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Early prediction of pest occurrences can enhance crop production, reduce input 
costs, and minimize environmental damage. Advances in machine learning algorithms 
facilitate the development of efficient pest alert systems. Furthermore, ensemble 
algorithms help in the utilization of several models rather than being dependent on 
a single model. This study introduces a dynamic ensemble model with absolute log 
error (ALE) and logistic error functions using four machine learning models—artificial 
neural networks (ANNs), support vector regression (SVR), k-nearest neighbors 
(kNN), and random forests (RF). Various abiotic factors such as minimum and 
maximum temperature, rainfall, and morning and evening relative humidity were 
incorporated into the model as exogenous variables. The proposed algorithms 
were compared with fixed-weighted and unweighted ensemble methods, and 
candidate machine learning models, using the pest population data for yellow 
stem borer (YSB) from two regions of India. Error metrics include the root mean 
square log error (RMSLE), root relative square error (RRSE), and median absolute 
error (MDAE), along with the Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS) algorithm. This study concluded that the proposed dynamic 
ensemble algorithm demonstrated better predictive accuracy in forecasting YSB 
infestation in rice crops.
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1 Introduction

Agricultural pests in India pose a complex and significant threat to the country’s vital 
agricultural sector, which is the backbone of its economy and food supply. Improved crop 
production can be achieved by safeguarding crops from pests and increasing public awareness 
about the damage that pests can cause (1). Pests can cause extensive harm to crops, transmit 
dangerous plant diseases, and undermine crop productivity. In addition, temperature alterations 
impact the growth rates of various insect species. As global temperatures rise, agricultural losses 
due to insect pests are expected to increase by 10 to 25% for each degree of warming (2). Farmers 
have traditionally relied on pesticides and chemical treatments to get rid of pests. However, the 
widespread use of chemical pesticides also raises environmental and health concerns (3). 
Effectively addressing these agricultural pest challenges in India necessitates a comprehensive 
strategy that includes integrated pest management, sustainable farming practices, and increased 
investment in research and education, all of which are crucial for safeguarding crops and ensuring 
food security for the country’s ever-growing population. As agricultural practices shift toward 
advanced pest management, there is a growing need for innovative tools to reduce the uncertainties 
involved in estimating the levels of insect pest infestations in crop fields (4). To effectively address 
this challenge, integrated pest management strategies are essential. Regular monitoring, early 
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detection, and appropriate control measures are crucial to minimize the 
damage caused by pests and ensure healthy, productive crop production.

Forecasting pest populations holds significant importance in 
agriculture and pest management for various compelling reasons. 
Early detection of potential pest outbreaks allows for proactive 
measures to safeguard crops, ultimately preventing substantial 
economic losses and ensuring a consistent food supply. In addition, it 
promotes sustainable agricultural practices by reducing reliance on 
chemical pesticides through accurate forecasting. This approach 
encourages the use of eco-friendly practices such as biological control 
and integrated pest management, which are beneficial to soil health 
and the overall ecosystem. Pest population forecasting serves as an 
indispensable tool for regulatory agencies and policymakers. It 
facilitates efficient resource allocation, enables quick responses to 
emerging pest threats, and aids in the development of policies and 
regulations that ensure agricultural productivity and food security.

2 Related work

Many researchers have proposed models for predicting pest 
populations and have compared them with other popular forecasting 
models. Li et al. (5) proposed a forecasting model for the vegetable 
pest flea beetle using the maximum likelihood algorithm. To develop 
effective pest management strategies for specific agricultural 
ecosystems, it is essential to gather information on the abundance 
and distribution of pests in relation to weather conditions (6). Arya 
et al. (7) used the autoregressive integrated moving average with 
exogenous variables (ARIMAX) model to predict pest populations 
using weather covariates in India. Paul et al. (8) applied statistical 
models to predict sterility mosaic disease in pigeon pea in Gujarat, 
India. Liu et al. (9) developed a monitoring and forecasting system 
for pest control based on a deep learning algorithm. Anwar et al. (1) 
developed a mathematical model to promote farmer awareness in 
crop pest management. Neta et al. (10) developed a temperature-
dependent population dynamics model for the global insect pest 
Bemisia tabaci and verified its accuracy under field conditions.

