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Fatigue is one of the crucial factors in human error-related traffic accidents. 
Despite the development of highly advanced intelligent transport systems, 
fatigue-related traffic accidents have not decreased. The factors inducing driver 
fatigue are classified into mental and physical categories. Physical fatigue results 
from muscle strain due to prolonged driving and operations. Mental fatigue, on 
the other hand, results from the continuous mental effort required for driving, 
including repeated perception and decision-making regarding driving situations 
and route planning. Monitoring driver fatigue can help prevent fatigue-related 
traffic accidents. Therefore, researchers have studied its relationship with 
various biomarkers such as sleep state, eye movement, facial expression, and 
electroencephalography (EEG) activation levels. Moreover, studies have revealed 
the relationship between fatigue and cognitive performance, which is affected 
by factors such as extended periods of driving. Furthermore, the strategy, 
quantity, and quality of driving operations and perception differ in various traffic 
environments. For instance, driving stress levels vary depending on factors such 
as the number of vehicles on the road, traffic congestion, and road conditions. 
However, the brain activity associated with mental and physical workload due 
to the traffic environment and its factors remains unknown. In particular, the 
relationship between mental and physical stress resulting from varying levels of 
operation and perception in different driving environments, the accumulation 
of driver fatigue caused by such stress, and the related brain activity are still 
unclear. In this study, we  focused on investigating the mental and physical 
workload that accumulates in drivers and induces physical and mental fatigue, 
as well as the related brain activity caused by different traffic environments. 
We  investigate these aspects through driving experiments, measuring EEG in 
driving environments created by varying the traffic environment and density 
using a driving simulator. The results confirmed differences in theta- and 
alpha-band spectral responses, which are associated with driver fatigue, across 
different traffic environments. Further examination of the causal relationship 
showed that mental and physical workload were associated with fatigue-related 
spectral responses depending on the traffic environment. These findings imply 
that the level of cognitive and operational load inherent in driving environments 
plays a crucial role in driver fatigue.

KEYWORDS

mental stress, physical stress, driving operation, cognition, EEG, spectral response

OPEN ACCESS

EDITED BY

Christian Uhl,  
Ansbach University of Applied Sciences, 
Germany

REVIEWED BY

Thomas Wahl,  
Inria Nancy – Grand-Est Research Center, 
France
Nicole Ille,  
BESA GmbH, Germany

*CORRESPONDENCE

Keiichiro Inagaki  
 kay@isc.chubu.ac.jp

RECEIVED 01 May 2024
ACCEPTED 27 August 2024
PUBLISHED 05 September 2024

CITATION

Adachi M, Nobukawa S and Inagaki K (2024) 
Assessment of driver fatigue-related brain 
responses and causal factors during driving 
under different traffic conditions.
Front. Appl. Math. Stat. 10:1426253.
doi: 10.3389/fams.2024.1426253

COPYRIGHT

© 2024 Adachi, Nobukawa and Inagaki. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 05 September 2024
DOI 10.3389/fams.2024.1426253

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2024.1426253&domain=pdf&date_stamp=2024-09-05
https://www.frontiersin.org/articles/10.3389/fams.2024.1426253/full
https://www.frontiersin.org/articles/10.3389/fams.2024.1426253/full
https://www.frontiersin.org/articles/10.3389/fams.2024.1426253/full
https://www.frontiersin.org/articles/10.3389/fams.2024.1426253/full
mailto:kay@isc.chubu.ac.jp
https://doi.org/10.3389/fams.2024.1426253
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2024.1426253


Adachi et al. 10.3389/fams.2024.1426253

Frontiers in Applied Mathematics and Statistics 02 frontiersin.org

1 Introduction

Intelligent Transport Systems (ITS) technology has advanced 
significantly in recent years, especially with the remarkable progress 
in AI technology. These recent advancements in ITS have led to the 
implementation of driving support systems on roads. These systems 
utilize sensors installed on the road to recognize the status of other 
vehicles and obstacles, enabling real-time support for the driver’s 
actions through communication. Moreover, various automobile 
technologies leveraging highly developed AI have been introduced to 
detect dangerous traffic objects and facilitate automatic driving, all 
developed for the purpose of preventing traffic accidents. However, 
despite these technological advancements, traffic accidents continue 
to occur due to various factors. Accidents resulting from human error 
remain a significant concern, often leading to fatal or serious incidents 
that are difficult to prevent even with current ITS technologies.

