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Negativity of factor correlations 
biases the sizes of factor 
variances in bifactor CFA models
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Estimates of factor variances observed together with negative factor correlations 
in CFA using the bifactor model are explored for specific characteristics. The 
analysis is conducted on the basis of quantified accounts of common systematic 
variation achieved by the two group latent variables of the model. It reveals that 
negative factor correlations tend to be associated with larger factor variance 
estimates than the zero correlation and positive correlations. Further, it reveals 
that upper limits to the sizes of factor variances for positive factor correlations 
corresponding to expectations exist while in negative correlations such limits 
are missing and allow for overly large factor variance estimates. Results of 
the analysis based on quantified accounts are supported by the results of a 
simulation study.
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Introduction

The bifactor model (1) of confirmatory factor analysis (CFA) extends the congeneric 
measurement model (2) by incorporating another latent variable. This extension introduces a 
new feature that deserves further investigation: the relationship between the two latent 
variables that is special because it involves two group latent variables. Referred to as factor 
correlation, its non-standardized version is an ingredient of the model’s covariance matrix also 
denoted as model-implied covariance matrix that plays a key role in investigating model-data 
fit (3, 4). The model-implied covariance matrix is thought to account for the systematic 
variation of data whilst latent variables capture shares of the variation that are quantified as 
factor variances. The relationship between factor correlations and factor variances is in the 
focus of the research described in this paper. It is investigated whether negative factor 
correlations lead to overly large factor variances, that is, factor variances accounting for more 
common systematic variation in the presence of a negative factor correlation than otherwise. 
The concern with such factor variances is of importance since overly large factor variances 
imply overly large factor loadings and may mean impairment of the interpretation and 
evaluation of the outcomes of investigations by the bifactor model (5).

Factor correlations can indicate three types of relationships of latent variables: positive, 
negative and zero relationships. A zero relationship typically arises when the covariance 
parameter (= non-standardized factor correlation) is constrained to zero. A factor correlation 
can either characterize the relationship between two self-contained latent variables or two 
group latent variables. Structural equation models are likely to relate self-contained latent 
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variables to each other (6), that is, the latent variables are rooted in 
different sets of manifest variables. In contrast, CFA models like the 
bifactor model can include group latent variables, that is, the latent 
variables are rooted in the same set of manifest variables (1). This 
means that the latent variables account for different shares of the 
common systematic variation characterizing a set of manifest 
variables. Since CFA perform according to the model-fit approach (3, 
4), the amount of available systematic variation can be considered as 
limited requiring its subdivision into shares. The shares of variation 
for which latent variables account mainly depend on the characteristics 
of the model: the number of latent variables and the factor correlation 
that may be positive or negative.

The described research makes use of models with fixed factor 
loadings so that factor variances can be estimated directly and possible 
problems with the signs of factor loadings are avoided (7). The 
possibility to either estimate or fix parameters in latent variable 
modeling was under discussion in the early days of structural equation 
modeling (8, 9) and ended up with giving preference to estimating 
factor loadings. CFA models allowing factor loadings to be estimated 
are likely to yield the better model fit since they can accommodate 
minor effects due to assessment methods and random influences. But 
in structured random data that exclude such additional systematic 
effects, model fit does not differ regardless of whether factor loadings 
are fixed or estimated (10). CFA models with fixed factor loadings find 
regular application in longitudinal research (11) as well as in the 
context of experimental research [e.g., (12, 13)].

The following sections describe an analysis of the consequences 
of a negative estimate of the factor correlation for the factor variances 
of group latent variables. Outcomes of this analysis provide the 
expectations for the empirical research that includes a simulation study.

The outset

This section introduces to the relevant measurement model and 
corresponding model-implied covariance matrix, describes the scaling 
of variance parameters to assure the validity of results and presents the 
empirical covariance matrix as limitation for parameter estimation.

The models
The customary CFA measurement model (2, 14) that is extended to 

include two latent variables (= factors), specified by subscripts A and B, 
instead of only one provides the outset. Let x x∈ℜ( )×p 1  be the p × 1 

vector of centered manifest variables, λA and λB λλ λλ
A B
, ∈ℜ( )×p 1

 
be  the p × 1 vectors of factor loadings, ξA  and ξB[ξΑ, ξΒ~Ν(0,σ*)] 

be  the latent variables and ( )1p×∈ℜδ δ  be  the p × 1 vector of 
residuals. Given this basis for the further reasoning, the extended 
measurement model for centered data is defined as

 A A B B .= + +x ξ ξλ λ δ  (1)

It is referred to as bifactor model (1) if at least one of the p factor 
loadings of manifest variables on one of the two latent variables is not 
estimated. Note. The fixed factor loading can be set to zero or any 
other value justified by substantive theory.

