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The main purpose of this paper is to introduce a new alpha power transformed

beta probability distribution that reveals interesting properties. The studuy

provide a comprehensive explanation of the statistical characteristics of this

innovative model. Various properties of the new distribution were derived,

using the baseline beta distribution, statistical techniques, and probabilistic

axioms. These include the probability density, cumulative distribution, survival

function, hazard function, moments about the origin, moment generating

function, and order statistics. For parameter estimation, the maximum likelihood

estimation method using Newton Raphson numerical technique is employed.

To evaluate the performance of our estimation method, the mean squared

errors of the estimated parameters for di�erent simulated sample sizes are

used. In addition simulation studies of the new distribution are conducted to

demonstrate the behavior of the probability model. To demonstrate the practical

utility and flexibility of the alpha power transformed beta distribution, it is

fitted to two real-life datasets and compared to commonly known probability

distributions such as the Weibull, exponential Weibull, Beta, and Kumaraswamy

beta distributions. It o�ers a superior fit to the data considered. The distribution

reviales of the microbes reveald a wide range of shapes of probability density

functions and flexible hazard rates. The distribution is a new contribution to the

field of statistical and probability theory. The findings of the study can be used as

a basis for future research in the area of statistical science and health.

KEYWORDS

alpha power transformation, APT beta, beta probability distrubtion, parameter

estimation, probability distribution, simulation, statistics

1 Introduction

The beta distribution is a versatile tool in statistical modeling, known for its flexibility

in reflecting various phenomena. It is defined by shape parameters a and b, ideal for

modeling values between 0 and 1 like probabilities and proportions [1]. This distribution

is valuable in reliability analysis of engineering systems, lifetime analysis and quality

control in manufacturing [31]. In Bayesian statistics, the beta distribution is the conjugate

prior for event probabilities in binomial processes [2, 3]. Scholars have parametrized it in

different ways for effective modeling. The beta distribution is versatile, modeling various

uncertainties with characteristics like unimodal or uniantimodal shapes, depending on

shape parameters [2, 4].

The two-parameter beta distribution is not recommended for accurate

data fitting [31], prompting the need for more adaptable forms to
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comprehensively represent data [5]. Expanding classic

distributions, especially for lifetime data analysis, is essential

[5]. Recent advancements in distribution theory, introducing

additional parameters, have enhanced flexibility in modeling

positive fraction numbers between zero and one [5]. Adding an

extra parameter improves data fitting accuracy and reliability

in statistical models [35], with approaches including modifying

existing generators [5, 30] or developing new techniques for more

extensive modifications [5, 30].

Researchers have introduced various exponentiated

distributions, such as those by Gupta et al. [32] and Marshall

and Olkin [30]. Different techniques, like the T-X class by

Aljarrah et al. [6] and models using the logit function by

Al-Aqtash et al. [7], have been proposed. Cordeiro et al. [8]

introduced a new family using the quantile function of the

generalized lambda distribution. The Muth-G distribution was

proposed by Almarashi and Elgarhy [9], and Khalil et al. [35])

introduced the modified Frechet distribution for new continuous

probability distributions.

Recently, Mahdavi and Kundu [10] developed a method for

proposing a new probability distribution which is referred to as the

alpha power transformation (APT) of the base distribution. Given

the base cumulative distribution function G(x) and probability

density function g(x) of the random variable X, the new

commulative density function (CDF) and the corresponding

probability density function (PDF) of the transformed random

variable Y can be expressed as follows:

G
(

y;α
)

=

{

α F(y) − 1
α − 1 if α > 0, α 6= 1

F
(

y
)

else if α = 1
(1)

g(y;α) =

{

ln(α)
α−1 α

F(y) f
(

y
)

if α > 0, α 6= 1

f
(

y
)

else if α = 1
(2)

Researchers have introduced modifications like the

three-parameter model by Chotikapanich et al. [11] and

the four-parameter generalized beta model by Ng et al. [2]

to enhance its applicability in data fitting. McDonald and

Richards [12] and Libby and Novick [13] have also proposed

alternative parameterizations of the beta distribution. Exton

[33] introduced a generalized beta distribution with (2n +

2) parameters.

This study introduces the APT_beta distribution, a new

generalization of the beta distribution using the alpha power

transformation method. By addressing limitations of existing

distributions, it enhances flexibility in data fitting with an

additional parameter and relies on standard distribution’s

cumulative distribution for effectiveness [10, 36].

2 The alpha power transformation of
the beta distribution

The base beta distribution of random variable X we want

to consider has two parameters a, b > 0 and assumes values

between 0 and 1 and has a probability density function (PDF) and

commulative density function (CDF) respectively given by:

f (x; a, b) =
1

B(a, b)
xa−1 (1− x)b−1 (3)

F(x; a, b) =
1

B(a, b)

∫ x

0
ta−1(1− t)b−1dt (4a)

Note that the beta distribution function F(x; a, b) has

alternative representations that are suitable for computations as

well. The commulative density function (CDF) is related to the beta

function B(.), gamma function Ŵ(.), incomplete beta function By(.),

and incomplete beta function ratio Iy (.) as follows:

B
(

a, b
)

=

∫ 1

0
(1− t)b−1 ta−1dt =

Ŵ (a) Ŵ(b)

Ŵ(a+ b)

Bx(a, b) =

∫ x

0
ta−1(1− t)b−1dt, Ix

(

a, b
)

=
Bx
(

a, b
)

B
(

a, b
)

F
(

x; a, b
)

=
1

B
(

a, b
)

∫ x

0
ta−1 (1− t)b−1 dt

=
Bx
(

a, b
)

B
(

a, b
) = Ix

(

a, b
)

(4b)

The beta CDF can also be represented by using the Gauss

hypergeometric function 2F1(.) as:

F
(

x; a, b
)

= ya 2F1
(

a, 1− b, 1+ a, x
)

/a B(a, b) (4c)

where the Gauss hypergeometric function defined in Rainville

[37] as follows:

2F1
(

a, 1− b, 1+ a, x
)

=
(a)n

(

1− b
)

n
xn

(1+ a)n n!
, |x| < 1

A new random variable Y is generated by the alpha power

transformation of the base beta distribution in Equations 3, 4 and it

has a cumulative distribution function FAPT
(

y; a, b,α
)

and density

function fAPT
(

y; a, b,α
)

given in Equations 5, 6. We call this the

alpha power transformed beta (APT_Beta) distribution.

