be given by the real-valued

semimartingale of the form

S = S0 +M + A,

where S0 > 0 is a constant, M is a local P-martingale, A is

a process of locally bounded variation, P is the initial probability

measure, and M0 = A0 = 0. The minimal martingale measure

(MMM) for S is an equivalent probability measure P̂ that is

characterized by the properties that it transforms S into a local

martingale and preserves the martingale property for any local

P-martingale that is strongly orthogonal toM.

According to Föllmer and Schweizer [22], assume additionally

thatM is a P-square-integrable martingale, and A has a form

At =

∫ t

0
λsd〈M〉s, t ∈ [0,T],

where
∫ T
0 λ

2
s d〈M〉s < ∞ a.s., 〈M〉 is the quadratic

characteristics ofM (see, e.g., Liptser and Shiryayev [17] for detail).

Moreover, if

dSt = St(ρtdt + σtdWt),

and σ is a strictly positive adapted process on [0,T], then λs =

ρsσ
−2
s , s ∈ [0,T], and

∫ t

0
λ2s 〈M〉s =

∫ t

0
ρ2s σ

−2
s ds, t ∈ [0,T].

If the MMM P̂ exists, then its Radon-Nikodym derivative

restricted to the interval [0,T] is given by the stochastic exponent

of the form

dP̂T

dPT
= E

(

−

∫

λdM

)

= exp

{

−

∫ T

0
λsdMs −

1

2

∫ T

0
λ2s d〈M〉s

}

×

×
∏

0≤s≤T

(1− λ1Ms) exp

(

λ1Ms −
1

2
λ2(1M)2s

)

.

Lemma 2. The equivalent martingale measure for the market is

described by Equation (1), which has the form Equation (20), is

unique, and the function ϕ equals

ϕ(u) = −

(

δ0

σ 2
Yu +

δ1

σ 2
(1− Yu)

)

, u ∈ [0,T]. (21)

andQ = P̂ is a MMM in this market.

Proof. For all t ∈ [0,T] the following equality holds

EQ[Xt − Xs|Fs] =
E

[

dQT
dPT

(Xt − Xs)
∣

∣

∣
Fs

]

E

[

dQT
dPT

∣

∣

∣
Fs

] . (22)

Assume that

E exp

(

σ

∫ T

0
ϕ(u)dWu −

σ 2

2

∫ T

0
ϕ2(u)du

)

= 1. (23)
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Then the process exp
(

σ
∫ t
0 ϕ(u)dWu −

σ 2

2

∫ t
0 ϕ

2(u)du
)

, t ∈

[0,T] is a martingale, in particular,

E

(

exp

(

σ

∫ t

0
ϕ(u)dWu −

σ 2

2

∫ t

0
ϕ2(u)du

)
∣

∣

∣

∣

Fs

)

= exp

(

σ

∫ s

0
ϕ(u)dWu − σ

2

∫ s

0
ϕ2(u)du

)

,

therefore,

E

[

dQT

dPT
(Xt − Xs)

∣

∣

∣

∣

Fs

]

= XsE

[

exp

(

σ

∫ t

0
ϕ(u)dWu −

σ 2

2

∫ t

0
ϕ2(u)du

)

×

(

exp

(∫ t

s
(δ0Yu + δ1(1− Yu))du+ σ (Wt −Ws)−

σ 2

2
(t − s)

)

− 1

)∣

∣

∣

∣

Fs

]

= 0

(24)
if and only if

E
[

exp
(

∫ t
s (σϕ(u)

+σ )dWu +
∫ t
s (δ0Yu + δ1(1− Yu)−

σ 2

2 ϕ
2(u)− σ 2

2 )du
)
∣

∣

∣
Fs

]

= 1,

which in turn is true if and only if

δ0Yu + δ1(1− Yu)−
σ 2

2
ϕ2(u)−

σ 2

2
= −

σ 2

2
(ϕ(u)+ 1)2,

whence ϕ(u) satisfies equality (Equation 21). According to

Föllmer and Schweizer [22], measureQ is a MMM for this market.