The main causes of traffic accidents due to human error include 
distracted driving, improper driving operation, misperception, and 
failure to check safety. These human errors result from several factors, 
including fluctuations in the driver’s concentration caused by 
passengers (1, 2), deterioration of the driver’s mental and physical 
functions due to lack of sleep or fatigue (3–5), and environmental 
factors such as long driving hours in a monotonous road environment 
(6–9). Fatigue is a significant research topic, which is a problem not 
only in vehicle driving but also in train (10, 11) and airplane operation 
(12, 13). Despite efforts, fatigue-related traffic accidents have not 
decreased (5). Previous studies on vehicle operation and fatigue have 
classified driver fatigue factors into mental and physical categories (14, 
15). Physical fatigue is caused by muscle strain due to prolonged 
driving (16, 17) and operations during driving such as accelerating, 
braking, and steering wheel operation and/or decreased physical 
ability due to lack of sleep. Mental fatigue, on the other hand, results 
from the accumulation of mental effort in driving, involving repeated 
perceptual evaluations and decision-making regarding driving 
situations and route planning (4, 18–20). Monitoring driver fatigue 
can potentially prevent fatigue-related traffic accidents. Studies have 
investigated its relationship with various biological markers, including 
sleep state (5, 20, 21), eye movements (22–25), facial expressions (26, 
27), electroencephalography (EEG) activation levels (14, 28–32), and 
functional connections in the brain (33–35).

EEG evaluation is a useful indicator due to its potential to 
simultaneously assess not only the changes in brain activity related to 
fatigue but also its relationship to driving behavior (28). Previous 
studies have reported increases in EEG delta and theta activity (36), 
theta-alpha band activity (14, 37), and alpha band activity (8, 38) in 
relation to increased driver fatigue. Studies focusing on mental fatigue 
occurring during driving have shown increased activity in the delta, 
theta, and alpha bands (39–41). Tran et  al. also reported that the 
spectral response associated with such mental fatigue shows a large 
increase in the theta and alpha bands and small increases in the delta 
and beta bands (42). Thus, it is well-known that driving fatigue, 
including mental fatigue, manifests in changes in the theta to alpha 
bands of the EEG spectrum. However, the specific driving factors that 
contribute to such fatigue are still unknown.

Research has revealed the relationship between fatigue and 
cognitive performance, which are affected by factors such as 
prolonged driving in a monotonous environment (6–8) and lack 
of sleep (5, 20, 21), both in driving simulators and real vehicles. 

However, the quantity and quality of driving operations and 
cognition vary across different traffic environments, such as urban 
areas and highways. It has been widely reported that driver fatigue 
occurs when driving in a monotonous environment for a 
prolonged time. Moreover, the level of driving stress could 
be affected by different driving conditions, such as traffic volume, 
congestion, and road conditions (43–46). Within these contexts, 
particularly concerning the mental and physical workload 
resulting from varying levels of operation and cognition in 
different driving environments, as well as driver fatigue due to the 
accumulation of such stress, the associated brain activity 
remains unknown.

This study aims to investigate the mental and physical workload 
experienced by drivers and the related brain activity caused by 
different traffic environments. We evaluated these aspects using EEG 
measurements in driving environments created by varying the traffic 
environment and density using a driving simulator. Specifically, 
we reproduced driving scenarios in an urban area, traffic congestion, 
and a highway with different levels of cognitive and operational 
demands. We investigated the effects of cognitive and operational 
demands on fatigue and the related EEG responses during driving. 
Furthermore, workload evaluations using NASA-TLX (47), 
questionnaires on fatigue, and analyses of cognitive and operational 
behaviors during driving experiments were conducted to evaluate 
their causal relationship with the EEG responses.