Definition: The cumulative distribution and density functions

of the alpha power transformed beta (APT_Beta) distribution of the

trandformed random variable Y based on Equations 1, 2 by 10 are

given by:

FAPT
(

y; a, b,α
)

=
α

1
B(a,b)

∫ y
0 ta−1(1 − t)b − 1dt

− 1

α − 1
(5)

fAPT
(

y; a, b,α
)

=
ln (α) αIy(a, b)y(a − 1)

(

1− y
)(b − 1)

(α − 1) B
(

a, b
) (6)

where 0 < y < 1 , a > 0, b > 0, and ,α > 0, α 6= 1.

Iy
(

a, b
)

= 1
B(a,b)

∫ y
0 ta−1(1 − t)b − 1dt is an incomplete beta

function ratio, and B
(

a, b
)

=
∫ 1
0 ta−1 (1− t)

b−1
dt is the beta

function. When α = 1 the APT_Beta distribution assumes the base

CDF and PDF in Equations 3, 4.
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Note that an alternative representation of the new CDF in

Equation 5 and PDF in Equation 6 can be represented using the

Gauss hypergeometric function. The new CDF can be represented

using the Gauss hypergeometric function as follows:

FAPT
(

y; a, b,α
)

=
(α)

ya2F1(a,1−b, 1+α, y)
aB(a,b)

(α − 1)
(7)

The PDF of the APT_Beta distribution can be expressed

interms of the Gaussian hypergeometric function from Wolfram

computation as follows:

fAPT
(

y; a, b,α
)

=
ln (α) (α)

ya2F1(a,1−b, 1+α, y)
aB(a,b)

(

1− y
)b−1

ya−1

(α − 1)B
(

a, b
) (8)

3 Plots of the APT_Beta probability
distribution

The probability density function (PDF), cumulative density

function (CDF), survival and hazard rate function plots for the

APT_Beta distribution are given in list of figures in Appendix

specifically in Figures 1–3, Supplementary Figure 3 respectively, for

several different parameter values.

The density function has increasing, decreasing, left-skewed,

right-skewed, J- shaped, U- shaped and approximately symmetric

shapes, as shown in Figure 1. Our model’s advantage is that it

provides a wide range of shapes without requiring any additional

parameters in its formulation. The new distribution provides more

flexible shapes (see color plots) than does the base beta distribution

(see black dotted plot) in the above density function plots at several

values of a, b, and α. Especially the last three plots of Figure 1 shows

that complete flexibility of the new distribution.

3.1 Plots of cumulative function of
APT_Beta

The cumulative function plot in Figure 2 shows a twisted

increasing graph that represents the cumulative distribution.

4 Special cases of APT-Beta
distribution

Case 1: If we consider the random variable Y, which follows

the APT_Beta distribution with parameters a = 1 and b = 1, and a

new parameter α 6= 1, then the resulting distribution in Equation 6

exhibits the properties of an exponential function with a constant α

as follows

fAPT
(

y; a = 1, b = 1,α
)

=
ln(α)

α − 1
αy;

a = 1, b = 1,α 6= 1,α > 0,
∣

∣y
∣

∣ < 1 (9)

Proof

consider α be any real number such that α > 0 and α 6= 1, then

for any real number Y, a function of the form f(y)= αy is called an

exponential function [14].

fAPT
(

y; a = 1, b = 1,α
)

=
ln(α)

α − 1

(

αIY(a = 1,b = 1)
)

1

B(a = 1, b = 1)
ya−1(1− y)b−1;α 6= 1, |y| < 1

fAPT
(

y; a = 1, b = 1,α
)

=
ln(α)

α − 1
αy

Case 2: Assume that the random variable Y has an APT_Beta

distribution with b = 1, a ∈(2, 3,. . . ..) and α > 0, α 6= 1 positive

integer number, then the APT_Beta distribution simplifies and is

defined as

fAPT
(

y; a, b = 1,α
)

=
a∗ ln(α)

α − 1

(

αy
a
)

ya−1;

(a,α > 0) , b = 1,α 6= 1,
∣

∣y
∣

∣ < 1 (10)

when α = 1 it is simplified to a polynomial function with |y| <

1 as follows

fAPT
(

y; a, b = 1,α = 1
)

= aya (11)

Proof

When α = 1, then the distribution becomes basic beta and b

= 1 provides the polynomial function expressed as f(y)= aya [15]

fAPT
(

y; a, b = 1, α = 1
)

=
1

B(a, b = 1)
ya−1 = aya

When the alpha value is different from one, the probability

density of the APT_Beta distribution is defined as follows

fAPT
(

y; a, b,α
)

=
ln(α)

α − 1

(

αIY(a,b = 1)
)

1

B(a, b = 1)
ya−1(1− y)1−1; if a 6= 1, b = 1,α 6= 1, |y| < 1

fAPT
(

y; a, b,α
)

=
ln(α)

α − 1

(

α
1

B(a, b = 1)

∫ y
0 xa−1dx

)

1

B(a, b = 1)
ya−1; if a 6= 1, b = 1,α 6= 1, |y| < 1

where B(a, b= 1)=
∫ 1
0 ya−1dy = 1/a and

∫ y
0 xa−1dx = ya/a

Therefore fAPT
(

y; a, b = 1,α
)

= a∗ln(α)
α−1 (αy) ya− 1

the proof is complete. The corresponding cumulative

function becomes

FAPT
(

y; a, b = 1,α 6= 1
)

=

∫ ∞

0

a∗ ln (α)

α − 1

(

αy
a
)

ya−1dy =
αy

a
− 1

α − 1

FAPT
(

y; a, b = 1,α 6= 1
)

=
αy

a
− 1

α − 1
;

a, α > 0, a 6= 1,α 6= 1,
∣

∣y
∣

∣ < 1

FAPT
(

y; a, b = 1,α = 1
)

=
aya+1

a+ 1

Case 3: For a random variable Y with a 6= 1, b 6= 1 and

α = 1, the distribution becomes a basic beta distribution as shown

in Equation 4.
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FIGURE 1

Plots of the APT_Beta density function for various values of parameters a, b, and α.