Since the measurement model (Equation 1) does not include 
parameters for representing factor variances and the factor correlation, 
we  additionally consider the corresponding p × p model of the 

covariance matrix, Σ ( )p p×∈ℜΣ , introduced as part of the 
Maximum Likelihood Estimation (MLE) method (3, 4, 15). This 
covariance matrix model, when adapted to the CFA measurement 
model including two latent variables, is described as

 
'= +Σ ΛΦΛ Θ  (2)

where ( )2p×∈ℜΛ Λ  is the p × 2 matrix of factor loadings, 

( )2 2×∈ℜΦ Φ  is the 2 × 2 matrix of variances and covariances of 
latent variables, and ( )p p×∈ℜΘ Θ  is the p × p diagonal matrix of 
residual variances.

Λ and Φ are of special importance since they include parameters 
representing factor loadings, factor variances and the factor 
correlation. Under the assumptions of Equation 1, the relevant 
substructure of Λ is given by

 [ ]A B, =Λ λ λ  (3)

and of Φ by

 

A A B

A B B
.×

×

 
=  
 

ϕ ϕ
ϕ ϕ

Φ
 

(4)

Φ includes the variance parameters, ϕA and ϕB, as well as the 
covariance parameter, ϕA × B. Both off-diagonal entries show the same 
subscripts since Φ is expected to be  a symmetric matrix. 
Standardization transforms ϕA × B into the factor correlation. This 
means that the reasoning regarding ϕA × B is implicitly reasoning 
regarding the factor correlation. Following the specifications of Λ and 
Φ Equations 3 and 4, Equation 2 can be detailed as

 
[ ] [ ]A A B ''

A B A B
A B B

, , .×

×

 
= + = × × + 

 

ϕ ϕ
ϕ ϕ

Σ ΛΦΛ Θ λ λ λ λ Θ
 

(5)

In CFA the parameters included in matrices and vectors are either 
free for estimation, constrained or fixed to zero. While in customary 
CFA λA as well as λB are free for estimation and ϕA as well as ϕB are 
fixed to the value of 1, in CFA with fixed factor loadings the entries of 
λA as well as λB are constrained to pre-specific values and ϕA as well as 
ϕB are free for estimation. We refer to this version of CFA as fixed-
links modeling.

The scaling
The other issue that needs to be addressed in the beginning is 

regarding the scaling of variance parameters since variance 
parameters do not necessarily yield valid estimates of factor variances, 
that is, estimates corresponding to factor variances achievable in 
explorative factor analysis (15, 16). Further, appropriate scaling 
contributes to the correct quantification of common systematic 
variation captured by a latent variable. While it is not possible to 
compare the shares of common systematic variation for which latent 
variables account directly, scaling yields estimates that are factor 
variances and enable comparisons (17). Different scaling methods are 
available, including the criterion-based methods, the marker-variable 
method, and the reference-group method (18–20).
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In an investigation with fixed factor loadings the first step involves 
selecting values for representing the assumed relationships of manifest 
and latent variables. This step is guided by theory-based expectations 
or can be based on observations. In the next step these values are 
treated like factor loadings that require scaling. In this case scaling has 
to be accomplished according to a criterion-based method (20). This 
method necessitates that each p × 1 vector λ of Λ (Equation 3) is 
replaced by p × 1 vector λ  so that λ  = cλ with c∈ℜ+. This implies 
that c is selected so that

 

2

1
1 .

p
i

i
λ

=
=∑ 

 
(6)

Estimates of the variance parameter, ϕ, observed in CFA using 
fixed values (λ



) that comply with Equation 6 as factor loading are 
factor variances in the sense of customary factor variances.

The limitation
Finally, it is essential to address the limitation for parameter 

estimation, which arises from the empirical covariance matrix in 
combination with the fitting function employed in parameter 
estimation as, for example, the Maximum Likelihood Estimation 
method (15, 21). Given the p × p empirical covariance matrix, S 
S∈ℜ( )×p p , the p × p model-implied covariance matrix, Σ 

( )p p×∈ℜΣ , that is specified by assigning value(s) to parameter(s), 
ϑ, and the fitting function, F[], minimizing the discrepancy between 
S and Σ according to F[] is reached by

 ( )F ,S . Σ ϑ
 (7)

Since S is constant and the discrepancy between Σ and S is 
gradually reduced in parameter estimation, estimates normally stay 
within limited ranges instead of growing infinitely. This means that S 
together with the fitting function serves as a limitation for the sizes of 
parameter estimates in parameter estimation.