Some recent studies have incorporated machine learning (ML) 
techniques to predict pest populations. Lankin-Vega et  al. (11) 
proposed an ensemble model using artificial neural networks (ANNs) 
to predict the population of Rhopalosiphum padi (L.). Yan et al. (12) 
employed multiple regression (MR) and ANN modeling approaches to 
predict pest risks in crops. Paul et al. (13) predicted early blight severity 
in tomatoes using machine learning techniques. Skawsang et al. (14) 
applied ANN, random forests (RF), and MR analyses to predict the 
brown planthopper population using abiotic factors and host-plant 
phenology during the dry farming season from 2006 to 2016 in the 
Central Plains of Thailand. Paul et al. (15) developed an ML-based 
hybrid model for forecasting sterility mosaic disease in pigeon pea. 
Marković et  al. (16) proposed an ML model to forecast the daily 
appearance of insects during a season, considering abiotic factors such 
as air temperature and relative humidity. Ibrahim et al. (17) applied a 
fuzzy neural network (FNN) model to predict the population of fruit 
flies in avocado crops. Paul et al. (18) developed a wavelet-based ML 
model for predicting the occurrence of spiders in pigeon pea. Sidumo 
et al. (19) suggested that the support vector machine (SVM) performs 
better than other machine learning models, such as RF, k-nearest 
neighbors (kNN), and ANN, in reducing over dispersion in count data. 

Predictions from ensemble methods, which are generated by 
combining multiple models, have gained popularity as they tend to 
provide more efficient forecasts compared to individual models. Galicia 
et al. (20) proposed ensemble learning for predicting time-series data 
and investigated two strategies for updating the weights: dynamic and 
static ensembles. The dynamic ensemble emerged as the better-
performing model. Sharma et  al. (21) proposed a bagging-based 
ensemble model for forecasting the number of incidences of disease 
based on past records. Abdelhamid and Alotaibi (22) proposed a 
two-level ensemble model, where the first level includes RF, support 
vector regression (SVR), and light gradient boosting algorithms, and 
the second level is based on the elastic net regression model. Du et al. 
(23) proposed a dynamic ensemble model based on Bayesian 
optimization, which provides a forecast combination for a time series 
with time-varying underlying patterns. Gangula et al. (24) implemented 
ensemble ML techniques within hybrid integrations to identify factors 
linked to the transmission of dengue fever, leading to enhanced 
performance outcomes. Sun et al. (25) and Jiang et al. (26) are some of 
the recent studies based on ensemble algorithms in different fields of 
time series forecasting. Dynamic ensemble methods involve the 
practice of allocating varying weights to candidate models within the 
ensemble. In such a scheme, the weights assigned to the base models 
can fluctuate either over time or according to specific conditions, 
overcoming the limitation of a fixed-weighted ensemble method. In 
fixed-weighted ensemble methods, the weights assigned to different 
candidate models are distinct but remain fixed.

The main objective of the present study is to utilize a time-
dependent weighting scheme to ensemble forecasts obtained from 
machine learning models, such as ANN, SVR, kNN, and RF, using 
information available on exogenous weather factors for the 
prediction of pest populations. The weekly population of the yellow 
stem borer (YSB) pest, along with climatic factors affecting rice 
crops in Rajendranagar, Hyderabad, and Marteru, Andhra Pradesh, 
India, has been analyzed. The predictive accuracies of this approach 
were evaluated against candidate benchmark models, the 
unweighted ensemble method, and the weighted ensemble method, 
to forecast the data under consideration.

3 Methods

This study predicted pest populations based on historical data and 
abiotic factors. Pest population data are generally count data that exhibit 
over dispersion characteristics. In this section, popular machine 
learning models used as candidate models in the ensemble approach are 
briefly discussed.