Case 4: Consider a random variable Y having the APT_Beta

distribution with exponent a as the whole number a =

(2, 3, 4, . . . .) and b = 1, then the Weibull G-family expression of

the APT_Beta distribution is [16]

FAPTWG(y)

=

{

(αy
n
− 1)/(α − αy

n
) ; ifα 6= 1, a, b,α > 0, 0 < y < 1

F(y;a,b,α)
1−F(y;a,b,α)

=
ya

1−ya =
yn

1−yn ; if α = 1, b = 1, α > 0,
∣

∣y
∣

∣ < 1

(12)

Proof

For any given continuous baseline distribution with

commulative distribution F(y), one can drive the Weibull-G

family distribution by F(y)/(1-F(y)) (Equation 16). Therefore the

APT_Beta Weibull-G family commulative becomes

ods ratio =
F
(

y; a, b,α
)

1− F
(

y; a, b,α
) =

1
B(a,b)

∫ y
0 xa−1 (1− x)b−1 dx

1− 1
B(a,b)

∫ y
0 xa−1 (1− x)b−1 dx

F
(

y; a, b,α
)

1− F
(

y; a, b,α
) =

ya

1− ya
=

yn

1− yn

and

FAPT
(

y; a, b, α
)

1− FAPT
(

y; a, b, α
) =

(α)

1
B(a,b)

∫ y
0 xa−1(1−x)b−1dx

−1
α−1

1− (α)
1

B(a,b)

∫ y
0 xa−1(1−x)b−1dx

−1
α−1

,

ifα 6= 1, a, b,α > 0, 0 < y < 1
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FIGURE 2

Cumulative distribution of APTB for various a, b, and alpha values.

=

(α)

1
B(a,b)

∫ y
0 xa−1(1−x)b−1dx

−1
α−1

α−(α)
1

B(a,b)

∫ y
0 xa−1(1−x)b−1dx

α−1

=
(α)

1
B(a,b)

∫ y
0 xa−1(1−x)b−1dx

− 1

α − (α)
1

B(a,b)

∫ y
0 xa−1(1−x)b−1dx

FAPT(y) = (αy
a
− 1)/(α − αy

a
) = (αy

n
− 1)/(α − αy

n
)

Case 5: The beta distribution is a conjugate prior distribution in

the Bayesian model for the binomial distribution (Christian P. 17).

Similarly if the random variable with success p = Y has a binomial

distribution, then the APT_Beta distribution is a conjugate prior

distribution for binomatically distributed events.

Bin(n,y)=

(

n

k

)

yk(1− y)n−k is the likelihood function of the

random variable.

APT_Beta(y; a, b,α) =
ln(α)

α − 1

(

αIY(a, b)
)

1

B(a, b)
ya−1(1− y)b−1;α 6= 1, |y| < 1

the prior distribution.

π
(

θ/y
)

∝

(

n

k

)

yk(1− y)n−k∗ ln(α)

α − 1

(

αIY(a, b)
)

1

B(a, b)
ya−1(1− y)b−1

π
(

θ/y
)

=

(

n

k

)

ln(α)

α − 1

(

αIY(a, b)
)

1

B(a, b)
ya+k−1(1− y)n−k+b−1 (13)

According to the Bayesian approach proposed by Robert [17],

this equation suggests that the posterior distribution resembles the

APT_Beta distribution. However, it possesses different parameter

values. Hence, the posterior distribution for θ can be regarded as

another APT_Beta distribution, characterized by the parameters

a+k and n-k+b. Notably, when a = 1 and b = 1, this posterior

distribution takes the form of an exponential function multiplied

by a binomial function.

Considering the b= 1, a 6= 1, a > 0, α = 1 case, the APT_Beta

posterior function becomes

π
(

θ/y
)

= a

n
∑

k=0

(

n

k

)

ya+k−1
(

1− y
)n−k

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2024.1433767
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Agegnehu et al. 10.3389/fams.2024.1433767

FIGURE 3

Hazard function plots for various values of the parameters a, b, and α.

and if the alpha value is different from one the APT_Beta posterior

distribution expressed as

(

θ/y
)

=

n
∑

k=1

(

n

k

)

ln (α)

α − 1

(

αIy(a, b)
) 1

B
(

a, b
) ya+k−1

(

1− y
)n−k+b−1

π
(

θ/y
)

= a

n
∑

k=1

(

n

k

)

ln(α)

α − 1

(

αy
a
)

ya+k−1(1− y)n−k

5 Derivation of survival and hazard
functions of the APT_Beta distribution

Let Y ≥ 0 denote the lifetime random variable having fy
(

y
)

and Fy
(

y
)

=
∫ y
0 fY (t)dt as probability density function (pdf) and

cdf, respectively. S(y) = 1-Fy
(

y
)

is defined as reliability or survival

function (sf) [5, 18]. It is obvious that S(y) is amonotone decreasing

function with S(0)= 1 and S(∞)= S(y)= 0.

The survivor function of the alpha power transformed beta

function can be derived using survival and hazard rate concepts

formulated by Lawless [18], Moore [19], and Gauss et al. [5]

as follows:

SAPT
(

y
)

= Prob
(

Y ≥ y
)

= 1− FAPT
(

y; a, b,α
)

= Prob((t,∞))

SAPT
(

y; a, b,α
)

= 1−







(α)
1

B(a,b)

∫ y
0 xa−1(1−x)b−1dx

− 1

α − 1







,

if α 6= 1, a > 0, b > 0,α > 0

(14)

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2024.1433767
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Agegnehu et al. 10.3389/fams.2024.1433767

For b = 1 the APT_Beta distribution has the following

corresponding survival function:

SAPT
(

y; a, b,α
)

= 1−

{

(α)y
a
− 1

α − 1

}

,

if α 6= 1, a > 0, b > 0,α > 0

SAPT
(

y; a, b,α
)

=

{

α − (α)Y
a

α − 1

}

,

if α 6= 1, a > 0, b > 0,α > 0

When α = 1, the survival function becomes

SAPT
(

y; a, b,α
)

= 1− a

∫ Y

0
xa−1dx, if α = 1, b > 0, a > 0, α > 0

SAPT
(

y; a, b,α
)

= 1− ya

Because 1
B(a,b)

∫ y
0 xa−1(1− x)b−1dx =

1
∫ 1
0 Ya−1

∫ y
0 xa−1dx =

ya

a

∗
a = ya

The corresponding hazard rate function based on Equation 4

hAPT(y; a, b,α) =
fAPT(y; a, b,α)

SAPT
(

y; a, b,α
)

=

ln(α)
α−1

(

αIY (a,b)
)

1
B(a,b) y

a−1(1− y)b−1

α−(α)IY (a,b)

α−1

,

if α 6= 1, a, b,α > 0

hAPT
(

y; a, b,α
)

=
lnα

α − αIY(a, b)

(

αIY(a, b)
)

1

B
(

a, b
) ya−1

(

1− y
)b−1

, if α 6= 1, a, b, α > 0

=
ln(α)

α − (α)IY (a,b)

∗ 1

B(a, b)

(

(α)IY (a,b)
)

ya−1(1− y)b−1, if α 6= 1, a, b, α > 0, |y| < 1

(15)

Consider a special case when b= 1, then the hazard function of

the APT_Beta distribution is

hAPT =
aln(α)

α − (α)y
a

(

(α)y
a
)

ya−1, if α 6= 1, a, b, α > 0, |y| < 1

Various plots of the hazard function of the APT-Beta

distribution have increasing, J-shaped, U-shaped, and bathtub-

shaped hazard rates as shown in Figure 3.

