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Approximation of classes of
Poisson integrals by rectangular
Fejér means

Olga Rovenska*

Department of Theory of Functions, Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

The article is devoted to the problem of approximation of classes of periodic

functions by rectangular linear means of Fourier series. Asymptotic equalities

are found for upper bounds of deviations in the uniform metric of rectangular

Fejér means on classes of periodic functions of several variables generated

by sequences that tend to zero at the rate of geometric progression. In one-

dimensional cases, these classes consist of Poisson integrals, namely functions

that can be regularly extended in the fixed strip of a complex plane.
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1 Introduction

Let Rd be the Euclidean space of vectors x̄ = (x1; x2; . . . ; xd). Let f (x̄) be a function
2π-periodic in each variable xi, i ∈ {1, d} and summable on the set Td = [−π;π]d, i.e.,
f ∈ L

(

T
d
)

, let

S[f ](x̄) =
∑

k̄∈Zd
+

2−γ (k̄)
∑

s̄∈{0;1}d
as̄
k̄
[f ]

d
∏

i=1

cos
(

kixi −
siπ

2

)

be the complete Fourier series of function f , where

as̄
k̄
[f ] = π−d

∫

Td

f (x̄)

d
∏

i=1

cos
(

kixi −
siπ

2

)

dxi,

are the Fourier coefficients of the function f , corresponding to the vectors k̄ ∈ Z
d
+,

s̄ ∈ {0; 1}d, and γ (k̄) is the number of zero coordinates of the vector k̄.

Let 3̄ = (31;32; . . . ;3d) be the fixed set of infinite triangular matrices of numbers

3i =
{

λ
(ni)
ki

}

, i ∈ {1, d} such that λ
(ni)
0 = 1, λ

(ni)
ki

= 0, ki ≥ ni. Denote λ
(n̄)

k̄
=

d
∏

i=1
λ
(ni)
ki

, and

Gn̄ =
d
∏

i=1
[0; ni − 1]. If k̄ 6∈ Gn̄, then λ

(n̄)

k̄
= 0. For function f ∈ L

(

T
d
)

the set 3̄ defines a

family of trigonometric polynomials

Un̄[f ; 3̄](x̄) =
∑

k̄∈Gn̄

2−γ (k̄)λ(n̄)
k̄

∑

s̄∈{0;1}d
as̄
k̄
[f ]

d
∏

i=1

cos
(

kixi −
siπ

2

)

.
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The polynomials Un̄[f ; 3̄](x̄) are called rectangular linear

means for S[f ](x̄). In particular, if λ
(ni)
ki

= 1, k̄ ∈ Gn̄, then

Un̄[f ; 3̄](x̄) = Sn̄−1[f ](x̄) are the rectangular partial sums of

S[f ](x̄), and if λ
(ni)
ki

= 1− ki
ni
, k̄ ∈ Gn̄, then

Un̄[f ; 3̄](x̄) = σn̄[f ](x̄) =
d
∏

i=1

n−1
i

∑

k̄∈Gn̄

Sn̄[f ](x̄)

are the rectangular Fejér means of S[f ](x̄).

Basic results relating to the approximation of functional

classes by linear methods of summation of Fourier series can

be found in books Timan [1], Lorentz [2], and Dyachenko [3].

Linear summation methods are widely used both for the solution

of practical problems and for development of more advanced

approximation methods. This chapter of approximation theory has

been intensively developed over the past decades [4–9]. Here it is

difficult tomention all the relevant published research papers in this

area. Recently, we have seen the publication of several important

works [10–15].

Let C
(

T
d
)

be the space of continuous 2π-periodic in each

variable’s functions f (x̄) with the norm

‖f ‖ : = ‖f ‖C = max
x̄∈Td

|f (x̄)|.

Let J (r) be the arbitrary subset of the set {1; d}, where r is the
number of elements of the setJ (r). Denote by Cq̄

(

T
d
)

, q̄ ∈ (0; 1)d

the set of functions f ∈ C
(

T
d
)

such that ∀J : = J (r) ⊆ {1; d},
the series

∑

k̄∈Zd+ ,

kj 6=0, j∈J

2−γ (k̄)
∏

j∈J
q
−kj
j

∑

s̄∈{0;1}d
as̄
k̄
[f ]

d
∏

i=1

cos
(

kixi −
siπ

2

)

(1)

are the Fourier series of certain functions ϕ
(J )
q̄ (x̄) ∈ L

(

T
d
)

,

which are almost everywhere bounded by a unity, and the Fourier

series of functions ϕ
(J )
q̄ (x̄) do not contain terms independent of the

variables xi, i ∈ J (r).