However, this limitation can be moderated by characteristics of 
the model: unique systematic variation can be  transformed into 
common systematic variation. For example, adding a new parameter 
to a model can increase the amount of common systematic variation 
for which this model accounts on the expense of unique systematic 
variation. Further, the size of a parameter estimate can differ 
depending on its (model) environment. Moreover, compensation of 
positive by negative parameter estimates cannot be  ruled out. 
Therefore, we refer to this limitation as moderated limitation.

The transformation of the model-implied 
matrix into a sum of matrices

For studying the relationship between factor correlation (as 
covariance parameter) and factor variances (as variance parameters), 
the relevant part of Equation 5 that is the product accounting for 
common systematic variation of data needs to be transformed into a 
sum. For this purpose we distinguish between the components of Σ 
that account for common systematic variation, ΣCSV, and for unique 
systematic variation, ΣUSV, and eliminate the irrelevant component 

that is the component accounting for unique systematic variation, so 
that ΣCSV remains:

 
[ ] [ ]A A B ''

CSV A B A B
A B B

, , ×

×

 
= = × × 

 

φ φ
φ φ

Σ ΛΦΛ λ λ λ λ
 
(8)

Matrix multiplication for transforming the product Equation 8 
into a sum leads to

 
' ' ' '

CSV A A A A B B A A B A B B B B× × = + + + φ φ φ φΣ λ λ λ λ λ λ λ λ
 
(9)

(see Supplementary Appendix 1). Re-arranging the summands 
Equation 9 yields

 
( )' ' ' '

CSV A A A A B B A A A B B B× = + + +
 
φ φ φΣ λ λ λ λ λ λ λ λ

 
(10)

Since products 
'

A Aλ λ , 
'

B Aλ λ , 
'

A Bλ λ  and 
'

B Bλ λ  constitute 
Equation 10 p × p matrices, they can be replaced by corresponding 
p × p matrices, MA, MBA, MAB, and MB, and the overall matrix can 
be dissolved into the sum of its components:

 ( )CSV A A A B BA AB B B.×= + + +M M M Mφ φ φΣ  (11)

As a result of the transformations, the variance parameters and the 
covariance parameter are the ingredients of different component 
of a sum.

Model variants for representing common 
systematic variation

In this section we specify variants of Equation 11 based on the 
three possible outcomes of estimating the covariance parameter 
(ϕA × B). It is important to note that in CFA with fixed factor loadings, 
only three parameters require estimation: the covariance parameter 
(ϕA × B) and the variance parameters (ϕA and ϕB). The covariance 
parameter (ϕA × B) is a scalar with no restriction in ∈ℜ  whereas 
variance parameters (ϕA and ϕB ∈ℜ) are restricted: ϕA ≥ 0 and ϕB ≥ 0 
since they are variances. Note. While Variant 1 is mostly due to a 
restriction, Variants 2 and 3 are data driven.

Variant 1: ϕA × B = 0. In this variant the component including the 
covariance parameter is eliminated from the right-hand part of 
Equation 11.

 CSV A A B B.∗ ∗ ∗= +M Mφ φΣ  (12)

The stars added to the symbols indicate that estimates are 
characteristic for the two-factor model with a zero factor 
correlation. In Variant 1 each component of the right-hand part can 
contribute positively to the sum if the matrix entries are positive 
or zero.

Variant 2: ϕA × B > 0. The covariance-including component of 
Equation 11 is retained and contributes positively to the sum. 

https://doi.org/10.3389/fams.2024.1423726
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Schweizer et al. 10.3389/fams.2024.1423726

Frontiers in Applied Mathematics and Statistics 04 frontiersin.org

We make this obvious by adding superscript + in parentheses to ϕ 
[ϕ (+)]:

 
( ) ( )CSV A A BA AB B BA B .∗∗ +∗∗ ∗∗ ∗∗
×= + + +M M M Mφ φ φΣ  (13)

The double stars serving as superscript added to symbols signifies 
that parameter estimates are characteristic for this two-factor model 
with a correlation between the latent variables that happens to 
be positive. All components contribute positively if the matrix entries 
are positive or zero.

Variant 3: ϕA × B < 0. In this variant the overall structure of 
Equation 11 is also retained. But, in this variant the covariance-
including component does not contribute positively to the sum but 
negatively. We  make this obvious by adding superscript  - in 
parentheses to ϕA × B [ϕA × B (−)]:

 
( ) ( )CSV A A BA AB B BA B .∗∗∗ −∗∗∗ ∗∗∗ ∗∗∗

×= + + +M M M Mφ φ φΣ  (14)

The stars added to symbols make again aware that parameter 
estimates are characteristic for this specific model where the 
covariance parameter happens to be  negative. All components 
contribute positively with the exception of the interaction 
component that contributes negatively if the matrix entries are 
positive or zero.