2 Methods

2.1 Participants

We recruited 12 male participants for the experiments, who were 
aged 19 to 23 years (mean age 21.5 ± 0.87) and licensed drivers. All 
participants had no health or neurological problems and had normal 
or corrected-to-normal vision by glasses or contact lenses, as 
described on their driver’s license. Prior to the experiments, the 
purpose and details of the experiment were explained to each 
participant, and informed consent was obtained. Before the 
experiments, we assessed arousal levels using the Japanese-translated 
version of the Karolinska Sleepiness Scale (48), and all participants 
met the criteria for low arousal conditions on the scale.

2.2 Experimental setup

Figure 1 illustrates our experimental setup for EEG recording and 
driving simulation, designed to replicate the functional view of 
vehicle driving. The setup included a personal computer (PC) display 
(LG 34GL750-B, 1920 × 1,080), stereo speakers, a steering controller, 
and gas and brake pedals (Logitech G29 Driving Force Feedback 
Racing Wheel), a high-performance PC (Intel Core i9 processor 
3.30 GHz with 128 GB RAM and NVIDIA GeForce RTX3070 8 GB 
VGA card) for data collection, traffic scene capture, and simulator 
control, an adjustable driver’s seat, and an EEG recorder (Polymate 
AP108, Miyuki-Giken Co., Ltd., Japan). The engine sound was 
emitted from the stereo speakers at a volume below 80 dB. The 
distance between the PC display and the participant’s head was 
approximately 60 cm, imitating a field of view of about ±30 degrees, 
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which encompasses the functional view (approximately ±20 degrees) 
observed during vehicle driving, as reported in previous studies 
(49, 50).

During the experiments, City Car Driving (Forward Development 
Ltd.) was utilized as the driving simulation software. Traffic scenes 
from this software were projected onto the PC display at 30 frames per 
second (fps). These scenes were captured by a video card for the post-
analysis of drivers’ perceptions and vehicle operations.

2.3 Driving scenarios

Prolonged vehicle driving causes both mental and physical fatigue. 
Figure 2 summarizes the driving scenarios used in our experiment. To 
investigate the causal factors between drivers’ fatigue and these mental 
and physical factors, we simulated three different traffic conditions: 
normal driving, driving in heavy traffic densities in an urban area, and 
driving on a highway with normal traffic density. For the urban area, 
traffic density was set at 20% (hereafter, referred to as urban) to 
simulate typical traffic conditions and at 100% for driving in congested 
traffic (referred to as traffic jams). For highway driving, the traffic 
density was set at 20% (referred to as highway). Studies have reported 
that fatigue in driving typically sets in after approximately 30 min (8, 
51, 52). Therefore, the duration of driving for each condition was set 
at 30 min.

In our driving scenarios, we mainly controlled the number of 
maneuvers and the perception times for each driving condition. 
Specifically, drivers needed to recognize traffic scenes and perform 
maneuvers when driving in the urban area with 20% traffic density, 
whereas drivers did less scene recognition when driving in congestion 
due to mainly performing gas and brake pedal operations. In highway 

driving, drivers performed fewer driving maneuvers, mainly using the 
pedals and steering, while searching for road signs and other vehicles.

2.4 Experimental protocols

Before the experiment in the driving simulator, participants 
performed a 60 min session of driving simulation to familiarize 
themselves with the simulator. Following this familiarization phase, 
participants did a 30 min drive in one of the traffic scenarios described 
above. After completing the 30 min driving task, participants were 
asked to respond to a fatigue questionnaire (Supplementary Figure S1), 
visually presented on a scale of 0 to 100 to assess the level of fatigue 
they felt, with higher scores indicating higher levels of fatigue. To 
ensure a fair assessment of fatigue, each driving condition was tested 
on a separate day within the same time zone. All experimental 
procedures and EEG recordings described below were conducted in 
accordance with the Declaration of Helsinki and were approved by the 
Ethics Committee of the Ethics Committee of the Chubu University 
(Protocol# 20210016).

