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Qualitative properties of
solutions to a nonlinear
transmission problem for an
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Ukraine, 2Institut für Mathematik, Humboldt-Universität zu Berlin, Berlin, Germany, 3Institut für Partielle

Di�erentialgleichungen, Technische Universität Braunschweig, Braunschweig, Germany

We consider a nonlinear transmission problem for a Bresse beam, which

consists of two parts, damped and undamped. The mechanical damping in

the damping part is present in the shear angle equation only, and the damped

part may be of arbitrary positive length. We prove the well-posedness of the

corresponding system in energy space and establish the existence of a regular

global attractor under certain conditions on the nonlinearities and coe�cients of

the damped part only. Besides, we study the singular limits of the problem under

consideration when curvature tends to zero, or curvature tends to zero, and

simultaneously shear moduli tend to infinity and perform numerical modeling

for these processes.
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1 Introduction

In this study, we consider a contact problem for the Bresse beam. Originally, the

mathematical model for homogeneous Bresse beams was derived in Ref. [1]. We use the

variant of themodel described in Ref. [2, Ch. 3]. Let the whole beam occupy a part of a circle

of length L and have the curvature l = R−1. We consider the beam as a one-dimensional

object and measure the coordinate x along the beam. Thus, we say that the coordinate x

changes within the interval (0, L). The parts of the beam occupying the intervals (0, L0)

and (L0, L) consist of different materials. The part lying in the interval (0, L0) is partially

subjected to structural damping (see Figure 1). The Bresse system describes the evolution

of three quantities: transversal displacement, longitudinal displacement, and shear angle

variation.We denote by ϕ,ψ , andω the transversal displacement, the shear angle variation,

and the longitudinal displacement of the left part of the beam lying in (0, L0). Analogously,

we denote by u, v, and w the transversal displacement, the shear angle variation, and the

longitudinal displacement of the right part of the beam occupying the interval (L0, L). We

assume the presence of mechanical dissipation in the equation for the shear angle variation

for the left part of the beam.We also assume that both ends of the beam are fixed. Nonlinear

oscillations of the composite beam can be described by the following equation system:

ρ1ϕtt − k1(ϕx + ψ + lω)x − lσ1(ωx − lϕ)+ f1(ϕ,ψ ,ω) = p1(x, t), (1)

β1ψtt − λ1ψxx + k1(ϕx + ψ + lω)+ γ (ψt)+ h1(ϕ,ψ ,ω) = r1(x, t), x ∈ (0, L0), t > 0,

(2)

ρ1ωtt − σ1(ωx − lϕ)x + lk1(ϕx + ψ + lω)+ g1(ϕ,ψ ,ω) = q1(x, t), (3)
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FIGURE 1

Composite Bresse beam.

and

ρ2utt − k2(ux + v+ lw)x − lσ2(wx − lu)+ f2(u, v,w) = p2(x, t),

(4)

β2vtt − λ2vxx + k2(ux + v+ lw)+ h2(u, v,w) = r2(x, t),

x ∈ (L0, L), t > 0, (5)

ρ2wtt − σ2(wx − lu)x + lk2(ux + v+ lw)+ g2(u, v,w) = q2(x, t),

(6)

where ρj, βj, kj, σj, λj are positive parameters, fj, gj, hj :R
3 → R

are nonlinear feedbacks, pj, qj, rj :(0, L) × R
3 → R are known

external loads and γ :R → R is a nonlinear damping. The system is

subjected to Dirichlet boundary conditions at the ends of the beam

ϕ(0, t) = u(L, t) = 0, ψ(0, t) = v(L, t) = 0,

ω(0, t) = w(L, t) = 0,
(7)

transmission conditions at point L0

ϕ(L0, t) = u(L0, t), ψ(L0, t) = v(L0, t), ω(L0, t) = w(L0, t),

(8)

k1(ϕx + ψ + lω)(L0, t) = k2(ux + v+ lw)(L0, t), (9)

λ1ψx(L0, t) = λ2vx(L0, t), (10)

σ1(ωx − lϕ)(L0, t) = σ2(wx − lu)(L0, t), (11)

and supplemented with the initial conditions

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), ω(x, 0) = ω0(x), (12)

ϕt(x, 0) = ϕ1(x), ψt(x, 0) = ψ1(x), ωt(x, 0) = ω1(x), (13)

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), (14)

ut(x, 0) = u1(x), vt(x, 0) = v1(x), wt(x, 0) = w1(x). (15)

One can observe patterns in the problem that appear to have

physical meaning:

Qi(ξ , ζ , η) = ki(ξx + ζ + lη) are shear forces,

Ni(ξ , ζ , η) = σi(ηx − lξ ) are axial forces and

Mi(ξ , ζ , η) = λiζx are bending moments

for damped (i = 1) and undamped (i = 2) parts. Later we

will use them to rewrite the problem in a compact and physically

natural form.