3.1 Candidate model

3.1.1 Artificial neural network (ANN)
An artificial neural network (ANN) is a mathematical model 

inspired by the human brain, designed to tackle complex problems in 
scientific research and engineering applications. The fundamental 
building block of an ANN is the neuron, and these neurons are 
structured into three different layers: the input layer, the hidden layer, 
and the output layer. The input layer represents the input parameters, 
the output layer corresponds to the predicted outcomes, and the 
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hidden layer serves as an artificial layer that captures non-linear 
relationships. In this study, we considered an ANN with an exogenous 
variable model, i.e., the ANN-X model (Figure 1), which includes a 
time series sequence from yt-1 to yt-n, with n, the number of lags, and 
abiotic factors, such as maximum temperature (Tmax), minimum 
temperature (Tmin), relative humidity-morning (RHM), relative 
humidity-evening (RHE), and rainfall (RF), as inputs.

To model a time series using an ANN with an exogenous variable, 
a non-linear function (f) is created, that operates on a sequence of 
values (yt) from yt-1 to yt-n, where n is the number of lags and x1, x2, … 
xq denote the abiotic factors.
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In Equation 1, wij, gkj, and wj represent the weights, while h, n, and 
et represent the number of hidden nodes, the number of input nodes, 
and the error term, respectively. The activation function for the hidden 
layers in an ANN model can take various forms, such as sigmoid, RLU, 
and tanh. The application of an ANN is well-known in disease and 
epidemic prediction. Niazkar and Niazkar (35) used an ANN for the 
prediction of the COVID-19 outbreak.

3.1.2 K-nearest neighbors (kNN)
The kNN algorithm is a non-parametric technique that retains all 

available data points and makes predictions for numerical targets by 
assessing similarity, often using distance metrics. In kNN regression, 
a basic implementation involves computing the mean of the numerical 
targets from the k nearest neighbors. Alternatively, another approach 
utilizes a weighted average based on the inverse distance of kNN. kNN 
regression applies distance functions such as Euclidean, Manhattan, 
and Minkowski. For example, de Oliveira Aparecido et al. (27) used 
kNN to predict the incidence of pests in Coffea arabica.

The kNN model is given in Equation 2:

 
Output f ukNN = ( )  

(2)

where u contains exogenous variables (abiotic factors) and a 
sequence of a time series from yt-1 to yt-n, and n is the number of lags.

3.1.3 Support vector regression (SVR)
SVR can effectively address non-linear associations between input 

variables and the target variable by applying a kernel function to 
relocate the data into a higher-dimensional space. This feature 
enhances its suitability for regression tasks involving intricate 
relationships between input variables and the target variable.

The SVR-X model can be formulated as follows:

 
f u z u b( ) = ∅( )+  

(3)

where u contains abiotic factors and a sequence of a time series 
from yt-1 to yt-n, and n is the number of lags. The estimated function of 
the dataset, i.e., f u( )  in Equation 3, is the output of the model. The 
process involves applying a kernel function ∅ ⋅( )  to relocate 
non-linear data to a higher-dimensional feature space, treating this 
transformed data as if it were linear, and then computing a dot product 
with a weight vector, represented as ‘z.’ This dot product is combined 
with a bias term ‘b’ to produce the final estimation. Figure 2 shows the 
architecture of SVR-X with abiotic factors and lags as inputs.

Thus, the SVR model can be formulated as follows:

 
f u z f u u u bi i

i
i, , , ,( ) = ( ) = −( )∅( ) +∗ ∗∑α α α α

 
(4)

where,∅ ⋅( )  is the kernel function. The RBF kernel is the most 
commonly used kernel in SVR model building (28–30). The RBF 
kernel is presented in Equation 5.

FIGURE 1

Architecture of the ANN-X model, with the lag value and abiotic factors as inputs.
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The hyper-parameters used in the model are tuned using the 
Lagrange method. The terms a a, ∗  mentioned in Equation 4 denote 
the Lagrange multipliers and should satisfy the following 
equality: a aj j

� � 0 .