2.5 EEG recordings

The EEGs of all participants were recorded during each of the 
driving scenarios described above. Participants sat in the driver’s seat 
and adjusted it to their preferred position. During the experiment, 
participants were instructed to drive as they would under ordinary 
driving circumstances, adhering to traffic regulations.

EEGs of all participants were recorded using a Polymate AP108. 
We utilized a 9-channel EEG setup with electrodes placed at 7 sites 

FIGURE 1

Experimental setup and electroencephalography (EEG) recording system during driving simulations. The experimental setup consisted of a personal 
computer (PC) display, stereo speakers, a steering controller, gas and brake pedals, a high-performance PC for data collection, traffic scene capture, 
and driving simulator control, an adjustable driver’s seat, and an EEG recorder. A 9-channel EEG setup with electrodes was placed at 7 sites (AF3, AF4, 
T7, T8, Cz, O1, and O2) covering the entire brain area, along with two reference sites (A1 and A2) according to the International 10–20 electrode 
positioning system. City Car Driving was used as the driving simulator.
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(AF3, AF4, T7, T8, Cz, O1, and O2) covering the entire brain area, 
along with two reference sites (A1 and A2) according to the 
International 10–20 electrode positioning system (53). Prior to 
electrode placement, the scalp was wiped using paper towels soaked 
in alcohol to avoid EEG signal deterioration caused by scalp oils. The 
sampling frequency was set at 500 Hz. In analyzing the Fourier 
spectra, we  focused on EEG signals measured from the occipital 
electrodes (O2) because fatigue-related responses are typically 
observed in this region (28).

2.6 Analysis

To investigate the causal relationship between variations in mental 
and physical workload and the onset of fatigue across different driving 
environments, we initially analyzed the number of perceptual targets, 
related to mental load, and the number of driving operations, related 
to physical load, in each of the three distinct driving conditions. 
Previous studies have reported qualitative and quantitative variations 
in fatigue occurrence across different tasks (54). In the context of 
driving, the perceptual and physical load experienced by drivers varies 
depending on the driving environment. Considering these aspects, 
we  estimated the perceptual and physical load during the three 
distinct driving environments by examining captured video data from 
driving simulator experiments. In the present study, perceptual load 
was defined as the number of perceptual objects such as traffic signals, 
pedestrians, crossings, signs, and other vehicles. Physical load was 

determined based on the frequency of right and left turns, lane 
changes, and gas and brake pedal operations.

Fast Fourier transform (FFT) was used to obtain the frequency 
spectrum of EEG signals. Prior to FFT analysis, the DC component of 
the EEG data was removed following the application of a band-pass 
filter (4–45 Hz, using a zero-phase digital filtering method). 
Subsequently, data points showing prominent trends and quick phasic 
noise (spiky responses) exceeding three times the standard deviation 
were removed as artifacts. FFT analysis was conducted on randomly 
selected 1 s epochs using a Hanning window. This epoching process 
and FFT calculation were iterated 1,000 times to ensure equal 
contribution of data from both the initial and final 2 min of the driving 
session for calculating the power spectrum. Finally, the obtained 
power frequency spectrum was averaged and converted into the 
probability distribution p(k) by Equation (1):

 

p k
S k

S kk
nyq( ) = ( )

( )=∑ 1  

(1)

where s(k) is the averaged power spectrum at the frequency k, and 
nyq is the Nyquist frequency (250 Hz). To compare these spectral 
responses regarding fatigue induced by driving, changes in theta and 
alpha band spectral responses were determined by subtracting the 
spectral response calculated from the initial 2 min from that calculated 
from the final 2 min. All analyses were performed using MATLAB and 
its signal processing toolbox. This study focused on spectral responses 

FIGURE 2

Stimulus scenarios for three different traffic conditions: (A) urban driving with 20% traffic density, (B) congested driving (100% traffic density), and 
(C) highway driving with 20% traffic density. The duration of driving for each condition was 30  min.
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within the theta (4–8 Hz) and alpha bands (8–13 Hz), which are 
known to reflect fatigue (28).