6 Linear representation of the
APT_Beta distribution

The PDF of Y has a linear representation for α > 0 and α 6= 1

which is highly useful when deriving the statistical properties of

generalized distributions and expanded using the power series as

follows [20].

(α)z =

∞
∑

k=0

(

log(α)
)k

k!
zk (16)

(α)
1

B(a,b)

∫ y
0 xa−1(1−x)b−1dx

=

∞
∑

k=0

(

log(α)
)k

k!

(

1

B
(

a, b
)

∫ y

0
xa−1 (1− x)b−1 dx

)k

Thus the alpha power transformed beta distribution density can

be linearly expressed as

fAPT
(

y; a, b,α
)

=
log(α)

α − 1

∞
∑

k=0

(

log(α)
)k

k!
f (y)F

(

y
)k

(17)

7 Properties of the APT_Beta
distribution

This portion presents some important statistical characteristics

of the APT_Beta distribution such as the mean residual

life function, moment function shape measurments (skewness,

kurtosis) and moment generating function.

7.1 Quantile function

Assume that Y ∼APT_Beta (a,b,α); then the quantile function

is given by

F(y) =M and we can solve explicitly for Y using the inverse of

the CDF function

F−1(Q(p)) = y

FAPT
(

y; a, b,α
)

=
(α)

1
B(a,b)

∫ y
0 xa−1(1−x)b−1dx

− 1

α − 1
= Q(p) (18)

where M is a random variable quantile function of the APT_Beta

model and is given as

By(a, b) =

∫ y

0
xa−1(1− x)b−1dx = B(a, b)

log{Q(p) (α − 1)+ 1}

log(α)

where By(a, b) is the incomplete beta function which according

to Equation (21) can be expressed as an integer of Gauss

hypergeometric function as follows

By
(

a, b
)

=
ya

a 2
F1(a, 1− b; a+ 1; y)

where 2F1(a, c; γ ; y)=
∑∞

i= 0
(a)i(b)

∗
i y

i

(γ )∗i i!

For mathematical simplification, the incomplete beta function

and beta function ratio, which is the CDF of the beta distribution,

can be expressed as a quantile function as follows:

Iy(a, b) =
By(a, b)

B(a, b)
=

log{Q(p) (α − 1)+ 1}

log(α)

Without this special case we cannot determine the quantile

of Y explicitly due to the iinherent nature of the incomplete

beta function.
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7.2 Mean residual life function

The mean residual lifetime is the expected remaining lifespan

of individuals at age t or the area of the survival curve to the

right of time t divided by the survival function. Let the lifetime

of an individual/object be represented by Y having an alpha

power transformed beta distribution, then, the corresponding

mean lifetime expression is

µ (t) =

∫∞
0 (t−y)f (t)dt

S(t) =

∫∞
0 S(t)

S(t) =

∫∞
0

α−(α)
Iy(a,b)

α−1 dy

α−(α)
Iy(a,b)

α−1

=

∫∞
0 α−αIY (a,b)dy

α−(α)IY (a,b)

µ(t) =

∫∞
0 α−(α)

[

ya2F1(a, 1− b; 1+ a, y)
aB(a,b)

]

dy

α−α

[

ya2F1(a,1−b;1+a,y)
aB(a,b)

] (19)

where 2F1
(

a, 1− b; 1+ a, y
)

is the hypergeometric function.

7.3 Moment function

The moments of random variables correspond to the expected

values of different powers. The first moment, also known as the

expectation, holds significant importance in the field of probability

and statistics. Additionally, the second moment, specifically the

second central moment or variance, plays a crucial role in

these domains.

Theorem 1: According to the definition of the rth moment of Y,

we have moments of the alpha power transformed beta distribution

formulated by the principle of Equation 22 as for any r, a positive

integer and if Y∈ lr , the rth moment of Y is E(yr).

E(yr) =

∫ 1

0
yrfAPT

(

y, a, b,α
)

dy

E(yr) =
ln(α)

(α − 1)

1

B(a, b)

∫ 1

0

(

(α)
∑b−1

k=0 y
a+k
)

b−1
∑

k=0

(

b− 1

k

)

ya+r+k−1dy; if α 6= 1 (20)

Proof

E(yr) =

∫ 1

0
yr

ln(α)

α − 1

(

(α)
1

B(a,b)

∫ y
0 xa−1(1−x)b−1dx

)

1

B(a, b)
ya−1(1− y)b−1dy

E(yr) =

∫ 1

0

ln(α)

α − 1

(

αIY (a,b)
) 1

B(a, b)
ya+r−1(1− y)b−1dy;

if α 6= 1, a, b, α > 0, 0 < y < 1

E(yr) =
ln(α)

α − 1

1

B(a, b)

∫ 1

0

(

(α)IY (a,b)
)

ya+r −1(1− y)b−1dy;

if α 6= 1, a, b, α > 0, 0 < y < 1

E(yr) =
ln(α)

(α − 1)

1

B(a, b)

∫ 1

0

(

(α)
∑b−1

k=0 y
a+k
)

ya+r −1(1− y)b−1dy;

if α 6= 1, a, b,α > 0, 0 < y < 1

where

IY
(

a, b
)

= 1
B(a,b)

∫ y
0 xa−1(1− x)b−1dx

=

∫ y
0 xa−1∑b−1

k=0

(

b−1
k

)(

1b−1−k
)

x
k
dy

∫ 1
0 ya−1

∑b−1
k=0

(

b−1
k

)

(1b−1−k)y
k
dy

=

∑b−1
k=0

(

b−1
k

)

∫ y
0 x

a+k−1
dy

∑b−1
k=0

(

b−1
k

)

∫ 1
0 ya+k−1dy

=

∑b−1
k=0

(

b−1
k

)

ya+k

a+k
∑b−1

k=0

(

b−1
k

)

1
a+k

=
∑b−1

k=0 y
a+k

Therefore the moment becomes

E(yr) =
ln(α)

(α − 1)

1

B(a, b)

∫ 1

0

(

(α)
∑b−1

k=0 y
a+k
)

b−1
∑

k=0

(

b− 1

k

)

ya+r+k−1dy; if α 6= 1

Therefore, after some arithmetical employment, we have the

desired proof.