3.1.4 Random forests (RF)
RF (31) is an ensemble learning method based on decision trees. 

Since its introduction, it has become one of the most popular 
algorithms in machine learning. Its widespread adoption is attributed 
to its ability to perform well in diverse applications, even in high-
dimensional settings. It is recognized for its computational efficiency 
and ease of tuning. In classification, a decision tree serves as a 
straightforward model, where internal nodes represent attribute tests, 
branches indicate test outcomes, and leaves contain class labels. 
Decision trees can also handle regression tasks when the target 
variable is continuous. RF employs a specific technique called 
bootstrap aggregation, or bagging, where each decision tree is trained 
on a randomly chosen subsample of the complete training dataset. 
Successful implementations can be found in various areas, including 
the prediction of time series data (32).

3.2 Ensemble methods for forecasting

Ensemble methods are a popular approach in forecasting, 
involving a combination of predictions from multiple individual 

models to improve the overall forecast accuracy and robustness. These 
methods leverage the idea that different models can capture different 
aspects of the underlying data patterns and, when combined, can 
provide more accurate and reliable forecasts. The predictions from 
multiple individual models are combined using weights.

The unweighted ensemble approach assigns equal weight to each 
candidate model. Here, suppose 

y1 , 
y2 , … yN  are the forecasted 

values obtained from N number of models. Then, the forecast from 
the unweighted ensemble method ( yuw ) is given in Equation 6.
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In the weighted ensemble approach, the weights of the candidate 
models vary but can be determined using an optimization algorithm. 
Therefore, the forecast from the weighted ensemble method ( y fw ) is 
given in Equation 7.
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where wi is the weight assigned to the ith candidate model such 

that wi
i

N

�
�

1
= 1. The weights are optimized using population-based 

optimization algorithms, such as particle swarm optimization (PSO). 
Population-based optimization algorithms, such as PSO, offer the 
benefit of concurrently exploring a wide range of potential solutions, 

FIGURE 2

Schematic diagram of SVR-X.
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enhancing the chances of discovering the global optimum while 
preventing entrapment in local optima (33).

A dynamic weighting scheme in an ensemble method involves the 
practice of allocating varying weights to candidate models. These 
weight adjustments are made in response to model performance or 
other factors. In such a scheme, the weights assigned to the base 
models can fluctuate either over time or based on specific conditions.

3.2.1 Time-dependent dynamic ensemble model
Deb and Deb (34) proposed the use of a time-dependent 

weighting scheme based on an error function for generating 
predictions using an ensemble approach. In this study, the forecasts 
obtained from the different machine learning techniques were 
ensembled using the time-dependent weighting scheme (Figure 3). 
One of the advantages of using a time-dependent dynamic weighting 
scheme is that the weights are adjusted at each point of time. Let yt

1� �

, yt
2� �  … yt

j� �  represent the values of the output obtained by model 
(1), model (2) … model (j), i.e., j candidate models at time t. As the 
dataset is divided into a training set (A) and a testing set (B), yt

1� � , 
yt

2� �  … yt
j� �  are the fitted values of the j candidate models at time t, 

where t∊ A, and A represent the training set.

yt �
� �1 , yt �

� �2 … yt
j
�
� �  represent the predicted values from the j 

candidate models at time ′t , where t ′ ∊ B, and B represent the 
prediction set. wt

i� �  is the forecasted weight obtained for the ith 

candidate model at time t  such that wt
i

i

j � �

�
� �

1
1 .

The weighted ensemble approach to predict yt ′ , t ′ ∊ B is given in 
Equation 8.
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The weights of the time-dependent weighting scheme are 
determined by
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In Equation 9, Et
i� �  is the error obtained for the ith model at time 

t, such that wt
i

i

j � �

�
� �

1
1 .

Therefore, at each point of time in the training set, the weights 
assigned to each method are determined based on an inverse 
relationship with the error function. The logistic error function and 
the absolute log error (ALE) function are used to obtain the weights.

The expression for the logistic error function is given in Equation 10.
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(10)

The expression for the absolute log error function is given in 
Equation 11.

