AUTHOR=Bilet Viktoriia , Dovgoshey Oleksiy TITLE=On monoids of metric preserving functions JOURNAL=Frontiers in Applied Mathematics and Statistics VOLUME=10 YEAR=2024 URL=https://www.frontiersin.org/journals/applied-mathematics-and-statistics/articles/10.3389/fams.2024.1420671 DOI=10.3389/fams.2024.1420671 ISSN=2297-4687 ABSTRACT=

Let X be a class of metric spaces and let PX be the set of all f : [0, ∞) → [0, ∞) preserving X, i.e., (Y, f ∘ ρ) ∈ X whenever (Y, ρ) ∈ X. For arbitrary subset A of the set of all metric preserving functions, we show that the equality PX = A has a solution if A is a monoid with respect to the operation of function composition. In particular, for the set SI of all amenable subadditive increasing functions, there is a class X of metric spaces such that PX = SI holds.

2020 Mathematics Subject Classification

Primary 26A30, Secondary 54E35, 20M20