This study is devoted to the well-posedness and long-time

behavior of the system (1)–(15). Our main goal is to establish

conditions under which the assumed amount of dissipation is

sufficient to guarantee the existence of a global attractor.

The study is organized as follows: In Section 2, we represent

functional spaces and pose the problem in an abstract form.

In Section 3, we prove that the problem is well-posed and

possesses strong solutions, provided nonlinearities, and initial data

are smooth enough. Section 4 is devoted to the main result of

the existence of a compact attractor. The nature of dissipation

prevents us from proving dissipativity explicitly; thus, we show

that the corresponding dynamical system is of gradient structure

and asymptotically smooth. We establish the unique continuation

property applying the Carleman estimate obtained in Ref. [3]

to prove the gradient property. The compensated compactness

approach is used to prove asymptotic smoothness. In Section 5, we

show that solutions to (1)–(15) tend to solutions to a transmission

problem for the Timoshenko beam when l → 0 and to solutions

to a transmission problem for the Kirchhoff beam with rotational

inertia when l → 0 and ki → ∞, as well as perform numerical

modeling of these singular limits.

2 Preliminaries and abstract
formulation

2.1 Spaces and notations

Let us denote

81 = (ϕ,ψ ,ω), 82 = (u, v,w), 8 = (81,82).

Thus,8 is a six-dimensional vector of functions. Analogously,

Fj = (fj, gj, hj) :R
3 → R

3, F = (F1, F2),

Pj = (pj, qj, rj) :[(0, L)× R+]
3 → R

3, P = (P1, P2),

Rj = diag{ρj,βj, ρj}, R = diag{ρ1,β1, ρ1, ρ2,β2, ρ2} and

Ŵ(8t) = (0, γ (ψt), 0, 0, 0, 0),

where j = 1, 2. The static linear part of the equation system can be

formally rewritten as

A8 =




− ∂xQ1(8
1)− lN1(8

1)

− ∂xM1(8
1)+ Q1(8

1)

− ∂xN1(8
1)+ lQ1(8

1)

− ∂xQ2(8
2)− lN2(8

2)

− ∂xM2(8
2)+ Q2(8

2)

− ∂xN2(8
2)+ lQ2(8

2)




. (16)
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Then transmission conditions (8)–(11) can be written as

follows:

81(L0, t) = 82(L0, t),

Q1(8
1(L0, t)) = Q2(8

2(L0, t)),

M1(8
1(L0, t)) = M2(8

2(L0, t)),

N1(8
1(L0, t)) = N2(8

2(L0, t)).

Throughout the study, we use the notation ||·|| for the L2-norm

of a function and (·, ·) for the L2-inner product. In these notations,

we skip the domain on which functions are defined. We adopt the

notation || · ||L2(�) only when the domain is not evident. We also

use the same notations || · || and (·, ·) for [L2(�)]3.

To write our problem in an abstract form form, introduce the

following spaces: For the velocities of the displacements, we use the

space

Hv = {8 = (81,82) : 81 ∈ [L2(0, L0)]
3, 82 ∈ [L2(L0, L)]

3}

with the norm

||8||2Hv
= ||8||2v =

2∑

j=1

||
√
Rj8

j||2,

which is equivalent to the standard L2-norm.

For the beam displacements, use the space

Hd = {8 ∈ Hv : 8
1 ∈ [H1(0, L0)]

3, 82 ∈ [H1(L0, L)]
3,

81(0, t) = 82(L, t) = 0, 81(L0, t) = 82(L0, t)
}

with the norm

||8||2Hd
= ||8||2d =

2∑

j=1

(
||Qj(8

j)||2 + ||Nj(8
j)||2 + ||Mj(8

j)||2
)
.

This norm is equivalent to the standard H1-norm. Moreover,

the equivalence constants can be chosen independent of l for l is

small enough (see Ref. [4], Remark 2.1). If we set

9(x) =

{
81(x), x ∈ (0, L0),

82(x), x ∈ [L0, L)

we see that there is an isomorphism between Hd and [H1
0(0, L)]

3.