FIGURE 3

Flowchart of the time-dependent weighting scheme ensemble forecasting approach.
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The matrix of the weights W  obtained for t ∊ A can be treated as 
a multivariate time series since the sum of all weights is equal to 1, 
which shows that the weight components are interdependent among 
each other.
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A matrix with independent columns W� � �� �� � � � �� �w w w j1 2 1, ,
is constructed from W  by deleting the column corresponding to the 
jth model to obtain an estimate of the weight. For t ′ ∊ B, the weights 
are forecasted by fitting a vector autoregressive (VAR) model to the 
multivariate time series W∗ . The forecasts of the weights obtained 
from the VAR model, corresponding to (j-1) number of models, are 
arranged in the matrix 



W∗  so that the ith column represents the 
forecasted weights corresponding to the ith candidate model. Thus, 
the weight matrix 



W∗  for the h-step ahead forecast obtained from the 
VAR model is defined as
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1
. The weight matrix 



W , 

containing the weights corresponding to all j candidate models, is 
obtained by augmenting 



W∗  with w j� �  as 



   W � �� �� � � � �� � � � �
w w w wj j1 2 1, , , . The kth row of the matrix 



W  

contains the forecasted weights corresponding to the kth 
candidate model.

Consider 


  Y � �� �� � � � � �y y y j1 2, , , where y i� �  is the vector of the 
forecasted value obtained from the ith candidate model. Then, the 
dynamic weighted ensemble forecast 

ydw  is given by Equation 12, 
which is obtained from the multiplication of the matrix 



W  and 


Y . 
Therefore, the dynamic forecast can be computed using Equation 12.

 


 

ydw � �W Y  (12)

3.3 Performance measures

Accuracy metrics, such as the root mean square log error 
(RMSLE), root relative square error (RRSE), and median absolute 
error (MDAE), were used to compare the performance of the 
proposed dynamic ensemble model with the candidate models, the 
unweighted ensemble model, and the fixed-weighted ensemble model. 
The values of the RMSLE, RRSE, and MDAE for the ith model are 
given by the expressions mentioned in Equations 13–15, respectively.

Root Mean Squared Logarithmic Error (RMSLE)
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Root Relative Square Error (RRSE).
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Median Absolute Error (MDAE).
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(15)

where yt  is the actual value at time t, and yt
i� �  is the forecasted 

value from the ith model at time t. y  is the mean of the actual value, 
and N is the total number of observations.

4 Results and discussion

4.1 Data description and preprocessing

The weekly population (Y) of the yellow stem borer (YSB), 
Scirpophaga incertulas, in rice, along with climatic factors, including 
maximum temperature (Tmax), minimum temperature (Tmin), 
relative humidity-morning (RHM), relative humidity-evening (RHE), 
and rainfall (RF) in Rajendranagar, Hyderabad, and Marteru, Andhra 
Pradesh, India, were obtained from the Croppest DSS portal of the 
Central Research Institute for Dryland Agriculture, India.1 The data 
ranged from 2007 to 2011 for Rajendranagar and from 2000 to 2011 
for Marteru. Each year comprised 52 standard meteorological weeks 
(SMWs). The rationale behind the selection of the YSB pest was that 
it is a major pest of rice and has a widespread, devastating impact on 
the income of rice farmers. This pest affects rice plants at multiple 
growth stages, particularly during the vegetative and reproductive 
phases, causing significant yield losses. The descriptive statistics, 
kernel density, and box plots of the data under consideration are 
presented in Tables 1, 2 and Figure 4, respectively.

From Tables 1, 2, it can be observed that the mean of the pest 
populations exceeded the variance, indicating a characteristic of a 

1 http://www.icar-crida.res.in:8080/naip/index.jsp
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negative binomial distribution. Furthermore, the average pest 
population in Marteru was higher than that in Rajendranagar. Both 
pest datasets were positively skewed and leptokurtic in nature. 
Notably, the coefficient of variation (CV) for both datasets exceeded 
100%, signifying a high degree of variation. Marteru data exhibited 
greater variability compared to the Rajendranagar data. The Jarque–
Bera test was implemented to check the normality of the datasets, and 
it was found that all the data series were non-normal in nature. The 
stationarity of the data was examined using the augmented Dickey–
Fuller (ADF) test. The ADF test inferred that, except for the RHE from 
Rajendranagar, all the data series followed the stationarity assumption. 