In order to make the negativity of ϕA × B especially apparent, 
we restrict it to its absolute value and compensate for this restriction 
(see Equation 14) by replacing the plus symbol by the minus symbol:

 
( ) ( )CSV A A A B BA AB B B.−∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

×= − + +M M M Mφ φ φΣ
 
(15)

The effect of negativity of the covariance 
parameter

In this section the issue outlined in the introductory section is 
finally addressed: what are the consequences of a negative factor 
correlation for the factor variances of group latent variables? 
We initiate the following analysis by positing that a negative factor 
correlation observed in an investigation using the bifactor CFA model 
is associated with larger factor variances in the sense of a larger 
variance sum (ϕA + ϕB) than a zero factor correlation. This is not what 
is expected from the technical perspective: an increase in common 
systematic variation due to a new share that is accounted by the 
combination of latent variables while the other shares stay more or 
less constant.

In order to justify the posited statement, we compare the accounts 
of common systematic variation captured by the latent variables of 
Variants 1 and 3 of Equation 11 represented by Equations 12 and 15, 
respectively. Such a comparison requires the quantification of the 
corresponding representations of common systematic variation. For 
this reason we assume the availability of a quantification function, g(), 
that is applicable to CSV

∗Σ  and CSV
∗∗∗Σ  [ ( )CSVg ∗Σ  and ( )CSVg ∗∗∗Σ ] and 

yields quantities. Furthermore, in order to arrive at clear-cut results, 
we assume that all entries of the matrices are positive or zero.

The quantification of common systematic variation represented 
by the corresponding components of the model-implied covariance 
matrix by g() yields quantities for different CFA models that unlikely 
correspond because of the different characteristics of Variants 1 and 
3. Establishing correspondence of these quantities requires the 
representation of the difference. Let υ ∈ℜ be  the parameter that 
reflects the difference so that

 
( ) ( )CSV CSVg .g∗∗∗ ∗Σ = Σ + υ

 
(16)

We assumed υ > 0 since more complex models are more likely to 
account for more common systematic variation than less complex 
models. Increasing the complexity of a model usually means the 
transformation of additional unique systematic variation into 
common systematic variation.

In the next step CSV
∗∑  and CSV

∗∗∗∑  are replaced by the right-hand 
parts of Equations 12 and 15 in corresponding order so that

 

( ) ( )( )
( )

A A A B BA AB B B

A A B B

g

g .

−∗∗∗ ∗∗∗ ∗∗∗
×

∗ ∗

− + +

= + +

M M M M

M M

φ φ φ

φ φ υ
 

(17)

This step enables quantifying common systematic variation 
captured by individual latent variables in the established way, that is, 
quantification of the shares of common systematic variation for which 
the latent variables account individually and together through 
parameter estimation. Scaling additionally assures that the estimates 
of variance parameters correspond to factor variances (see section 
titled The Outset). Therefore, with respect to estimated and scaled 
parameters, Equation 17 can be re-written as:

 
φ φ φ φ φ υA A B B A B
∗∗∗

×
∗∗∗ −( ) ∗∗∗ ∗ ∗− + = + +2 .

 
(18)

In order to achieve that both sides of Equation 18 include sums 
with positively contributing components, the component preceded by 
the minus symbol is shifted from the left-hand side to the 
right-hand-side:

 
φ φ φ φ υ φA B A B A B
∗∗∗ ∗∗∗ ∗ ∗

×
∗∗∗ −( )+ = + + + 2 .

 
(19)

Finally, the factor variances need to be isolated. The right-hand 
part of Equation 19 includes two components that are not variances 
of individual latent variables. Removing them from Equation 19 turns 
the equality into an inequality:

 φ φ φ φA B A B
∗∗∗ ∗∗∗ ∗ ∗+ > + . (20)

This result confirms the initially posited statement that negative 
factor correlations tend to associate with larger factor variances than 
a zero factor correlation. At the same time, it contradicts the 
expectation according to the technical perspective that suggests an 
increase of common systematic variation restricted to a new share 
captured by the combination of latent variables while the factor 

https://doi.org/10.3389/fams.2024.1423726
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Schweizer et al. 10.3389/fams.2024.1423726

Frontiers in Applied Mathematics and Statistics 05 frontiersin.org

variances of the individual latent variables stay more or less constant. 
Further, there is also a restriction: the inequality is only valid for 