2.2 Abstract formulation

The operator A :D(A) ⊂ Hv → Hv is defined by formula (16),

where

D(A) = {8 ∈ Hd : 8
1 ∈ H2(0, L0), 8

2 ∈ H2(L0, L),

Q1(8
1(L0, t)) = Q2(8

2(L0, t)),

N1(8
1(L0, t)) = N2(8

2(L0, t)), M1(8
1(L0, t)) = M2(8

2(L0, t)) }.

Arguing analogously to Lemmas 1.1-1.3 from Ref. [5], one can

prove the following lemma.

Lemma 2.1. The operator A is positive and self-adjoint. Moreover,

(A1/28,A1/2B) =
1

k1
(Q1(8

1),Q1(B
1))+

1

σ1
(N1(8

1),N1(B
1))

+
1

λ1
(M1(8

1),M1(B
1))

+
1

k2
(Q2(8

2),Q2(B
2))+

1

σ2
(N2(8

2),N2(B
2))

+
1

λ2
(M2(8

2),M2(B
2))

and D(A1/2) = Hd ⊂ Hv.

Thus, we can rewrite equations (1)–(6) in the form of

R8tt + A8+ Ŵ(8t)+ F(8) = P(x, t), (17)

boundary conditions (7) in the form of

81(0, t) = 82(L, t) = 0, (18)

and transmission conditions (8)–(11) can be written as

81(L0, t) = 82(L0, t), (19)

Q1(8
1(L0, t)) = Q2(8

2(L0, t)), (20)

M1(8
1(L0, t)) = M2(8

2(L0, t)) and (21)

N1(8
1(L0, t)) = N2(8

2(L0, t)). (22)

Initial conditions have the form

8(x, 0) = 80(x) and 8t(x, 0) = 81(x). (23)

We use H = Hd ×Hv as a phase space.

3 Well-posedness

In this section, we study strong, generalized, and variational

(weak) solutions to (17)–(23).

Definition 3.1. 8 ∈ C(0,T;Hd)
⋂

C1(0,T;Hv) such that

8(x, 0) = 80(x),8t(x, 0) = 81(x) is said to be a strong solution to

(17)–(23), if

• 8(t) lies in D(A) for almost all t;

• 8(t) is continuous function with values in Hd and 8t ∈

L1(a, b;Hd) for 0 < a < b < T;

• 8t(t) is continuous function with values in Hv and 8tt ∈

L1(a, b;Hv) for 0 < a < b < T;

• Equation (17) is satisfied for almost all t and

Definition 3.2. 8 ∈ C(0,T;Hd)
⋂

C1(0,T;Hv) such that

8(x, 0) = 80(x) and 8t(x, 0) = 81(x) are said to be a generalized

solution to (17)–(23), if there exists a sequence of strong solutions

8(n) to (17)–(23) with the initial data (8
(n)
0 ,8

(n)
1 ) and right hand

side P(n)(x, t) such that

lim
n→∞

max
t∈[0,T]

(
||8(n)(·, t)−8(·, t)||d + ||8

(n)
t (·, t)−8t(·, t)||v

)
= 0.
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We also need a definition of a variational solution. We use six-

dimensional vector functions B = (B1,B2), Bj = (β j, γ j, δj) from

the space

FT = {B ∈ L2(0,T;Hd), Bt ∈ L2(0,T;Hv),B(T) = 0}

as test functions.

Definition 3.3. 8 is said to be a variational (weak) solution to

(17)–(23) if

• 8 ∈ L∞(0,T;Hd), 8t ∈ L∞(0,T;Hv);

• satisfy the following variational equality for all B ∈ FT

−
T∫
0

(R8t ,Bt)(t)dt − (R81,B(0))+
∫ T
0 (A1/28,A1/2B)(t)dt +

∫ T
0 (Ŵ(8t),B)(t)dt +

∫ T
0 (F(8),B)(t)dt −

∫ T
0 (P,B)(t)dt = 0;

(24)

• 8(x, 0) = 80(x).

Now we state a well-posedness result for problems (17)–(23).