Indeed, in our case, Mt = σ
∫ t
0 XsdWs and At =

∫ t
0 (δ0Ys +

δ1(1 − Ys))Xsds. Obviously, M is a continuous square-integrable

martingale, λt = σ−2(δ0Yt + δ1(1− Yt)), and for MMM

dP̂T

dPT
= E

(

−

∫ T

0
λdM

)

= exp

{

−σ−1

∫ T

0
(δ0Ys + δ1(1− Ys))dWs

−
σ−2

2

∫ T

0
(δ0Ys + δ1(1− Ys))

2ds

}

,

therefore, P̂T = QT from (Equation 20) with Equations 21-24

in hand. Moreover, equality (Equation 23) holds. So, the lemma is

proved.

Nevertheless, there can be other equivalent martingale

measures. To construct a wide class of equivalent martingale

measures, let us consider the following objects: First, we shall use

the standard definition of the Feller process (see e.g., Chung [23],

p. 50) and the following definition of the left quasi-continuous

process, taken from Chung [23] and Liptser and Shiryayev [17].

Definition 2. Let us have a stochastic basis with filtration and

an adapted process U = {Ut , t ≥ 0}. Process U is left quasi-

continuous, if for any stopping time τ and any sequence of stopping

times τn ↑ τ , Uτ = limτn↑τ Uτn P-a.s. on the set {τ <∞}.

Now we summarize the following facts from Liptser and

Shiryayev [17] and Gushchin [24], simplifying them for our

situation (in general, these properties can be formulated in a local

version, but our processes under consideration are integrable). We

consider càdlàg processes, which have a.s. continuous trajectories

from the right and with left limits at all points.

(i) For any adapted process A of integrable variation, there

exists a predictable process Aπ of integrable variation (dual

predictable projection, or compensator of A) such that the process

M = A− Aπ is a martingale.

(ii) If process A is left quasi-continuous, then process Aπ is

continuous.

(iii) The left quasi-continuity of the adapted process A of

integrable variation is equivalent to any of the following properties:

(a) for any predictable stopping moment τ 1τA1τ<∞ = 0,

where 1tA = At − At−, the jump at point t, which is correctly

defined for càdlàg processes.

(b) for any bounded stopping moment τ and for any sequence

of non-decreasing stopping times τn ↑ τ

EAτn → EAτ , n → ∞.

Now we are in a position to construct a wide class of equivalent

martingale measures for our market with Markov switching, but

we decide to operate only with the Markov process Y . It should

be noted that Y has bounded variation |Y| on [0,T] with finite

moments of any order (variation |Y| on [0, t] is simply a number of

jumps Nt , which, according to Corollary 1, has a finite exponential

moment). Therefore, Y is a process of integrable variation and

admits a dual predictable projection Yπ of integrable variation.

Lemma 3. Process Y is left quasi-continuous.

Proof. The desired property follows directly from Theorem 4

(Section 2.4, page 70) in Chung [23], once we establish that Y is

a Feller process.

Recall that time-homogenous Markov process has values in

some compact space E is called Feller if the following two

conditions hold true:

(i) for all f ∈ C(E)

lim
t↓0

∫

E
Pt(·, dy)f (y) = f (·),

(ii) for every fixed t and f ∈ C(E)

∫

E
Pt(·, dy)f (y) ∈ C(E),

where C(E) is a space of all functions continuous on E and

Pt(x,A) is a transition probability on the time interval [0, t].

In our case, E = {0, 1}, so every finite function on E is

continuous, and (ii) follows immediately.

Since the matrix A defined in Equation (2) is a generator of the

process Y , we have by definition

Af (·) = lim
t↓0

∫

E Pt(·, dy)f (y)− f (·)

t
,

for all continuous functions f on {0, 1}, which implies (i).

Now, according to Gushchin [24], any left quasi-continuous

process of integrable variation has a continuous integrable dual

predictable projection (compensator). Therefore, we can consider
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the dual predictable projection Yπ of Y , which is a continuous

process of integrable variation, and letMt = Yt − Yπt . ThenM is a

martingale. Therefore, according to Liptser and Shiryayev [17], M

admits a decompositionM = Mc +Md, whereMc is a continuous

local martingale, andMd is a purely discontinuous local martingale

where pure discontinuity means that common quadratic variation

[Mc,Md] is a zero process.