υ φ+( ) >×
∗∗∗ −( )

2 0A B  that means for 2 φ υA B×
∗∗∗ −( ) > − . But for υ > 0 this 

is not really a restriction.  ■
Remark 1. Taking the purely theoretical perspective, the 

restriction suggests that there is no upper limit for the sum of φA
∗∗∗ and 

φB
∗∗∗ since there is no upper limit for the absolute size of φA B×

∗∗∗  (see 
Variant 3) while it cannot become smaller than zero because φA

∗∗∗ and 
φB
∗∗∗representing variances. Further, it can be  argued that a more 

accurate description of the lower limit needs the consideration of φA
∗ , 

φB
∗  and υ  (see Equation 19). Together this means

 
∞ > +( ) > + +( )∗∗∗ ∗∗∗ ∗ ∗φ φ φ φ υA B A B .

 
(21)

But, practical restrictions to the upper limit due to the empirical 
covariance matrix in combination with the fitting function Equation 7 
may prevent very large estimates of φA

∗∗∗ and φB
∗∗∗ (see section titled 

The Outset).
Remark 2. We  like to point out that the second inequity, 

φ φ φ φ υA B A B
∗∗∗ ∗∗∗ ∗ ∗+( ) > + +( ) , considered in isolation contradicts 

Equation 16 unless φA B×
∗∗∗  is taken into consideration too. This suggests 

a compensatory relationship of the sum of φA
∗∗∗ and φB

∗∗∗ on one hand 
and φA B×

∗∗∗  on the other hand.

The extension to positive factor 
correlations

Repeating the reasoning starting from Equation 16 and running 
up to Equation 20 for Variant 2 of Equation 11 that is given by 
Equation 13 instead of Variant 3 reveals the consequences of a positive 
factor correlation instead of a negative one for the factor variances. In 
this case the inequity of Equation 20 is valid for υ φ−( ) >×

∗∗ +( )
2 0A B , 

and φA B×
∗∗  approaching zero leads to the upper limit for the sum of 

factor variances (φ φA B
∗∗ ∗∗+ ). It is the sum of factor variances and 

additionally υ  (φ φ υA B
∗ ∗+ + ) while the lower limit is zero since 

variances cannot be negative. This means that in Variant 2 the sum of 
φ φA B
∗∗ ∗∗+ is restricted to the range described by the following sequence 

of inequities:

 
( ) ( )A B A B 0.∗ ∗ ∗∗ ∗∗+ + > + ≥φ φ υ φ φ

 
(22)

This is a result that can be expected because of the assumptions of 
Equation 16 adapted to Variant 2.

Remark 1. Given that the υ  considered in investigating Variant 3 is of 
the same size as the υ  considered in investigating Variant 2, it turns out 
that what is the lower limit in the case of a negative factor correlation is 
the upper limit in the case of a positive factor correlation. In the case of 
no correspondence of the two υs, the difference between them needs to 
be taken into consideration when comparing the two variants.

Remark 2. In any case, a major difference between Variants 2 and 3 
is apparent that is regarding the upper limit for the size of the variance 
sum: whereas there is a definite upper limit to the sizes of the factor 
variances according to Variant 2 (φ φ υA B

∗ ∗+ + ) that is based in the 
characteristics of the models, there is no such limit to the sizes of the 
factor variances according to Variant 3. In Variant 3, there is only the 

moderated limitation due to the empirical covariance matrix in 
combination with the fitting function (see section titled The Outset). All 
this provides reason for characterizing factor variances associated with a 
negative factor correlation as biased in the sense of being overly large.

Planning the demonstration of the effect of 
a negative factor correlation

The demonstration of the effect of a negative factor correlation 
concentrated on the relationship of factor variances observed together 
with a negative factor correlation and factor variances observed 
without allowing the latent variables to correlate whereat the same 
data served as input to the investigation. The requirements for data 
were that they should necessitate two latent variables and yield a 
negative correlation between them. To satisfy these requirements, a 
relational pattern for data generation was constructed that was similar 
to a correlation matrix displaying the requested properties. This 
matrix originated from data collected by a scale for measuring figural 
reasoning that was designed as a mixture of power test and speeded 
test. Although in such tests only the number of correctly completed 
items served as the performance indicator (22), the duality of the 
challenge suggested that neither cognitive ability nor processing speed 
alone would determine performance completely, requiring a bifactor 
CFA model for structural investigations.