Theorem 3.4 (well-posedness). Let

fi, gi, hi :R
3 → R are locally Lipschitz, i.e.,

|fi(a)− fi(b)| ≤ L(K)|a− b|, provided |a|, |b| ≤ K; (N1)

there exists Fi :R
3 → R such that (fi, hi, gi) = ∇Fi;

there exists δ > 0 such that Fj(a) ≥ −δ for all a ∈ R
3; (N2)

P ∈ L2(0,T;Hv); (R1)

and the nonlinear dissipation satisfies

γ ∈ C(R) and non-decreasing γ (0) = 0. (D1)

Then for every initial data 80 ∈ Hd, 81 ∈ Hv, and time

interval [0,T], there exists a unique generalized solution to (17)–

(23) with the following properties:

• every generalized solution is variational;

• energy inequality

E(T)+

∫ T

0
(γ (ψt),ψt)dt ≤ E(0)+

∫ T

0
(P(t),8t(t))dt (25)

holds, where

E(t) =
1

2

[
||R1/28t(t)||

2 + ||A1/28(t)||2
]
+

L∫

0

F(8(x, t))dx

and

F(8(x, t)) =

{
F1(ϕ(x, t),ψ(x, t),ω(x, t)), x ∈ (0, L0),

F2(u(x, t), v(x, t),w(x, t)), x ∈ (L0, L).

• If, additionally,80 ∈ D(A),81 ∈ Hd and

∂tP(x, t) ∈ L2(0,T;Hv) (R2)

then the generalized solution is also strong and satisfies the

energy equality.

Proof. The proof essentially uses the monotone operator theory. It

is rather standard by now (see e.g., Ref. [6]), so in some parts, we

give only references to corresponding arguments. However, we give

some details that demonstrate the peculiarities of 1D problems.

Step 1. Abstract formulation.We need to reformulate problems

(17)–(23) as first-order problems. Let us denote

U = (8,8t), U0 = (80,81) ∈ H = Hd × Hv,

T U =

(
I 0

0 R−1

)(
0 −I

A 0

)
U +

(
0

Ŵ(8t)

)
.

Consequently,D(T ) = D(A)×Hd ⊂ H. In the proof, we denote

B(U) =

(
I 0

0 R−1

)(
0

F(8)

)
, P(x, t) =

(
0

P(x, t)

)
.

Thus, we can rewrite problem (17)–(23) in the form

Ut + T U + B(U) = P , U(0) = U0 ∈ H.

Step 2. Existence and uniqueness of a local solution. Here, we

use Theorem 7.2 from Ref. [6]. For the reader’s convenience, we

formulate it below.

Theorem 3.5 (Ref. [6]). Consider the initial value problem

Ut + T U + B(U) = f , U(0) = U0 ∈ H. (26)

Suppose that T :D(T ) ⊂ H → H is a maximal monotone

mapping, 0 ∈ T 0 and B :H → H is locally Lipschitz, i.e., there

exits L(K) > 0 such that

||B(U)− B(V)||H ≤ L(K)||U − V||H , ||U||H , ||V||H ≤ K.

If U0 ∈ D(T ), f ∈ W1
1 (0, t;H) for all t > 0, then there

exists tmax ≤ ∞ such that (26) has a unique strong solution U on

(0, tmax).

If U0 ∈ D(T ), f ∈ L1(0, t;H) for all t > 0, then there exists

tmax ≤ ∞ such that (26) has a unique generalized solution U on

(0, tmax).

In both cases

lim
t→tmax

||U(t)||H = ∞ provided tmax <∞.

First, we need to check that T is a maximal monotone operator.

Monotonicity is a direct consequence of Lemma 2.1 and (D1).

To prove T is maximal as an operator from H to H, we use

Theorem 1.2 from Ref. [7, Ch. 2]. Thus, we need to prove that

Range(I + T ) = H, with I being the duality map from H to H.
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Let z = (8z ,9z) ∈ Hd × Hv. We need to find y = (8y,9y) ∈

D(A)× Hd = D(T ) such that

−9y +8y = 8z ,

A8y +9y + Ŵ(9y) = 9z ,

or, equivalently, find9y ∈ Hd such that

M(9y) =
1

2
A9y +

1

2
A9y +9y + Ŵ(9y) = 9z − A8z = 2z

for an arbitrary 2z ∈ H′
d
= D(A1/2)′. Naturally, due to Lemma

2.1, A is a duality map between Hd and H′
d
, thus the operator M is

onto if and only if 1
2A9y + 9y + Ŵ(9y) is maximal monotone as

an operator from Hd to H′
d
. According to Corollary 1.1 from Ref.

[7, Ch. 2], this operator is maximal monotone if 1
2A is maximal

monotone (it follows from Lemma 2.1) and I + Ŵ(·) is monotone,

bounded and hemicontinuous fromHd toH
′
d
. The last statement is

evident for the identity map; now let’s prove it for Ŵ.