2.7 Assessment of workload

After the driving experiment in each traffic condition, the 
workload caused by the driving was evaluated using the NASA-TLX 
scale. The NASA-TLX provides a subjective assessment of workload by 
considering mental demand (MD), physical demand (PD), temporal 
demand (TD), own performance (OP), effort (EF), and frustration 
(FR). In the present study, each index was initially scored on a scale 
ranging from 0 to 100, with higher scores indicating a higher workload. 
Next, the contribution of each index to the driving task was determined 
through pairwise comparisons of workload indexes for each 
participant. These comparisons yielded 15 possible pairings across the 
six workload indexes, from which participants selected an index from 
each pair that contributed more to the overall workload of the driving 
task. The frequency of selection for each workload index in these 
comparisons was tallied to determine the weight for each workload 
index (Supplementary Tables S1–S3). Finally, the weighted workload 
(WWL) was calculated by Equation (2):

 

( )6
1

6
1

i ii

ii

w v
WWL

w
=

=

⋅
=
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(2)

where wi and vi are the weight and score, respectively, of each 
workload index.

2.8 Calculation of statistics

Statistical significance was evaluated using the paired Student’s 
t-test, and effect sizes were calculated using Cohen’s d (55). Statistical 
analyses were performed using EZR software (56), and the effect size 
was determined using G*power (57).

3 Results

First, we investigated the relationship between driver fatigue and 
induced EEG spectral response across each driving scenario. Figures 3, 
4 illustrate the changes in the spectral response and the average 
changes in theta- and alpha-band spectral responses in each driving 
scenario. The largest response was observed in the theta- and alpha-
band activity during urban driving (0.0032 ± 0.0023). However, the 
theta- and alpha-band activities declined during congested driving 
(0.0016 ± 0.0030). Conversely, in highway driving, the theta- and 
alpha-band activity was diminished (−0.0004 ± 0.0038). These results 
were compared for each condition using the paired Student’s t-test. A 
significant difference was found in changes in the theta- and alpha-
band activity between urban and highway driving (p < 0.01, Cohen’s 
d = 1.14). No significant difference was found between urban and 
congested driving (p = 0.066, Cohen’s d = 0.59) nor between congested 
and highway driving (p = 0.08, Cohen’s d = 0.59).

Figure 5 summarizes the WWL and each factor of NASA-TLX in 
each driving scenario. The average WWL was higher in urban 

(61.07 ± 11.03) and congested driving (67.00 ± 19.23) than in highway 
driving (48.57 ± 13.09). The scores for MD were also higher in urban 
(68.64 ± 10.89) and congested driving (67.73 ± 22.49) than in highway 
driving (50.45 ± 26.23). PD was highest in congested driving 
(61.82 ± 27.49), followed by urban driving (50.00 ± 16.37), and then 
highway driving (38.18 ± 18.86). TD was higher in urban 
(56.36 ± 23.36) and congested driving (51.82 ± 29.40) than in highway 
driving (36.36 ± 16.11). OP scores were similar across scenarios 
(urban: 35.91 ± 23.04; traffic jams: 37.27 ± 27.58; highway: 
30.45 ± 23.10). EF scores were higher in urban driving (77.27 ± 14.82) 
than in congested (67.25 ± 25.26) and highway driving (64.09 ± 24.84). 
FR scores were highest in congested driving (74.54 ± 20.27), followed 

FIGURE 3

Grand averages of the normalized power spectrum between the 
initial 2  min and the final 2  min of driving in three different traffic 
conditions. The solid blue, orange, and yellow lines represent urban 
driving with 20% traffic density, congested driving, and highway 
driving, respectively. Pale blue areas show theta- and alpha-band 
(4–13  Hz) activities.