The results of the Teraesvirta neural network test suggested that, 
except for the RHM from Marteru, all the data series were non-linear. 
The insights from the descriptive statistics are further substantiated by 
Figure 2.

The Spearman’s correlation of the pest populations with all the 
abiotic factors was computed and is presented in Table 3. Figure 5 
represents the cross-correlation analysis of both regions. The 
correlation at lag k estimates the relationship between the pest 
population at time t + k and the climatic factors at time t. The 
correlation in Figure 5 clearly shows that the climatic factors had a 
significant effect on the incidence of the pest populations at different 

TABLE 1 Descriptive statistics of the pest population and climatic data from Rajendranagar.

Statistic Pest population Tmax (°C) Tmin (°C) RHM (%) RHE (%) RF (mm)

Mean 87.654 32.559 20.169 79.776 46.952 15.435

SD 114.691 3.777 4.558 11.356 18.497 28.918

Median 44.000 31.450 21.750 82.700 42.400 0.850

Minimum 0.000 26.300 7.000 30.900 15.600 0.000

Maximum 641.000 41.400 27.900 95.400 89.100 188.800

Skewness 2.155 0.690 −0.569 −1.299 0.329 2.651

Kurtosis 5.188 −0.616 −0.645 1.852 −1.063 8.212

SE (Mean) 7.113 0.234 0.283 0.704 1.147 1.793

CV 130.845 11.599 22.600 14.236 39.396 187.352

JB test 502.388 (<0.01) 24.745 (<0.01) 18.448 (<0.01) 112.628 (<0.01) 16.636 (<0.01) 1054.182 (<0.01)

ADF test −5.796 (0.010) −4.033 (0.010) −3.489 (0.044) −3.529 (0.040) −2.954 (0.174) −4.037 (0.010)

TV test 45.171 (<0.01) 17.441 (<0.01) 9.125 (<0.01) 11.397 (<0.01) 7.192 (0.27) 9.644 (<0.01)

SD, Standard deviation; CV, Coefficient of variation; JB, Jarque–Bera; ADF, augmented Dickey–Fuller; TV, Teraesvirta. The values in parentheses denote the p-values.

TABLE 2 Descriptive statistics of the pest population and climatic data from Marteru.

Statistic Pest population Tmax (°C) Tmin (°C) RHM (%) RHE (%) RF (mm)

Mean 1463.657 31.019 22.810 88.432 64.745 17.126

SD 2737.829 4.146 2.951 4.324 12.823 34.753

Median 390.000 30.600 23.200 89.000 65.700 0.000

Minimum 0.000 23.700 15.900 69.700 24.700 0.000

Maximum 19677.000 71.600 29.700 97.600 95.100 286.400

Skewness 3.403 4.627 −0.299 −1.025 −0.478 2.913

Kurtosis 13.888 37.794 −0.725 1.725 0.135 11.181

SE (Mean) 109.601 0.166 0.118 0.173 0.513 1.391

CV 187.054 13.366 12.936 4.889 19.805 202.922

JB test 6264.617 (<0.01) 39633.01 (<0.01) 22.736 (<0.01) 188.573 (<0.01) 24.374 (<0.01) 4163.524 (<0.01)

ADF test −7.579 (<0.01) −5.754 (<0.01) −6.583 (<0.01) −6.171 (<0.01) −5.921 (<0.01) −5.315 (<0.01)

TV test 9.466 (<0.01) 109.649 (<0.01) 28.368 (<0.01) 1.178 (0.555) 3.912 (0.141) 39.729 (<0.01)

SD, Standard deviation; CV, Coefficient of variation; JB, Jarque–Bera; ADF, augmented Dickey–Fuller; TV, Teraesvirta. The values in parentheses denote the p-values.