Lemma 4. M is a purely discontinuous martingale with a finite a.s.

number of jumps on any fixed interval [0,T].

Proof. Pure discontinuity immediately follows from the fact that

both the purely jump process Y and the continuous compensator

of Yπ have zero common quadratic variations [Y ,B] and [Yπ ,B]

with any continuous process B. The lemma is proven.

Therefore, if we create a stochastic exponent E (M), it will have
the form

Et (M) =
∏

0≤u≤t

(1+1Mu) exp{−1Mu} =
∏

0≤u≤t

(1+1Yu) exp{−1Yu},

where 1(·)s stands for the jump of the respective process

at point s, and these jumps are correctly defined for càdlàg

processes. However, the problem with this stochastic exponent is

that the jumps of M can equal −1. To avoid this difficulty, let us

consider any strictly positive continuous process ψt , 0 ≤ t ≤ T

adapted to σ0,t(Y) such that ψ(t) ≤
(

|λ1−λ0|T
4 ∧ 1

2

)

, consider

stochastic integral M
(ψ)
t =

∫ t
0 ψsdMs, which is in fact a sum

of a finite number of terms, and construct stochastic exponent

Et

(

M(ψ)
)

. Introduce the following notations: Es,t

(

M(ψ)
)

=

Et

(

M(ψ)
) (

Es

(

M(ψ)
))−1

, 0 < s ≤ t, and

M
(ϕ)
t = σ

∫ t

0
ϕ(u)dWu, 〈M

(ϕ)〉t = σ 2

∫ t

0
ϕ2(u)du,

where ϕ is defined in Equation (21),

Et

(

M(ϕ)
)

= exp
{

M
(ϕ)
t − 1

2 〈M
(ϕ)〉t

}

, Es,t

(

M(ϕ)
)

= Et

(

M(ϕ)
) (

Es

(

M(ϕ)
))−1

, 0 < s ≤ t.

Theorem 6. Probability measures Qϕ,ψ , for which its Radon-

Nikodym derivative restricted on the interval [0,T] has the form

dQ
ϕ,ψ
T

dPT
= ET

(

M(ψ)
)

ET

(

M(ϕ)
)

,

is a probability equivalent martingale measure for the market

defined by Equation (1).

Proof. First, notice that for any s > 0

(

1+1M
(ψ)
s

)

exp{−1M
(ψ)
s }

≤
(

1+ |λ1−λ0|T
4

)

11Ys=1 + e
|λ1−λ0 |T

4 11Ys=−1,

therefore, according to Corollary 1, Et

(

M(ψ)
)

does not exceed

exp
(

|λ1−λ0|T
4 NT

)

, and so, it is integrable. It means that being

a local martingale and stochastic exponent, and also being an

integrable, Et

(

M(ψ)
)

, t ∈ [0,T] is a martingale. In particular,

EET

(

M(ψ)
)

= 1 andET

(

M(ψ)
)

define a probability measureP(ψ)

on (�,F), equivalent to measure P. Now, for any 0 ≤ s ≤ t ≤ T,

introduce the σ -fields σs,t(Y) = σ {Yu, s ≤ u ≤ t} generated by the

process Y on the respective intervals. Then

E

(

ET

(

M(ψ)
)

ET

(

M(ϕ)
))

= E

(

ET

(

M(ψ)
)

E

(

ET

(

M(ϕ)
)
∣

∣

∣
σ0,T (Y)

))

.