FIGURE 4

Average changes in the theta- to alpha-band spectral responses 
between the initial 2  min and the final 2  min of driving in three 
different traffic conditions. **Indicates statistical significance 
(p  <  0.01), evaluated by Student’s t-test. The error bar indicates one 
standard deviation.
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by urban driving (65.00 ± 21.11), and then highway driving 
(64.09 ± 16.62). Statistical differences in WWL and each factor of 
NASA-TLX between driving scenarios were evaluated using paired 
Student’s t-tests. For the WWL, significant differences were confirmed 
between urban and highway driving (p < 0.01, Cohen’s d = 1.120), and 
between congested and highway driving (p < 0.05, Cohen’s d = 1.032). 
For MD, significant differences were found between urban and 
highway driving (p < 0.05, Cohen’s d = 0.908), and between congested 
and highway driving (p < 0.05, Cohen’s d = 0.706). PD showed 
significant differences only between congested and highway driving 
(p < 0.01, Cohen’s d = 1.003). TD showed significant differences only 
between urban and highway driving (p < 0.05, Cohen’s d = 0.997). 
Significant differences in EF were found only between urban and 
highway driving (p < 0.05, Cohen’s d = 0.644). No significant 
differences were found in OP or FR across any combinations.

Figure 6 summarizes the numbers of operations and perceptual 
objects. The total number of operations and perceived objects was 
highest in urban driving (265.91 ± 31.41), followed by congested 
driving (213.45 ± 30.93), and then highway driving (196.63 ± 14.20). 
Significant differences were found between all combinations (urban-
traffic jams: p < 0.01, Cohen’s d = 1.683; urban-highway: p < 0.01, 
Cohen’s d = 2.964; traffic jams-highway: p < 0.05, Cohen’s d = 0.823). 
The number of operations in urban (115.00 ± 15.90) and congested 
driving (122.91 ± 22.33) was higher than in highway driving 
(80.27 ± 10.76). Significant differences were found between urban and 
highway driving (p < 0.01, Cohen’s d = 2.557) and between congested 
and highway driving (p < 0.01, Cohen’s d = 2.432). The number of 
perceptual objects was highest in urban driving (150.91 ± 20.49), 
followed by highway driving (113.36 ± 6.19), and then congested 
driving (90.54 ± 13.72). Significant differences were found between all 

FIGURE 5

The weighted workload [WWL: (A)] and individual scores [MD, PD, TD, OP, EF, and FR, (B)] on the NASA-TLX during driving in three different traffic 
conditions. * and ** Indicate statistical significance (p  <  0.05 and p  <  0.01, respectively), evaluated by Student’s t-test. The error bar indicated one 
standard deviation.
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combinations (urban-traffic jams: p < 0.01, Cohen’s d = 3.461; urban-
highway: p < 0.01, Cohen’s d = 2.480; traffic jams-highway: p < 0.01, 
Cohen’s d = 2.141). These results confirm the relationship between the 
number of operations and levels of perception mentioned in section 
2.3, “Driving scenarios,” of the Methods section.

Figure 7 shows scatter plots of the change in spectral response of 
theta and alpha bands compared with WWL, the change in spectral 
response of theta and alpha bands compared with the number of 
operations and perceptions, and WWL compared with the number of 
operations and perceptions, respectively. The Pearson’s correlation 
coefficients between the change in the spectral response of the theta 
and alpha bands and WWL were 0.94, 0.90, and 0.93 for urban, traffic 
jams, and highway driving, respectively. The correlation coefficients 
between theta and alpha band spectral response changes and the 
number of operations and cognitions were 0.88, 0.94, and 0.90 for 
urban, traffic jams, and highway driving, respectively. The correlation 
coefficients between WWL and the number of operations and 
perceptions in urban, traffic jams, and highway driving were 0.95, 
0.96, and 0.95.