For example, in the case d = 2, the series (Equation 1) is as

follows:

S
[

ϕ
(1)
q̄

]

(x̄) = ∑

k̄∈N×Z+

2−γ (k̄)q−k1
1

∑

s̄∈{0;1}2
as̄
k̄
[f ]

cos

(

k1x1 − s1π
2

)

cos

(

k2x2 − s2π
2

)

,

S
[

ϕ
(2)
q̄

]

(x̄) = ∑

k̄∈Z+×N

2−γ (k̄)q−k2
2

∑

s̄∈{0;1}2
as̄
k̄
[f ]

cos

(

k1x1 − s1π
2

)

cos

(

k2x2 − s2π
2

)

,

S
[

ϕ
(J )
q̄

]

(x̄) = ∑

Ek∈N2

2−γ (k̄)q−k1
1 q−k2

2

∑

s̄∈{0;1}2
as̄
k̄
[f ]

cos
(

k1x1 − s1π
2

)

cos
(

k2x2 − s2π
2

)

.

In the one-dimensional case, the classes Cq
(

T
1
)

, q ∈
(0; 1) consist of continuous 2π-periodic functions, given by the

convolution

f (x) = A0 + π−1

∫

T1

ϕ(1)q (x+ t)Pq(t) dt, A0 − const,

where

P(q; t) =
∞
∑

k=0

qk cos kt = 1− q cos t

1− 2q cos t + q2
, q ∈ (0; 1)

is the well-known Poisson kernel, the function ϕ
(1)
q ∈

L(T1)
(

J (1) = i, i = 1
)

satisfies almost everywhere the conditions

|ϕ(1)q (t)| ≤ 1, ϕ
(1)
q ⊥1.

In this work, we consider the problem of the exact

upper bound for the approximation of periodic functions by

linear means of the Fourier series. We employed methods for

studying integral representations of deviations of polynomials,

generated by linear summation methods of Fourier series

of continuous periodic functions, developed in the works of

Nikolskii [16], Telyakovskii [17], Stepanets [18], and others.

This topic is currently being developed in the works of many

authors [19–21].

Nikolskii [22] established the asymptotic equality

as n → ∞

sup
{

‖f − Sn[f ]‖ : f ∈ Cq
(

T
1
)}

=

sup











∥

∥

∥

∥

∥

∥

∥

1

π

∫

T1

ϕ(1)q (x+ t)

∞
∑

k=n+1

qk cos kt dt

∥

∥

∥

∥

∥

∥

∥

: |ϕ(1)q (t)| ≤ 1, ϕ(1)q ⊥1











= 8qn+1

π2
K(q)+ O(1)

qn

n
,

where K(q) =
π
2
∫

0

(1 − q2 sin2 u)−
1
2 du is the complete elliptic

integral of the first kind and O(1) is a quantity uniformly bounded

with respect to n. Regarding the summability of Fourier series by

Fejér means σn[f ], we proved the following two theorems [23–25].

Theorem 1. Let q0 be the only root of the equation q4 − 2q3 −
2q2 − 2q + 1 = 0, that belongs to the interval (0; 1), q0 =
(

2+
√
5− 2

√

2+
√
5
)1/2

= 0.346 . . . . If q ∈ (0; q0], then the

equality hold as n → ∞

sup
{

‖f − σn[f ]‖ : f ∈ Cq
(

T
1
)}

= 4q

πn(1+ q2)
+ O(1)

qn

n
,

where O(1) is a quantity uniformly bounded with respect to n.

Theorem 2. If q ∈ [q0; 1), then the equality hold as n → ∞

sup
{

‖f − σn[f ]‖ : f ∈ Cq
(

T
1
)}

= 2
πn

(1+q2)2

(1−q2)
(

1−q2+
√

2(1+q4)
) + O(1)

qn

n(1−q)3
,

where O(1) is uniformly bounded with respect

to n, q.

The purpose of this paper is to present the asymptotic

equalities for upper bounds of deviations of rectangular

Fejér means taken over multidimensional analogs of classes

Cq
(

T
1
)

. Similar asymptotic expansions for other rectangular

linear methods can be found in Rukasov et al. [26] and

Rovenska [27].
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2 Result

The main result is the following.