Corollary 1. The mean of the alpha power transformed beta

(APT_Beta) distribution computed for any y; If y∈ l1, where l1 are

all values in the interval integrable space, then the mean of y is E[y],

the expectation of y [21] and formulated as follows:

E
(

y
)

= ln(α)
α−1

1
B(a,b)

∫ 1
0

(

(α)
∑b−1

k=0 y
a+k
)

∑b−1
k=0

(

b−1
k

)

ya+kdy;

ifα 6= 1, 0 < y < 1 (21)

Assuming that y ∈ l2, where l2 is the values integrable space,

the variance of y is the second central moment:

var(y)= E
[

y2
]

−
[

E(y)
]2

To compute the variance in y that is distributed under the

APT_Beta distribution, first, compute expectation of Y2 as follows:

Var
(

y
)

= ln(α)
(α−1)

1
B(a,b)

∫ 1
0

(

(α)
∑b−1

k=0 y
a+k
)

∑b−1
k=0

(

b−1
k

)

ya+k+1dy

−
[

ln(α)
(α−1)

1
B(a,b)

∫ 1
0

(

(α)
∑b−1

k=0 y
a+k
)

∑b−1
k=0

(

b−1
k

)

ya+kdy
]2

(22)

Mode: A mode of the distribution of a r.v. Y is any point, if

such points exist, that maximizes the probability density function

of Y [34]. The mode is obtained by taking the first derivative of the

probability density function.

Corollary 2: Let Y have the APT_Beta distribution, then the

mode can be derived as follows.

∂

∂y
fAPT

(

y, a, b,α
)

= 0

mode =
∂

∂y

[

ln(α)

(α − 1)

(

(α)Iy(a,b)
) 1

B(a, b)
ya−1(1− y)b−1

]

;

if α 6= 1, 0 < y < 1

Therefore the mode becomes

Mode =

[

1

α − 1

]

; if α 6= 1,α > 0, 0 < y < 1 (23)

Skewness

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2024.1433767
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Agegnehu et al. 10.3389/fams.2024.1433767

Skewness (the third central moment) represent the peakness of

the distribution.

Corollary 3: assume that Y is distributed as an APT_Beta

distribution; hence, the skewness can be expressed as

µ3 = E(y− E(y))3 = E
(

y3
)

− 3E
(

y2
)

E
(

y
)

+ 2[E
(

y
)

]
3

µ3 = ln(α)
(α−1)

1
B(a,b)

∫ 1
0

(

(α)Iy(a,b)
)

ya+2(1− y)b−1dy

−3 ln(α)
(α−1)

1
B(a,b)

∫ 1
0

(

αIy(a,b)
)

ya+1
(

1− y
)b−1

dy
[

ln(α)
(α−1)

1
B(a,b)

∫ 1
0

(

αIy(a,b)
)

ya
(

1− y
)b−1

dy
]

+2
[

ln(α)
(α−1)

1
B(a,b)

∫ 1
0

(

αIy(a,b)
)

ya
(

1− y
)b−1

dy
]3

(24)

Kurtosis

Kurtosis can be expressed as

µ4 = E
(

y4
)

− 4E
(

y3
)

E
(

y
)

+ 6
[

E
(

y
)]2

E
(

y2
)

− 3
[

E
(

y
)]4

µ4 = ln(α)
(α−1)

1
B(a,b)

∫ 1
0

(

(α)Iy(a,b)
)

ya+3(1− y)b−1dy

−4 ln(α)
(α−1)

1
B(a,b)

∫ 1
0

(

(α)Iy(a,b)
)

ya+2
(

1− y
)b−1

dy
[

ln(α)
(α−1)

1
B(a,b)

∫ 1
0

(

(α)Iy(a,b)
)

ya
(

1− y
)b−1

dy
]

+6
[

ln(α)
(α−1)

1
B(a,b)

∫ 1
0

(

αIy(a,b)
)

ya
(

1− y
)b−1

dy
]2

(

ln(α)
(α−1)

1
B(a, b)

∫ 1
0

(

αIy(a,b)
)

ya+1
(

1− y
)b−1

dy
)

−3
[

ln(α)
(α−1)

1
B(a,b)

∫ 1
0

(

(α)Iy(γ ,b)
)

yγ
(

1− y
)b−1

dy
]4

(25)

7.4 Moment generation

The moment generating function of Y is the function 8y(t)

= E[ety], provided that the expectation exists for all t in some

neighborhood of the origin (Equation 22). Themoment-generating

function of random variable Y that follows the alpha power

transformed beta (APT_beta) distribution, if it exists, is given by:

8y(t) = E
(

eyt
)

=
∫∞
0 eyt

ln(α)

α − 1

(

(α)
1

B(a,b)

∫ y
0 xa−1(1−x)b−1dx

)

1

B(a, b)
ya−1(1− y)b−1dy

8y(t) = E
(

eyt
)

= ln(α)
(α−1)

1

B(a, b)

∫ ∞

0
eyt
(

(α)
1

B(a,b)

∫ y
0 xa−1(1−x)b−1dx

)

ya−1(1− y)b−1dy

8y (t) =
ln (α)

(α − 1)

∫ 1

0

(

αIy(a, b)
) 1

B
(

a, b
) ya−1

(

1− y
)b−1

eytdy(26)

8 Classical estimation

Classical estimation uses the maximum likelihood principle to

estimate population parameters from a sample in research and

data analysis.

8.1 Maximum likelihood estimation

Maximum Likelihood Estimation (MLE) is a powerful

technique for estimating unknown parameters by maximizing

the likelihood of observed data. MLE, assuming independent

and identically distributed (i.i.d.) observations, provides efficient

estimation based on unbiasedness and minimum variance criteria

[34].

Let Y1,Y2, . . . , Yn is an independent identically distributed

random variable with an alpha Power transformed beta

distribution fAPT(
.; θ), θǫ�⊆ R and consider the joint pdf

of Y’s fAPT (Y1; θ) . . . . . . . . . .fAPT (Yn; θ); then, the likelihood

function is given by

L
(

Y , a, b,α
)

=

(

ln(α)

(α − 1)
(

B(a, b)
)

)n n
∏

i=1

(

(α)Iy(a,b)
)

ya −1

n
∏

i=1

(1− y)b−1 (27)

The estimates θ̂ = θ̂(Y1,Y2, . . . , Yn) is called the maximum

likelihood estimate of θ if

L(θ̂ |Y1,Y2, ...,Yn) = max (L (θ |Y1,Y2, . . . , Yn) ;

θǫΩ) [34]

where θ = (a, b,α) and θ̂ = (â, b̂, α̂).