Monotonicity is evident here. Due to the continuity of the

embedding H1(0, L0) ⊂ C(0, L0) in 1D, every bounded set X

in H1(0, L0) is bounded in C(0, L0) and thus, due to (D1), Ŵ(X)

is bounded in C(0, L0) and, consequently, in L2(0, L0). To prove

hemicontinuity, we take an arbitrary 8 = (ϕ,ψ ,ω, u, v,w) ∈ Hd

and an arbitrary2 = (θ1, θ2, θ3, θ4, θ5, θ6) ∈ Hd and consider

(Ŵ(9y + t8),2) =

∫ L0

0
γ (ψy(x)+ tψ(x))θ2(x)dx,

where9y = (ϕy,ψy,ωy, uy, vy,wy). Since ψy + tψ → ψy, as t → 0

in H1(0, L0) and in C(0, L0), we obtain that γ (ψy(x) + tφ(x)) →

γ (ψy(x)) as t → 0 for every x ∈ [0, L0], and has an integrable

bound from above due to (D1). This implies γ (ψy(x) + tφ(x)) →

γ (ψy(x)) in L1(0, L0) as t → 0. Since θ2 ∈ H1(0, L0) ⊂ L∞(0, L0),

(Ŵ(9y + t8),2) → (Ŵ(9y),2), t → 0.

Hemicontinuity is proved now.

Further, we need to prove that B is locally Lipschitz onH, i.e., F

is locally Lipschitz from Hd to Hv. The embedding H1/2+ε(0, L) ⊂

C(0, L) and (N1) imply

|Fj(8̃
j(x))− Fj(8̂

j(x))| ≤ C(max(||8̃||d, ||8̂||d))||8̃
j − 8̂j||1 (27)

for all x ∈ [0, L0], if j = 1 and for all x ∈ [L0, L], if j = 2. This, in

turn, gives us the estimate

||F(8̃)− F(8̂)||v ≤ C(max(||8̃||d, ||8̂||d))||8̃− 8̂||d.

Thus, all the assumptions of Theorem 3.5 are satisfied and the

existence of a local strong/generalized solution is proved.

Step 3. Energy inequality and global solutions. It can be verified

by direct calculations, that strong solutions satisfy energy equality.

Using the same arguments, as in the proof of Proposition 1.3 [8],

and (D1) we can pass to the limit and prove (25) for generalized

solutions.

Let us assume that a local generalized solution exists on a

maximal interval (0, tmax), tmax < ∞. Then Equation (25) implies

E(tmax) ≤ E(0). Since due to (N2)

c1||U(t)||H ≤ E(t) ≤ c2||U(t)||H ,

we have ||U(tmax)||H ≤ C||U0||H . Thus, we arrive at a contradiction

which implies tmax = ∞.

Step 4. The generalized solution is variational (weak). We

formulate the following obvious estimate as a lemma for future use.

Lemma 3.6. Let (N1) hold and 8̃, 8̂ are two weak solutions

to (17)–(23) with the initial conditions (8̃0, 8̃1) and (8̂0, 8̂1)

respectively. Then the following estimate is valid for all x ∈

[0, L], t > 0 and ǫ ∈ [0, 1/2):

|Fj(8̃
j(x, t))− Fj(8̂

j(x, t))| ≤ C(max(||(8̃0, 8̃1)||H , ||(8̂0, 8̂1)||H))

||8̃j(·, t)− 8̂j(·, t)||1−ǫ , j = 1, 2.

Proof. The energy inequality and the embedding H1/2+ε(0, L) ⊂

C(0, L) imply that for every weak solution8

max
t∈[0,T],x∈[0,L]

|8(x, t)| ≤ C(||80||d, ||81||v).

Thus, using (N1) and (27), we prove the lemma.

Evidently, Equation (24) is valid for strong solutions. We can

find a sequence of strong solutions 8(n), which converges to a

generalized solution 8 strongly in C(0,T;Hd), and 8
(n)
t converges

to 8t strongly in C(0,T;Hv). Using Lemma 3.6, we can easily pass

to the limit in nonlinear feedback terms in (24). Since the test

function B ∈ L∞(0,T;Hd) ⊂ L∞((0,T) × (0, L)), we can use the

same arguments as in the proof of Proposition 1.6 [8] to pass to

the limit in the nonlinear dissipation term. Namely, we can extract

from 8
(n)
t a subsequence that converges to 8t almost everywhere

and prove that it converges to8t strongly in L1((0,T)× (0, L)).