Theorem 3. Let q̄ ∈ (0; 1)d. Then

sup
{

‖f − σn̄[f ]‖ : f ∈ Cq̄
(

T
d
)}

= 4

π

d
∑

i=1

A(qi)

ni
(2)

+O(1)





d
∑

i=1

q
ni
i

ni(1− qi)3
+

d
∑

r=2

∑

J (r)⊂{1,d}

∏

j∈J (r)

1

nj(1− qj)3



 ,

where

A(q) =







q

1+q2
, q ∈ (0; q0]

(1+q2)2

2(1−q2)
(

1−q2+
√

2(1+q4)
) , q ∈ [q0; 1),

q0 is the only root of the equation q4 − 2q3 − 2q2 − 2q+ 1 = 0,

that belongs to the interval (0; 1), q0 = 0.346 . . . , O(1) is a quantity,

uniformly bounded with respect to qi, ni, i ∈ {1, d}.
Proof

First we find the upper estimate for the quantity

sup
{

‖f − σn̄[f ]‖ : f ∈ Cq̄
(

T
d
)}

. (3)

Based on Theorem 1 in Rukasov et al. [26], ∀f ∈ Cq̄
(

T
d
)

, the

equality holds

f (x̄)− σn̄[f ](x̄) =
∑

k̄∈Zd
+

2−γ (k̄)
∑

s̄∈{0;1}d
as̄
k̄
[f ]

d
∏

i=1

cos
(

kixi −
siπ

2

)

−

∑

k̄∈Gn̄

2−γ (k̄)
d
∏

i=1

(

1− ki

ni

)

∑

s̄∈{0;1}d
as̄
k̄
[f ]

d
∏

i=1

cos
(

kixi −
siπ

2

)

=

1

π

d
∑

i=1

1

ni

∫

T1

ϕ(i)qi (x̄+ tiēi)

ni−1
∑

ki=0

∞
∑

νi=ki+1

q
νi
i cos νiti dti+

d
∑

r=2

(−1)r+1 1

π r

∑

J (r)⊂{1,d}

∫

Tr

ϕ
(J )
q̄



x̄+
∑

j∈J (r)

tjēj





∏

j∈J (r)

1

nj

nj−1
∑

kj=0

∞
∑

νj=kj+1

q
νj
j cos νjtj dtj. (4)

In Novikov et al. [24] and Rovenska [25] it was shown that

sup

{
∥

∥

∥

∥

∥

1
n

∫

T1

ϕ
(1)
q (x+ t)

∑n−1
k=0

∑∞
ν=k+1 q

ν cos νt dt

∥

∥

∥

∥

∥

: |ϕ(1)q (t)| ≤ 1, ϕ
(1)
q ⊥1

}

=
1
n

∫

T1

ϕ
∗(1)
q (t)

∑n−1
k=0

∑∞
ν=k+1 q

ν cos νt dt

= A(q)
n + O(1)

qn

n(1−q)3
, (5)

where

ϕ∗(1)q (t) =















sign

(

∂P(q;t)
∂q − ∂P(q;t)

∂q

∣

∣

∣

t= π
2

)

, q ∈ (0; q0],

sign

(

∂P(q;t)
∂q − ∂P(q;t)

∂q

∣

∣

∣

t=tq

)

, q ∈ [q0; 1),
(6)

and tq is determined by the condition

∂P(q; t)
∂q

∣

∣

∣

t=tq
= ∂P(q; t)

∂q

∣

∣

∣

t=tq+ π
2

, 0 ≤ tq ≤
π

2
.