TABLE 3 Correlation value between the pest population and abiotic factors.

Regions Tmax Tmin RHM RHE RF

Rajendranagar 0.383*** 0.172** −0.2675*** −0.2279*** −0.1375*

Marteru 0.1772*** 0.0678 −0.1884*** −0.2887*** −0.1376**

‘*’, ‘**’ and ‘***’ indicate 5%, 1% and 0.1% level of significance respectively.
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lags. For the Rajendranagar region, Tmax, Tmin, RHM, and RHE had 
significant leading and lagging effects, and RF had significant lagging 
effects on the pest population. For the Marteru region, Tmax, Tmin, 
RHM, RHE, and RF had significant leading and lagging effects on the 
pest population.

Table  3 shows the significant association between the pest 
populations and abiotic factors. The pest populations had a positive 
correlation with maximum and minimum temperature and a negative 
correlation with RHM, RHE, and rainfall.

4.2 Implementation of machine learning 
models

The weekly pest population data were divided into training and 
test sets in an 80:20 ratio. For Marteru, the training set comprised the 
first 499 observations for model building, leaving the remaining 126 
observations for model validation. Similarly, for Rajendranagar, the 
training set included the initial 260 observations for model building, 
while the remaining 52 observations were reserved for model 
validation. Four machine learning models—ANN, SVR, kNN, and 
RF—were employed to model the weekly pest population count, 

utilizing information on abiotic factors. The 12 SMWs were considered 
the number of lags. Hyperparameter optimization is a crucial step in 
building machine learning models. The grid search method was used 
to optimize the hyperparameters systematically. This algorithm 
explores a predefined range of hyperparameter values for a given 
model. The hyperparameter set that yielded the highest performance 
was selected and is presented in Table 4.

In the class of ensemble models, unweighted, fixed-weighted, and 
dynamic-weighted ensemble models were implemented, as outlined 
in the methodology. In the fixed-weighted ensemble methods, the 
weights were optimized using population-based optimization 
algorithms, such as PSO, and the results are detailed in Table 5. The 
values of the weights for the fixed-weighted ensemble methods 
showed that, for the Rajendranagar region, the highest weightage was 
given to the ANN (0.441), whereas the lowest weightage was given to 
the RF (0.111). For the Marteru region, the highest weightage was 
given to the kNN (0.509), whereas the lowest weightage was given to 
the ANN (0.089). These variations in the performance of the models 
for both regions suggest that no single model can perform better in all 
the cases. As for the optimized weights, the ANN was given more 
importance in the Rajendranagar region but less weightage in the 
Marteru region among all the candidate models. These differences also 
support the use of ensemble models for prediction rather than relying 

FIGURE 4

Kernel density (A) Rajendranagar; (B): Marteru and box plot (C): Rajendranagar; (D) Marteru of the pest populations.
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Pest and Tmax Pest and Tmin Pest and RHM

Pest and RHE Pest and RF

b)

a)

Pest and Tmax Pest and Tmin Pest and RHM

Pest and RHE Pest and RF

FIGURE 5

Cross-correlation analysis (A) Rajendranagar; (B) Marteru.

TABLE 4 Hyperparameter specification for the machine learning models.

Model Parameters Rajendranagar Marteru

ANN

Model (Input-Hidden-Output) 9–6-1 9–9-1

Sigma 21.29 17.33

Learning rate 0.001 0.003

SVR
Cost 0.50 0.25

Kernel Radial Basis Radial Basis

kNN
K 7 9

Distance 2 2

RF mtry 3 5
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on a single model. Performance measures based on the testing data 
were calculated and are presented in Table 6.

According to Table 6, in the Rajendranagar region, the dynamic-
weighted ensemble model outperformed all other models across all 
three performance measures. Within the dynamic ensemble models, 
the model utilizing the error function RRSE exhibited superior 
performance. Both the fixed-effect and weighted ensemble models 
outperformed the other machine-learning models. Between the 

fixed-effect and weighted ensemble models, except for the RRSE, the 
weighted ensemble models proved to be superior based on the other 
two measures.