Given this relational pattern, the first step of the empirical part of 
the research was to demonstrate that the relational pattern was in line 
with the requirements, that is, that two latent variables were necessary 
to account for the systematic variation of data and that the factor 
correlation turned out as negative. Afterwards, the generated samples 
of structured random data were to be  investigated using the two 
versions of the bifactor CFA model: the version with correlated latent 
variables and the version without allowing the latent variables to 
correlate. For enabling basic comparisons, applications of one-factor 
CFA models were also scheduled. The subsequent comparisons 
between the factor variances observed in correlated latent variables 
and no correlation of latent variables were to be restricted to cases 
where the correlation happened to be actually negative.

Materials and methods

Structured random data were generated by making use of a 
method frequently employed in research on this issue (22–24). This 
method realized as PRELIS program (25) (see 
Supplementary Appendix 2 for the program code) generates 
matrices of normally distributed random data [N(0,1)] and 
combines the columns of these matrices using weights according to 
a relational pattern retrieved from previous research (see 
Supplementary Appendix 3). The generation process started with a 
500 × 20 matrix of normally distributed random data and yielded a 
20 × 20 covariance matrix that served as input to CFA. The plan of 
the simulation study required 500 matrices of structured random 
data transformed into 500 20 × 20 covariance matrices, their 
structural investigation by bifactor CFA models with correlated and 
uncorrelated latent variables and finally the comparison of the 
factor variances obtained for the different models. One-factor 
models additionally served the investigation of the covariance 
matrices in order to have additional comparison levels.
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The bifactor CFA models for the structural investigation of the 
data included one latent variable designed as ability latent variable and 
another one as speed latent variable. The ability latent variable was 
realized by means of fixed factor loadings of constant size and the 
speed latent variable by means of fixed factor loadings of increasing 
size. We selected quadratically increasing numbers for this purpose; 
the first one of them was set to zero. The actual sizes were determined 
such that scaled factor variances could be expected, that is, the factor 
loadings had to comply with Equation 6. One bifactor CFA model was 
realized as model with no correlation between the latent variables and 
the other one as bifactor CFA model with a correlation. In the 
one-factor CFA models the latent variable was realized as either ability 
latent variable or speed latent variable. In all models the variance 
parameters were set free for estimation. The matrices were investigated 
using the maximum likelihood estimation method of the LISREL 
software (26).

Results

Results of investigating the relational 
pattern

The results of investigating the relational pattern are presented in 
Table 1. The first part (first and second rows) includes the results for 
one-factor models that were added to demonstrate that a one-factor 
CFA model was insufficient to account for the common systematic 
variation of the data (first and second rows). All fit indices with a 
cutoff (RMSEA, SRMR, NNFI and CFI) indicated model misfit 
according to conventional criteria (RMSEA ≤0.06, SRMR ≤0.08, 
NNFI ≥0.95 and CFI ≥ 0.95) (27). The results for the two-factor 
models without and with a correlation of the latent variables are 
provided in the second part of Table 1 (third and fourth rows). The fit 
of the model without a correlation (second to last row) was good or 
acceptable in two fit indices (RMSEA and SRMR). In the model with 
a correlation (last row) all fit indices with a cutoff (RMSEA, SRMR, 
NNFI and CFI) displayed values that were good or acceptable. In sum, 
only the investigation of the two-factor models indicated acceptable 
or good model fit.

The information on factor variances and the factor correlation is 
included in the last columns of Table 1 (ϕ1, ϕ2, and r). The standardized 

covariance representing the factor correlation was negative and of 
moderate size (see last column). The factor variances for the bifactor 
models varied between 3.95 and 5.53. For each latent variable there 
was an increase in size from the model without a correlation to the 
model with a correlation, as was expected. The increase was 37.2 
percent in ϕ1 and 34.2 percent in ϕ2. Furthermore, the factor variances 
observed for the bifactor CFA model with correlated variables were 
larger than the corresponding factor variances of the one-factor CFA 
models. For the first latent variable, ϕ1, the increase was 2.4 percent, 
and for the second latent variable, ϕ2, it was 5.4 percent. This meant 
that the factor variances of the one-factor models, which could 
be expect to account for as much variance as is possible for a single 
latent variable, were smaller than the corresponding factor variances 
of the bifactor CFA model. Finally, the mean estimates of variances 
and the covariance were in line with the assumption that υ > 0. The 
estimate of υ was obtained by summing up the variances of 2uF and 
subtracting this sum form the sum of variances and the covariance of 
2cF [(5.53 + (− 0.39) + 5.30) – (4.03 + 3.95) = 2.46 > 0]. In sum, the 
results supported the hypothesis that a negative factor correlation is 
associated with overly large factor variance estimates.