The log-likelihood function of L(a, b, α) is given by

loglik(y, a, b,α) = ll = nln
(

ln(α)
)

− nln (α − 1)− nln
(

B
(

a, b
))

+ ln (α)
∑n

i=1 Iy
(

a, b
)

+ (a− 1)
∑n

i=1 ln
(

yi
)

+
(

b− 1
)
∑n

i=1 ln
(

1− yi
)

(28)

Then, we can take the first derivative of the log likelihood

function with respect to each parameter as follows.

∂ ll

∂α
=

n

ln(α)

(

1

α

)

−
n

α − 1
+

∑n
i=1 Iy

(

a, b
)

α
= 0 (29)

∂ ll

∂a
=

−n

B
(

a, b
)

∂

∂a
B
(

a, b
)

+ ln (α)

n
∑

i=1

dIy
(

a, b
)

da

+

n
∑

i=1

ln
(

yi
)

= 0 (30)

∂ ll

∂b
= −n

B(a, b)
∂
∂b
B
(

a, b
)

+ ln (α)
∑n

i=1
dIy(a,b)

db

+
∑n

i=1 ln
(

1− yi
)

= 0 (31)

Let derivative of − ∂
∂a ln(B

(

a, b
)

) become
(

ψ0
(

a+ b
)

− ψ0 (a)
)

That is − ∂
∂a ln(B

(

a, b
)

) = − ∂
∂a ln

(

Ŵ(a) Ŵ(b)
Ŵ(a+b)

)

=

− ∂
∂a

(

ln (Ŵ (a))+ ln
(

Ŵ
(

b
))

− ln
(

Ŵ
(

a+ b
)))

=

−

(

Ŵ
′
(a)

Ŵ(a) −
Ŵ
′
(a+b)

Ŵ(a+b)

)

=
(

ψ0
(

a+ b
)

− ψ0 (a)
)
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then Equation 30 and 31 become

∂ ll

∂a
= n

(

ψ0
(

a+ b
)

− ψ0 (a)
)

+ ln (α)
∑n

i=1
dIy(a,b)

da

+
∑n

i=1 ln
(

yi
)

= 0 (32)

∂ ll

∂b
= n

(

ψ0
(

a+ b
)

− ψ0
(

b
))

+ ln (α)
∑n

i=1
dIy(a,b)

db

+
∑n

i=1 ln
(

1− yi
)

= 0 (33)

After this second derivative is applied, the Newton–Raphson

method can be used to solve non-linear equations and find the

unknown parameters.

8.2 Asyptotic confidence interval

Constructing an estimator on the basis of a sample of fixed

size n is possible in maximum likelihood function. However, as the

sample size n may increase indefinitely and produce sequence of

estimators, the asymptotic distribution of the MLEs becomes:

[
(

â− a
)

,
(

b̂− b
)

,
(

α̂ − α
)

] → N(0, cov
(

â, b̂, α̂
)

)

where cov(â, b̂, α̂ ) are the variance covariance matrices of the

estimators of parameters a, b, and α which can be approximated

by the inverse of the observed Fisher-information matrix [34]. The

observed Fisher-information matrix is given by

I(â, b̂, α̂) =















∂2ll
∂a2

∂2ll
∂a∂b

∂2ll
∂a∂α

∂2ll
∂b∂a

∂2ll
∂b2

∂2ll
∂b∂α

∂2ll
∂α∂a

∂2ll
∂α∂b

∂2ll
∂α2















where

∂2l

∂a2
= n

(

ψ1
(

a+ b
)

− ψ1 (a)
)

+ ln (α)

n
∑

i=1

∂2Iy
(

a, b
)

∂a2

∂2l

∂a∂b
= n

(

ψ1
(

a+ b
))

+ ln (α)

n
∑

i=1

∂2Iy
(

a, b
)

∂a∂b

∂2l

∂b2
= n

(

ψ1
(

a+ b
)

− ψ1
(

b
))

+ ln (α)

n
∑

i=1

∂2Iy
(

a, b
)

∂b2

∂2l

∂α2
=

(

n

α2(lnα)2
−

1

α2 ln(α)

)

+
n

(α − 1)2
−

∑n
i=1 Iy

(

a, b
)

α2

∂2l

∂a∂α
=

1

α

n
∑

i=1

∂Iy
(

a, b
)

∂a

∂2l

∂b∂α
=

1

α

n
∑

i=1

∂Iy
(

a, b
)

∂b

Then, the approximate 100(1 – γ)% two-sided confidence

intervals for a, b and α are, given by

â± Z∗
γ /2

√

I−1
11
(

â
)

, b̂± Z∗
γ
2

√

I−1
22

(

b̂
)

, α̂ ± Z∗
γ /2

√

I−1
33(α̂)

(34)

where Zγ /2 is the upper 100
th (γ /2) percentile of the standard

normal distribution.

9 Order statistics

Assume that X1, . . . .,Xn are i.i.d random variables from the

cumulative distribution F(x). Then Y1 ≤ . . . ≤ Yn where

Y are the Xi arranged in order of increasing magnitude

are called order statistics [34]. Let Y ≤ . . . ≤ Yn be

random samples in order statistics obtained from the alpha

power transformed beta distribution then the marginal

cumulative probability distribution function of Yi is

given by

FAPT yi

(

y
)

=

n
∑

j=i

(

n

j

)

[

F(y)
]j [

1− F(y)
]n−j

FAPT yi

(

y
)

=

n
∑

j=i

(

n

j

)





α
1

B(a,b)

∫ y
0 xa−1(1−x)b−1dx

− 1

α − 1





j



1−





(α)
1

B(a,b)

∫ y
0 xα−1(1−x)b−1dx

− 1

α − 1









n−j

FAPTyi
(

y
)

=

n
∑

j=i

(

n

j

)





(α)
1

B(a,b)

∫ y
0 xa−1(1−x)b−1dx

− 1

α − 1





j





α − (α)
1

B(a,b)

∫ y
0 xa−1(1−x)b−1dx

α − 1





n−j

(35)

The corresponding alpha power transformed beta probability

density function can be given by

fAPTyi
(

y
)

=
n!

(i− 1) (n− i)

[

F
(

y
)]i−1 [

1− F
(

y
)]n−i

fAPT(y)

fAPTyi
(

y
)

=
n!

(i− 1)! (n− i)!