For the Marteru region, the DWE-ALE outperformed the others 
based on the RRSE and RMSLE, while the DWE-logistics excelled in 
terms of MDAE. However, the fixed-weighted ensemble models 
performed better than the DWE-logistics model based on the RRSE 
and RMSLE. Although the proposed model performed better than the 

TABLE 5 Optimized weight obtained for the ML model in the fixed-weighted ensemble model.

Datasets ANN SVR kNN RF

Rajendranagar 0.441 0.264 0.184 0.111

Marteru 0.089 0.111 0.509 0.291

TABLE 6 Performance measures of the implemented models.

Models Rajendranagar Marteru

RRSE MDAE RMSLE RRSE MDAE RMSLE

DWE-ALE 0.917 32.104 2.049 1.275 1251.066 2.527

DWE-Logistic 0.932 34.042 2.104 1.285 1250.814 2.537

FWE 1.007 37.077 2.127 1.281 1273.488 2.531

UWE 0.999 37.875 2.143 1.326 1280.185 2.538

SVR 1.112 40.413 2.145 1.387 1287.615 2.730

RF 1.100 42.970 2.167 1.611 1371.059 2.584

kNN 1.105 43.019 2.188 2.137 1537.189 2.788

ANN 1.123 38.464 2.358 1.570 2350.742 2.754

UWE, Unweighted ensemble; FWE, Fixed weighted ensemble; DWE-ALE, Dynamic weighted ensemble using absolute log error; DWE-logistic, Dynamic weighted ensemble using logistic 
error function.

FIGURE 6

Combined TOPSIS scores of all implemented models.
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other models in the data having extreme variation, the Technique for 
Order Preference by Similarity to Ideal Solution (TOPSIS) was 
employed to identify the best model among all implemented models 
across both datasets and three measures. The rankings and TOPSIS 
scores are presented in Figure 6.

Figure  6 clearly illustrates that the dynamic ensemble model 
outperformed the other models, and among the dynamic models, the 
DWE-ALE model exhibited superior performance. Following the 
dynamic models, the fixed-effect ensemble model performed better 
than the unweighted ensemble model. Among the machine learning 
models, the SVR model, followed by the RF model, demonstrated high 

prediction accuracy, while the ANN model ranked lower in the 
TOPSIS score. The actual and fitted values of the best model, the 
DWE-ALE, are depicted in Figure 7.

5 Conclusion

The development of a pest forewarning system remains a 
significant challenge for farmers and policymakers. This study 
provides a detailed overview of an ensemble model with a time-
dependent weighting scheme and introduces a time-varying 

FIGURE 7

Plot of the actual and predicted values of the best-fitted models for (A) Rajendranagar and (B) Marteru.
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dynamic ensemble approach with ALE and logistic error 
functions using four candidate models, namely ANN, SVR, kNN, 
and RF, for pest infestation modeling. Abiotic factors, such as 
minimum and maximum temperature, rainfall, and morning and 
evening relative humidity, were also considered in the model. 
This study found that the YSB population of rice had a positive 
correlation with maximum and minimum temperature and a 
negative correlation with RHM, RHE, and rainfall. The proposed 
algorithms were empirically compared with fixed-weighted and 
unweighted ensemble methods, as well as all four candidate 
models, using three performance metrics and the TOPSIS 
algorithm. The dynamic ensemble algorithm demonstrated 
higher predictive accuracy in predicting the YSB in rice crops in 
both regions. These algorithms showed promise for 
implementation in pest risk warning systems, aligning well with 
observed trends in actual field data for pests. Consequently, 
farmers can proactively manage pests using the predictive 
insights provided by our proposed model. This study on dynamic 
ensemble models paves the way for a new era of hybrid models. 
In future studies, this model can be further examined using other 
pest populations from various crops. This model can also 
be improved by incorporating other error functions and advanced 
multivariate learning models for weight forecasting.
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