Results of investigating simulated data

The check of the nature of the covariances observed in 
investigating the 500 covariance matrices revealed that in all cases the 
covariance was negative so that there was no need for excluding cases. 
The estimates varied between −0.84 and − 4.17.

Table 2 provides the observed mean factor variances, covariance 
and factor variance sums. Further, standard deviations are included. 
The individual factor variance means varied between 3.56 and 5.83 
and the factor variance sums between 4.73 and 10.68. As expected, 
the factor variances observed by the bifactor CFA model with 
correlated latent variables surmounted the factor variances for the 
bifactor CFA model without a correlation of latent variables. In the 
first latent variable there was an increase by 36.2 percent and in the 
second latent variable 58.4 percent. In the sums of factor variances 
the increase was 42.5 percent. Additionally, the factor variances were 
treated as simple observation and compared by t-tests. The outcomes 
suggested the rejection of the Null hypotheses based on extremely 
small error probabilities. Furthermore, the mean estimates for 

TABLE 1 Model-fit results, factor variances and factor correlation observed in investigating the relational pattern with the one-factor and bifactor CFA 
models.

Model χ2 df RMSEA SRMR NNFI CFI ϕ1 ϕ2 r

One-factor CFA 

models

1uF1(constant) 442.78 189 0.08 0.10 0.81 0.81 5.40 - -

1uF2(increase) 421.85 189 0.07 0.10 0.83 0.83 - 5.03 -

Bifactor CFA 

models

2uF3 249.49 188 0.04 0.08 0.93 0.93 4.03 3.95 -

2cF4 238.64 187 0.04 0.08 0.94 0.94 5.53 5.30 −0.39

1One-factor CFA model with factor loadings of constant size.
2One-factor CFA model with factor loadings of increasing size.
3Bifactor CFA model with two latent variables (one with constant factor loadings and one with increasing factor loadings) that are uncorrelated.
4Bifactor CFA model with two correlated latent variables (one with constant factor loadings and one with increasing factor loadings).
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variances and the covariance were in line with the assumption that 
υ > 0 [(4.85 + (− 2.56) + 5.83) – (3.56 + 3.68) = 0.88 > 0].

Comparing the factor variances observed for the one-factor CFA 
models with the factor variances observed for the bifactor CFA models 
revealed that in the first latent variable the estimate by the one-factor 
CFA model was larger by 2.8 percent and in the second latent variable 
the estimate of the bifactor CFA model by 23.3 percent. Both factor 
variance sums for the bifactor CFA models were larger than the factor 
variances of the one-factor CFA models.

In sum, the main results of the investigation of the relational 
pattern and the simulation study were in line with the posited 
statement of an association of a negative factor correlation and an 
increased size of factor variances.

Discussion

The account of latent variables for common systematic variation 
is in the focus of the reported research. In a CFA model with two latent 
variables that are group latent variables and no correlation among 
them, each latent variable accounts for its own share of common 
systematic variation. Allowing them to correlate, it makes a difference 
whether the correlation is positive or negative. In a positive correlation 
between the latent variables of a linear measurement model, as is the 
bifactor model (1), the combination of latent variables accounts for 
another share of common systematic variation. There are three 
separate shares of common systematic variation for which two latent 
variables and their combination account. The model-implied 
covariance matrix represents these shares in the investigation of data-
model fit (3, 4).

In contrast, in negative correlations of latent variables there is a 
negative component that is expected to account for common 
systematic variation but cannot be treated as just another share of 
common systematic variation. The negativity calls the idea of 
complementary shares of common systematic variation into question. 
A possible explanation of the effect of negativity could be  a 
compensatory scheme, wherein the negative covariance compensates 
for overly large accounts of common systematic variation by the two 
latent variables. Given that modern estimation methods perform 
according to the expectation–maximization algorithm (28, 29), the 
description of what happens during iteration cycles could provide an 
argument in favor of such a compensatory scheme. According to this 
algorithm, factor loadings and covariance parameters are estimated 

successively, starting with the estimation of factor loadings. This 
means that the factor loadings on the latent variables are initially 
estimated to account for large shares of common systematic variation, 
followed by the estimation of the covariance parameter. In this way 
initially achieved overly large factor loadings may subsequently 
be compensated by a negative covariance estimate. This argument may 
even hold if factor loadings are fixed instead of being estimated.