Figure 8 illustrates the level of fatigue determined by the fatigue 
questionnaire. The levels of fatigue reported by participants in urban, 
traffic-jam, and highway scenarios were 72.27 ± 10.52, 62.27 ± 29.79, 
and 46.81 ± 18.49, respectively. A statistical difference was found only 
between urban and highway driving (p < 0.01, Cohen’s d = 1.693). No 
significant difference was found between urban and congested driving 
(p = 0.18, Cohen’s d = 0.451) or between congested and highway 
driving (p = 0.12, Cohen’s d = 0.621).

4 Discussion

In this study, we investigated the mental and physical workload 
induced by different driving environments using EEG. We simulated 
three distinct driving conditions with varying levels of perception and 
vehicle operational demands using a driving simulator. The results 
confirmed differences in theta- and alpha-band spectral responses as 
reported by Lal and Craig (14) and Awais et al. (37) across the three 
driving conditions. In particular, a fatigue-related increase was found 

in urban driving and in congested driving. Higher correlations were 
also confirmed among theta- and alpha-band spectral responses, 
subjective workload evaluations using NASA-TLX, and the number 
of operations and perceptions related to the amount of mental and 
physical workload. These findings imply that the amount of load 
related to driver perception and operation inherent in driving 
environments is an essential factor in inducing driver fatigue.

This study suggests a relationship between theta- and alpha-band 
spectral responses, as indicators of fatigue, and the induction of 
various perceptual and vehicle operating loads under different driving 
conditions. Here, we discuss the causal relationship between these 
spectral responses and the varying levels of perceptual and driving 
demands across different driving environments. Previous studies have 
indicated that mental fatigue results from the mental effort required 
for repeated perceptual evaluations and decision-making regarding 
driving situations (4, 18–20), whereas physical fatigue arises from the 
cumulative physical effort involved in actions such as using the pedals 
and steering (16, 17, 20). The occurrence of fatigue is closely related 
to both qualitative and quantitative task-related factors (54). In the 
present study, the cumulative loads of perceptual and vehicle driving 
demands (Figure 6, left) showed a similar trend to the changes in 
theta- and alpha-band spectral activity, with high correlations 
(Figure 4; i.e., urban>traffic jams>highway, Figure 7). However, this 
similarity was not observed when the numbers of operations and 
perceptual objects were considered individually (Figure 6; middle and 
right plots). Therefore, the quantitative factors of driver fatigue under 
different driving conditions can be  explored by examining the 
perceptual and driving operation demands. Under the driving 
conditions simulated in this study, urban driving required both 
perception of the driving situation and driving operations, whereas 
driving in congested traffic mainly required driving operations. 
Conversely, driving on highways required a significant perceptual 
load. These results suggest that fatigue is more likely to occur in urban 
areas, where the perception and driving operation requirements are 
the highest. Furthermore, the main cause of fatigue in congested 
driving appears to be  the physical stress associated with driving 
operations, whereas in highway driving, the main cause of fatigue 
seems to be the mental stress associated with cognitive activities.

FIGURE 6

Numbers of vehicle operations and perceptions of traffic objects during driving in three different traffic conditions. * and ** Indicate statistical 
significance (p  <  0.05 and p  <  0.01, respectively), evaluated by Student’s t-test. (A–C) Represent the total number of operations and perceptions, 
number of operations, and number of perceptions, respectively. The error bar indicates one standard deviation.
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Next, we explored the relationship between changes in theta- and 
alpha-band spectral responses across different traffic environments and 
subjective workload assessment using the NASA-TLX score. The WWL 
obtained from the NASA-TLX reflects fatigue based on task complexity 
and difficulty, with higher scores correlating with increased fatigue 
(54). Average WWL was highly correlated with the theta- and alpha-
band spectral responses indicative of fatigue, as shown in Figure 4, and 
with the level of perception and operation (Figure 6, left). The findings 
in Figure 5 confirm that both MD and PD are high for urban driving, 
PD is pronounced for congested driving, and MD is elevated for 
highway driving. The cumulative load of these demands is presumed 
to reflect the complexity and difficulty of each driving environment. 
This was echoed in the theta- and alpha-band spectral responses. 
Further analysis of each NASA-TLX score for each driving condition 
revealed that both MD and PD were higher for driving in congested 