Combining Equations 4, 5, and 6, we obtain

sup
{

‖f − σn̄[f ]‖ : f ∈ Cq̄
(

T
d
)}

≤ 4
π

d
∑

i=1

A(qi)
ni

+O(1)

(

d
∑

i=1

q
ni
i

ni(1−qi)3
+

d
∑

r=2

∑

J (r)⊂{1,d}

∏

j∈J (r)

1
nj(1−qj)3

)

. (7)

Next, we find the lower estimate of Equation 3. We construct

the function f ∗(x̄) ∈ Cq̄
(

T
d
)

for which estimate Equation 7 cannot

be improved. Based on equality Equation 3 we have

f (0̄)− σn̄[f ](0̄)
= 1

π

∑d
i=1

1
ni

∫

T1

ϕ
(i)
qi

(

0̄+ tiēi
)
∑ni−1

ki=0

∑∞
νi=ki+1 q

νi
i cos νiti dti +

∑d
r=2(−1)r+1 1

π r

∑

J (r)⊂{1,d}

∫

Tr

ϕ
(J )
q̄

(

0̄+ ∑

j∈J (r)

tjēj

)

∏

j∈J (r)
1
nj

nj−1
∑

kj=0

∞
∑

νj=kj+1

q
νj
j cos νjtj dtj.

Since the functions ϕ
(J )
q̄ satisfy the condition |ϕ(J )

q̄ (x̄)| ≤ 1

almost everywhere, and

∫

T1

∣

∣

∣

∑nj−1

kj=0

∑∞
νj=kj+1 q

νj
j cos νjtj

∣

∣

∣
dtj

=
∫

T1

∣

∣

∣

∣

∂P(qj;tj)
∂qj

∣

∣

∣

∣

dtj = O(1) 1
(1−qj)3

, i ∈ {1, d},

then

f (0̄)− σn̄[f ](0̄) = 1
π

∑d
i=1

1
ni

∫

T1

ϕ
(i)
qi

(

0̄+ tiēi
)
∑ni−1

ki=0

∑∞
νi=ki+1 q

νi
i cos νiti dti

+O(1)

(

∑d
r=2

∑

J (r)⊂{1,d}

∏

j∈J (r)

1
nj(1−qj)3

)

.

Denote by ϕ
∗(i)
qi (x̄), x̄ ∈ T

d an arbitrary continuation on the set

T
d of the function ϕ

∗(i)
qi (xi), xi ∈ T

1, and denote by f ∗i (x̄), x̄ ∈ T
d

the function, such that

S
[

ϕ∗(i)qi

]

(x̄) =
∑

k̄∈Zd+ ,

ki 6=0

2−γ (k̄)q−ki
i

∑

s̄∈{0;1}d
as̄
k̄

[

f ∗i
]

d
∏

i=1

cos
(

kixi −
siπ

2

)

.

Let f ∗(x̄) : =
d
∑

i=1
f ∗i (x̄). It’s clear that f ∗(x̄) ∈ Cq̄

(

T
d
)

.

Therefore, we have

f ∗(0̄)− σn̄[f ∗](0̄) =
1

π

d
∑

i=1

1

ni

∫

T1

ϕ∗(i)qi
(ti)

ni−1
∑

ki=0

∞
∑

νi=ki+1

q
νi
i cos νiti dti

+O(1)





d
∑

r=2

∑

J (r)⊂{1,d}

∏

j∈J (r)

1

nj(1− qj)3



 . (8)
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Combining Equations 5, 7, and 8, we obtain equality

(Equation 2). The proof is complete.

Remark 1. Formula Equation 2 is asymptotically exact for any

q̄ ∈ (0; 1)d.
Remark 2. In the case d = 2, formula Equation 2 is simplified

as follows:

sup
{

‖f − σn̄[f ]‖ : f ∈ Cq̄
(

T
2
)}

= 4
π

∑

i=1, 2

A(qi)
ni

+O(1)

(

∑

i=1, 2

q
ni
i

ni(1−qi)3
+∏

j=1, 2
1

nj(1−qj)3

)

.

3 Conclusion

In this study, we propose an approach to define the

multidimensional analogs of classes of Poisson integrals,

which allows us to take into account the rate of decrease

of each sequence that determine the class. The problem

connected with the search for upper bounds of approximation

errors with respect to a fixed class of functions and with

the choice of an approximation tool is considered. In the

certain case, our approach turned out to be effective for

obtaining exact asymptotic. The key point in this approach is

to construct the function f ∗(x̄) ∈ Cq̄
(

T
d
)

that implements the

upper bound.

Our study may be useful for solving the upper bound problem

in other particular cases. In particular, our ideas can be used

to obtain the corresponding asymptotic equalities on classes,

which in one-dimensional cases are determined by the Poisson

kernels P̃q(t) =
∞
∑

k=1

sin kt, P
β
q (t) =

∞
∑

k=0

cos
(

kt + βπ
2

)

,

β ∈ R, etc.
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