The results of investigating the relational pattern and of the 
simulation study confirm the supposition of negative factor correlations 
being associated with overly large factor variances. The sizes of factor 
variances observed together with a negative factor correlation clearly 
surmount the sizes of factor variances observed under the condition of 
a factor correlation set to zero. Further, the sums of factor variances 
displayed the same kind of relationship among each other. Moreover, 
sums of factor variances characterizing the bifactor CFA model with a 
correlation of latent variables surmounted the sums of factor variances 
originating from the two one-factor CFA models whereas the sum of 
factor variances characterizing the bifactor CFA model without a 
correlation of latent variables did not.

Factor variances observed together with a negative factor correlation 
tend to be overly large, as is suggested by the results of the reported 
investigations. The transfer from observations based on fixed factor 
loadings to applications making use of free factor loadings suggests that 
factor loadings observed in combination with negative factor correlations 
can also be overly large since overly large factor variances must include 
overly large factor loadings by definition. Since factor loadings provide 
the basis for factor interpretation (5) and even small differences may 
count in applications (30), overly large factor loadings should be treated 
with special care when used in factor interpretation. Further, there are 
conventional lower limits for factor loadings in item selection for test 
construction (31). Their application to overly large factor loadings can 
lead to wrong decisions in the process of constructing a new scale, 
especially if the factor loadings originate from an application of the 
bifactor model and the factor correlation happens to be negative. Besides 
these caveats that may be addressed in future research, the bifactor model 
can be considered as a useful tool for research that also has frequently 
been an important part of the authors’ own work.

The bias of factor variances associate with negativity of the factor 
correlation has so far evaded the attention of research because of 
various reasons. First, the most popular CFA measurement model that 
is the original one-factor model (32) employed for the construction 
and evaluation of scales does not include a factor correlation. Second, 
there is recency of the topic since the first systematic description and 

TABLE 2 Means and standard deviations (in italics) observed in a simulation study by one-factor and two-factor CFA models (N  =  500).

Model Factor variance Covariance Sum1

ϕ1 ϕ2 ϕ1  +  ϕ2

One factor (constant) Mean 4.99 – – 4.99

SD 0.72 – – –

One factor (increasing) Mean – 4.73 – 4.73

SD – 0.57 – –

Two factors, uncorrelated Mean 3.56 3.68 – 7.24

SD 0.75 0.52 – 1.11

Two factors, correlated Mean 4.85 5.83 −2.56 10.68

SD 1.00 0.41 0.60 1.32

1Sum of factor variances of corresponding model.
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investigation of the CFA bifactor model credited to Reise appeared in 
2012 (1) and of estimating unique factor variances in 2019 (17, 33). 
Third, factor correlations have already been assigned an inconspicuous 
role in comparing more and less complex models in the framework of 
the model fit approach (3, 4). Finally, using free factor loadings, 
variation of loading sizes due to the modification of the model by the 
inclusion of a factor correlation is unlikely to give reason for concern 
since variation is considered as” normal” in this context. Therefore, 
the detection of the bias of factor variances despite these obstacles is 
an important step in the direction of providing a method for achieving 
valid estimates of factor variances and factor loadings irrespective of 
the negativity of the factor correlation.

The predominant use of fixed factor loadings may be considered as a 
limitation of the reported research since fixed factor loadings do not even 
play a major role in, for example, text books on confirmatory factor 
analysis [e.g., (14)]. Further, using fixed factor loadings does even not 
mean an advantage regarding model fit since the use of free factor 
loadings usually leads to the more favorable results regarding model fit. 
But, free factor loadings are not without problems. As an investigation of 
the switching-sign problem reveals, the signs of factor loadings estimated 
in CFA can be incorrect (7). The reason for preferring fixed factor loadings 
is that they ensure the achievement of clear-cut results. By using fixed 
factor loadings, the analysis can yield one relevant result for each latent 
variable, whereas otherwise there would be as many results as there are 
manifest variables that might not be especially consistent.

A limitation of the presented research is the lack of advice on how 
to deal with overly large factor variances. The present paper focuses 
on highlighting the difference between the consequences of positive, 
negative and zero factor correlations for factor variances of group 
latent variables and on elucidating the nature of overly large factor 
variances. Adjustments of overly large factor variances by, for example, 
relating them to what is observable in one-factor applications or by 
removing overlapping accounts appear possible but require further 
study and extensive evaluation. More research is necessary in order to 
accomplish these tasks.

Conclusion

Overly large factor variances are possible outcomes of CFA on the 
basis of a bifactor measurement model that includes group latent 
variables if the correlation between these latent variables happens to 
be negative. Negative factor correlations signify that estimates of factor 
variances and corresponding factor loadings may overestimate the 
shares of common systematic variation for which they account. This 
should be taken into consideration when using factor loadings for the 
interpretation and evaluation of the outcomes of investigations using 
the bifactor model.
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