(α)
1

B(a,b)

∫ y
0 xa−1(1−x)b−1dx

− 1

α − 1





i−1



1−





(α)
1

B(a,b)

∫ y
0 xa−1(1−x)b−1dx

− 1

α − 1









n−i

ln(α)

α − 1

(

(α)
1

B(a,b)

∫ y
0 xa−1(1−x)b−1dx

)

1

B(a, b)
ya−1(1− y)b−1

fAPTyi
(

y
)

=
n!

(i− 1)! (n− i)!

ln(α)

α − 1

(

(α)
1

B(a,b)

∫ y
0 xa−1(1−x)b−1dx

)

1

B(a, b)
ya−1(1− y)b−1





(α)
1

B(a,b)

∫ y
0 xa−1(1−x)b−1dx

− 1

α − 1





i−1



1−





(α)
1

B(a,b)

∫ y
0 xa−1(1−x)b−1dx

− 1

α − 1









n−i

(36)
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TABLE 1 MLE of the parametrs for di�erent true values from the simulation.

N Set 1: a = 2, b = 2, α=5 Set 2: a = 4, b = 2, α=3 Set 3 : a = 4, b = 1, α=6

MLE MSE MAE MAPE MLE MSE MAE MAPE MLE MSE MAE MAPE

75 a 3.74 11.792 1.03 42.42 5.35 9.473 2.18 73.71 11.9 91.84 4.29 107.5

b 2.45 0.891 1.03 42.42 2.89 1.505 2.18 73.71 1.5 0.56 4.299 107.5

α 4.11 43.71 1.03 42.42 7.27 78.74 2.18 73.71 1.49 29.9 4.299 107.5

100 a 2.37 1.751 1.33 33.82 3.27 4.858 0.52 46.38 2.61 8.17 4.04 98.2

b 1.64 0.473 1.33 33.82 1.79 0.414 0.52 46.38 0.87 0.063 4.04 98.2

α 1.44 33.171 1.33 33.82 2.39 62.76 0.52 46.38 10.6 18.87 4.04 98.2

500 a 2.47 0.674 1.49 38.56 4.68 1.893 1.05 36.77 4.32 2.84 1.02 21.99

b 1.59 0.282 1.49 38.56 2.64 0.528 1.05 36.77 0.85 0.043 1.02 21.99

α 1.39 18.462 1.49 38.56 4.84 29.82 1.05 36.77 3.4 16.79 1.02 21.99

1,500 a 2.29 0.244 1.02 24.31 4.43 0.481 0.72 23.67 4.88 1.46 1.41 26.27

b 1.89 0.041 1.02 24.31 1.87 0.056 0.72 23.67 1.01 0.009 1.41 26.27

α 2.34 11.196 1.02 24.31 1.39 15.69 0.72 23.67 2.66 15.15 1.41 26.27

3,000 a 1.899 0.1082 0.222 5.95 3.92 0.515 0.52 17.64 4.23 0.374 0.64 12.05

b 1.952 0.0118 0.222 5.95 2.11 0.023 0.52 17.64 1.03 0.004 0.64 12.05

α 5.518 11.099 0.222 5.95 4.36 6.368 0.52 17.64 4.32 7.707 0.64 12.05

5,000 a 2.03 0.047 0.34 7.79 3.97 0.204 0.456 15.65 4.53 0.574 0.859 17.37

b 1.93 0.0115 0.34 7.79 2.09 0.016 0.456 15.65 0.94 0.005 0.859 17.37

α 4.09 4.1796 0.34 7.79 4.24 3.563 0.456 15.65 4.01 7.541 0.859 17.37

10,000 a 1.977 0.0334 0.083 1.998 4.03 0.082 0.1 3.522 4.57 0.519 0.51 11.65

b 1.988 0.0033 0.083 1.998 2.04 0.005 0.1 3.522 1.06 0.004 0.51 11.65

α 4.786 3.443 0.083 1.998 3.24 1.256 0.1 3.522 6.9 6.627 0.51 11.65

20,000 a 1.979 0.0214 0.122 3.212 4.03 0.043 0.075 2.505 4.01 0.075 0.06 1.145

b 2.008 0.0016 0.122 3.212 2.01 0.002 0.075 2.505 0.99 0.003 0.06 1.145

α 5.29 2.2112 0.122 3.212 3.19 0.656 0.075 2.505 5.83 2.172 0.06 1.145

50,000 a 1.969 0.0075 0.028 0.895 3.87 0.034 0.07 2.174 3.82 0.061 0.178 3.746

b 2.002 0.0006 0.028 0.895 1.96 0.003 0.07 2.174 0.99 0.001 0.178 3.746

α 4.948 0.7154 0.028 0.895 3.03 0.229 0.07 2.174 6.35 1.203 0.178 3.746

100,000 a 1.972 0.0042 0.077 1.93 3.83 0.04 0.319 10.26 4.18 0.047 0.134 4.421

b 2.01 0.0004 0.077 1.93 2.02 0.001 0.319 10.26 0.97 0.001 0.134 4.421

α 5.193 0.4454 0.077 1.93 3.76 0.766 0.319 10.26 5.86 1.183 0.134 4.421

500,000 a 2.005 0.001 0.033 0.72 3.95 0.005 0.094 3.019 4.03 0.004 0.028 0.593

b 2.001 10e−4 0.033 0.72 2.01 10e−4 0.094 3.019 1 0.001 0.028 0.593

α 4.905 0.081 0.033 0.72 3.22 0.072 0.094 3.019 5.95 0.097 0.028 0.593

If X1X1, . . . , Xn are i.i.d. r.v.’s with APT_Beta p.d.f

which is positive for 0 < x < 1 and 0 otherwise, then

the joint p.d.f. of the order statistics Y1, . . . , Yn is

given by:

G(Y1, ...,Yn) =

{

n!fAPT
(

y1
)

. . . ..fAPT
(

yn
)

0 otherwise
(37)

10 Simulation of APT_Beta distribution
using AR sampling

The simulation aims to assess the performance of the APT_Beta

distribution by evaluating its pdf, cdf, and probabilistic axioms

using random data. Maximum likelihood estimation parameters

are tested for flexibility and performance through computation of
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TABLE 2 Goodness of fit test tesults for ANC dataset.