traffic. In urban driving, MD and PD remained elevated, albeit with PD 
slightly lower than in congested driving. Lastly, MD surpasses PD 
during highway driving. These findings suggest that both mental and 
physical workloads contribute to fatigue in urban driving, while mental 
load predominantly contributes to fatigue in highway driving. 
However, the MD and PD scores in congested driving were generally 
high, and the trends of rank differed from the spectral response and the 
numbers of operations and perceptual objects in the present study. 
According to the weights calculated for WWL determined by pairwise 
comparison (Supplementary Table S2), the FR component in 
NASA-TLX contributed more to WWL for traffic jams compared to 
MD and PD. Therefore, trends in WWL may differ from the spectral 
response and the number of operations and perceptual objects for 
traffic jams. As previously reported, driver stress in congested driving 
varies widely (46), and these differences, with less contribution from 
MD and PD compared to FR scores, may reflect the variability among 
drivers, as observed in our subjective NASA-TLX evaluations.

This study had limitations regarding the use of a simulator to 
replicate the driving visual environment and evaluate driver fatigue. 
Fatigue during driving in the different simulated driving conditions 
was psychologically evaluated. Traffic conditions such as pedestrians 
and other vehicles during driving were set in accordance with the 
actual driving environment, but some aspects differed from real 
vehicle driving conditions. The findings of these driving simulations 
regarding fatigue and its contributing factors are presumed to 
be generally applicable to real-world driving situations. However, in 
the future, the validity of these findings could be further substantiated 
by conducting evaluations during actual driving in real-world 
environments, following a defined protocol. Nonetheless, assessing 
fatigue during real driving poses certain challenges due to safety 
concerns, and it may increase the risk of collisions.

In this study, EEG was measured from seven electrode sites 
(Figure 1), but only the EEG signal measured from O2 was evaluated. 
The results confirmed differences in theta- and alpha-band spectral 
responses across the three driving conditions. However, to further 
understand the details of mental and physical workload-related brain 
activities in these different conditions, it is necessary to investigate the 

FIGURE 8

Levels of fatigue assessed using a questionnaire 
(Supplementary Figure S1) during driving in three different traffic 
conditions. **Indicates statistical significance (p  <  0.01), evaluated by 
Student’s t-test. The error bar indicates one standard deviation.

FIGURE 7

Scatter plot showing the relationship between (A) changes in theta- to alpha-band spectral response (initial versus final 2  min of driving) and WWL, 
(B) changes in theta- to alpha-band spectral responses (initial versus final 2  min of driving) and number of operations and perceptions, and (C) WWL 
and number of operations and perceptions. Blue, orange, and yellow-filled circles represent the three different traffic conditions urban driving with 
20% traffic density, congested driving, and highway driving, respectively.
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relationships between electrode sites through functional connectivity 
or coherence analysis with graph theory in the future.

Our findings were obtained from a limited sample size. The study 
also did not balance age and gender. Previous research has 
demonstrated that drivers’ personality traits and driving behaviors, 
such as perception and maneuvers, vary across ages (58–60) and differ 
between genders (61, 62). Although we believe that our findings are 
applicable to these conditions based on a certain level of significance 
and effect size, future studies would benefit from a more 
comprehensive evaluation, including a larger sample size that 
encompasses a broader range of age groups and genders.
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