(25)

Denote x = xt , t ∈ [0,T] some bounded, measurable, and non-

random function. Then, taking into account the independence of

W and Y , we can write that

E

(

ET

(

M(ϕ)
)
∣

∣

∣
σ0,T(Y)

)

=

(

E exp

(

∫ T

0
xtdWt −

1

2

∫ T

0
x2t dt

)
∣

∣

∣

∣

∣

ϕt=xt , t∈[0,T]

)

= 1.
(26)

Therefore,

E

(

ET

(

M(ψ)
)

ET

(

M(ϕ)
))

= E

(

ET

(

M(ψ)
))

= 1,

whenceQϕ,ψ is a probability measure and
dQ

ϕ,ψ
t

dPt
, t ∈ [0,T] is a

martingale. Nowwe shall use the independence ofW andY again in

order to prove that Q is an equivalent martingale measure. Indeed,

similarly to the proof of Lemma 2,

EQϕ,ψ [Xt − Xs|Fs] =

E

[

dQ
ϕ,ψ
T

dPT
(Xt − Xs)

∣

∣

∣

∣

Fs

]

E

[

dQ
ϕ,ψ
T

dPT

∣

∣

∣

∣

Fs

]

= XsE

[

Es,t

(

M(ϕ)
)

Es,t

(

M(ψ)
)

×

×

(

exp

{∫ t

s
(δ0Yu + δ1(1− Yu))du+ σ (Wt −Ws)−

σ 2

2
(t − s)

}

− 1

)∣

∣

∣

∣

Fs

]

= XsE

[

Es,t

(

M(ψ)
)

(

exp

{∫ t

s
σ (ϕu + 1)dWu −

σ 2

2

∫ t

s
(ϕu + 1)2du

}

− exp

{

σ

∫ t

s
ϕ(u)dWu −

1

2
σ 2

∫ t

s
ϕ2(u)du

}

)
∣

∣

∣

∣

∣

Fs

]

= :G(s, t).

Consider the σ -field

H
t
s = Fs ∨ σs,t(Y),

the smallest σ -field containingFs and σs,t(Y). ThenEs,t

(

M(ψ)
)

isHt
s-measurable, and, similarly to Equations (25, 26),

G(s, t) = XsE

[

Es,t

(

M(ψ)
)

E

(

exp

{∫ t

0
σ (ϕu + 1)dWu −

σ 2

2

∫ t

0
(ϕu + 1)2du

}

− exp

{

σ

∫ t

s
ϕ(u)dWu −

1

2
σ 2

∫ t

s
ϕ2(u)du

}

)∣

∣

∣

∣

∣

H
t
s

)∣

∣

∣

∣

∣

Fs

]

,
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where

E

(

exp

{

∫ t

0
σ (ϕu + 1)dWu −

σ 2

2

∫ t

0
(ϕu + 1)2du

}

− exp

{

σ

∫ t

s
ϕ(u)dWu −

σ 2

2

∫ t

s
ϕ2(u)du

}
∣

∣

∣

∣

∣

H
t
s

)

= E

(

exp

{

∫ t

s
σ (xu + 1)dWu −

σ 2

2

∫ t

s
(xu + 1)2du

}

− exp

{

σ

∫ t

s
x(u)dWu −

σ 2

2

∫ t

s
x2(u)du

})
∣

∣

∣

∣

∣

ϕt=xt , t∈[0,T]

= 1− 1 = 0.

It means that Qϕ,ψ is an equivalent martingale measure

for the market defined by Equation (1), and the theorem

is proved.
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Appendix

In this appendix, we present, for the reader’s convenience,

a direct formula for the n-step transition probability of a 2 ×

2 discrete-time Markov chain. Consider a transition probability

matrix of the form

P =

(

α 1− α

1− β β

)

,

for some α,β ∈ (0, 1). Transition probability P admits a unique

invariant probability measure

π = (π0,π1) =

(

1− β

2− α − β
,

1− α

2− α − β

)

.

Let us find an eigendecomposition of P. Clearly, 1 is an eigenvalue,

and the corresponding eigenvector is (1, 1). The second eigenvalue

is λ = α + β − 1, and the corresponding eigenvector is v =

(1− α,β − 1). Thus, we have a decomposition

Pn =

(

1 1− α

1 β − 1

)(

1 0

0 (α + β − 1)n

)(

1−β
2−α−β

1−α
2−α−β

1
2−α−β − 1

2−α−β

)

(A1)

=

(

π0 + π1(α + β − 1)n π1 − π1(α + β − 1)n

π0 − π0(α + β − 1)n π1 + π0(α + β − 1)n

)

.
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