Distribution MLE for
parameters

AIC CAIC BIC HQIC K-S P-value

APT_Beta 4.053 4.045 0.00295 −360.4 −360.26 −358.23 −364.36 0.19 2.795e-08

Weibull 2.868 0.371 −333.36 −333.31 −326.82 −330.90 0.198 4.553e-08

ExpWeibull 4.60 1.65 3.874 −372.08 −371.97 −362.99 −369.13 0.194 8.352e-08

Kwbeta 1.63 2.53 0.83 1.18 −30.93 −30.65 −12.425 −19.58 0.049 3.567e-07

Beta 2.702 4.985 −293.33 −293.28 −284.96 −289.05 0.25 2.12e-12

TABLE 3 Goodness of fit test results for burr dataset.

Distribution MLE for
parameters

AIC CAIC BIC HQIC K-S P-value

APT_Beta 2.32 3.322 0.00021 −103.21 −102.64 −97.44 −100.99 0.14 0.29

Weibull 0.1051 0.643 −107.78 −107.53 −103.96 −106.33 0.112 0.56

ExpWeibull 3.871 4.854 0.3068 −109.07 −108.54 −103.330 −106.882 0.097 0.731

Kwbeta 6.48 0.24 9.05 6.95 −100.79 −103.71 −102.82 −96.06 0.115 0.52

Beta 1.237548 4.992002 −87.13 −83.309 −86.877 −85.676 0.212 0.02248

mean square error (MSE), Mean Absolute Error (MAE), and Mean

Absolute Percentage Error (MAPE) across various sample sizes

and specific distribution parameters true value. The simulation,

conducted in R programming, involves different values of alpha

and other parameters using the acceptance-rejection algorithm

concept [22].

The APT_Beta distribution was analyzed with parameters

assigned values from three selected sets. Using the Newton-

Raphson optimum algorithm technique in R programming, average

estimates and error metrics like MSE, MAE, and MAPE were

computed for MLE across various sample sizes in simulation

data [23].

The MSE is determined by adding the variance of the estimate

from the inverse Hessian matrix diagonal to the square of the

bias from Maximum Likelihood Estimation (MLE) [34]. MAE and

MAPE are calculated based on bias for each parameter, serving

as measures of accuracy and consistency in parameter estimation

[24]. According to the findings presented in Table 1 as sample size

increases,MSE,MAE, andMAPE forMLE are expected to decrease,

indicating more accurate and reliable estimates with larger sample

sizes. For parameters, increasing sample size leads to decreasing

MSEs and convergence of estimated values to true values.

11 Real data application

This study utilized the APT_Beta distribution to analyze

prenatal care visit proportions from the Mini EDHS-2019 dataset.

Parameters were estimated using MLE in natural logarithm form,

with results transformed for maximization. Data on ANC visits

were converted to proportions, focusing on a subset of 227 women

in Addis Ababa who had undergone antenatal care visits.

Additionally, a second set of real data consists of 50 burr

observations (measured in millimeters). The hole diameter is

12mm, and the sheet thickness is 3.15mm. These measurements

were taken from a singlemachine introduced byDasgupta [25]. The

observation list is 0.04, 0.02, 0.06, 0.12, 0.14, 0.08, 0.22, 0.12, 0.08,

0.26, 0.24, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32, 0.28, 0.14, 0.16, 0.24, 0.22,

0.12, 0.18, 0.24, 0.32, 0.16, 0.14, 0.08, 0.16, 0.24, 0.16, 0.32, 0.18, 0.24,

0.22, 0.16, 0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.06, 0.04, 0.14, 0.26,

0.18, 0.16.

Various model selection criteria like AIC [26], CAIC, BIC

[27], Kolmogorov-Smirnov (K-S) [28], and HQIC [29] are used to

compare statistical models, aiming to find the best fit. These criteria

help compare distributions like APT-Beta, Weibull, exponential

Weibull, Kumaraswamy Beta, and beta distributions. The model

with the smallest absolute value for AIC, CAIC, BIC, and HQIC is

considered the best, prioritizing a balance between goodness of fit

and model complexity. A smaller (more negative) value indicates a

preferable model over one with a larger (less negative) value.

Table 2’s results offer further evidence supporting the notion

that the suggested APT_Beta distribution outperforms theWeibull,

Kumaraswamy Beta, and Beta distributions. according to these

data, APT_Beta exhibited a similar effect to Exponential Weibull.

Table 3 provides conclusive evidence supporting the similarity

of the newly proposed distribution to the included distributions,

with the exception of the beta distribution, for the provided data.

The APT-Beta distribution surpasses the basic beta distribution in

terms of effectiveness.

12 Discussion

Probability distributions are essential in statistical analysis for

modeling real-world data. While the basic beta distribution is

versatile, a new distribution called the alpha power transformed

beta (APT_Beta) distribution aims to enhance flexibility and

accuracy. By integrating additional parameters, the APT-Beta

distribution overcomes limitations of the basic beta distribution,
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providing a more adaptable model for a wider range of outcomes

and improved depiction of real-world scenarios.

The APT-Beta distribution excels in fitting observed

data, outperforming other beta family models and offering

versatility in modeling hazard rates. Its adaptability to real-world

data, such as maternal antenatal care proportions and other

proportions, makes it a preferred choice for researchers and

practitioners seeking accurate representation and analysis of

empirical data.

13 Conclusion

In statistics, modeling distributions is crucial for analyzing

real-world data. The APT_Beta distribution, a three-parameter

model introduced in this study, offers tractability, efficiency, and

versatility for modeling bounded data. Constructed using the alpha

power transformation approach, it provides a flexible and robust

model for accurately capturing various types of bounded data in

different applications.

The APT_Beta distribution is advantageous due to its

tractability, allowing for easy derivation and analysis of

mathematical properties. It demonstrates excellent performance in

fitting real-world data with bounded characteristics, outperforming

other distributions in goodness-of-fit measures. Its versatility, with

three parameters accommodating a wide range of shapes, makes

it a superior choice for modeling bounded data in diverse fields

like finance, biology, and engineering. Apart from its versatility,

the APT_Beta distribution also offers practical benefits in terms

of efficiency. The distribution can be easily estimated using

maximum likelihood estimation techniques, and the estimation

process is computationally efficient. This allows for quick

and accurate parameter estimation, even when dealing with

large datasets.

The simulation study assessed the APT_Beta distribution’s

validity and parameter consistency with different sample sizes, and

also using real-life data from Addis Ababa city and the burr dataset

the validity and parameter consistency were examined. Results

show its flexibility and effectiveness in modeling bounded data,

making it a valuable tool for various disciplines like reliability

engineering, medicine, economics, and life sciences. The APT_Beta

distribution’s alpha power transformation from the basic beta

distribution offers versatility and efficiency in statistical modeling

tasks, proving beneficial for researchers and practitioners in

diverse fields.
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