Remark 1. In space dimension greater than one we do not have

the embedding H1(�) ⊂ C(�), therefore we need to assume

polynomial growth of the derivative of the nonlinearity to obtain

estimates similar to Lemma 3.6.

4 Existence of attractors

In this section, we study the long -time behavior of solutions to

problems (17)–(23) in the framework of dynamical systems theory.

From Theorem 3.4, we have

Corollary 1. In addition to the conditions of Theorem 3.4, let

P(x, t) = P(x). Then (17)–(23) generates a dynamical system (H, St)

by using the formula

St(80,81) = (8(t),8t(t)),

where 8(t) is the weak solution to (17)–(23) with initial data

(80,81).

To establish the existence of the attractor for this dynamical

system, we use Theorem 4.8 below; thus, we need to prove

the gradientness, the asymptotic smoothness, as well as the

boundedness of the set of stationary points.
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4.1 Gradient structure

In this subsection, we prove that the dynamical system

generated by (17)–(23) possesses a specific structure, namely, a

gradient under some additional conditions on the nonlinearities.

Definition 4.1 (Ref. [9–11]). Let Y ⊆ X be a positively invariant set

of (X, St).

• a continuous functional L(y), defined on Y , is said to be a

Lyapunov function of the dynamical system (X, St) on the set

Y if a function t 7→ L(Sty) is non-increasing for any y ∈ Y .

• the Lyapunov function L(y) is said to be strict on Y if the

equality L(Sty) = L(y) for all t > 0 implies Sty = y for all

t > 0;

• a dynamical system (X, St) is said to be gradient if it possesses

a strict Lyapunov function on the whole phase space X.

The following result holds true:

Theorem 4.2. Let, additionally to the assumptions of Corollary 1,

the following conditions hold

f1 = g1 = 0, h1(ϕ,ψ ,ω) = h1(ψ), (N3)

f2, g2, h2 ∈ C1(R3), (N4)

γ (s)s > 0 for all s 6= 0. (D2)

Then the dynamical system (H, St) is gradient.

Proof. We use as a Lyapunov function

L(8(t)) = L(t) = 1
2

(
||R1/28t(t)||

2 + ||A1/28(t)||2
)

+
L∫
0

F(8(x, t))dx+ (P,8(t)). (28)

Energy inequality (25) implies that L(t) is non-increasing. The

equality L(t) = L(0), together with (D2) implies that ψt(t) ≡ 0 on

[0,T]. We need to prove that 8(t) ≡ const, which is equivalent to

8(t + h) − 8(t) = 0 for every h > 0. In this proof, we denote

8(t + h)−8(t) = 8(t) = (ϕ,ψ ,ω, u, v,w)(t) .

Step 1. Let us prove that 8
1

≡ 0. In this step, we use the

distribution theory (see e.g., Ref. [12]) because some functions

involved in computations are of too low smoothness. Let us set the

test function B = (B1, 0) = (β1, γ 1, δ1, 0, 0, 0). Then8(t) satisfies

−

T∫

0

(R18
1
t ,Bt)(t)dt − (R1(8

1
t (h)−8

1
1),B

1(0))+

T∫

0

[
1

k1
(Q1(8

1
),Q1(B

1))(t)dt +
1

σ1
(N1(8

1
),N1(B

1))(t)

]
+

T∫

0

(h1(ψ(t + h))− h1(ψ(t)), γ
1(t))dt = 0.

The last term equals zero due to (N3) and ψ(t) ≡ const.

Setting in turn B = (0, γ 1, 0, 0, 0, 0), B = (0, 0, δ1, 0, 0, 0), and

B = (β1, 0, 0, 0, 0, 0) we obtain

ϕx + lω = 0 almost everywhere on (0, L0)× (0,T),

(29)

ρ1ωtt − lσ1(ωx − lϕ)x = 0 almost everywhere on (0, L0)× (0,T),

(30)

ρ1ϕtt − σ1(ωx − lϕ) = 0 in the sense of distributions on

(0, L0)× (0,T). (31)

Inequalities (29)–(31) imply

ϕttx = 0, ωtt = 0 in the sense of distributions.

Similar to regular functions, if the partial derivative of a

distribution equals zero, then the distribution “does not depend"

on the corresponding variable (see Ref. [12, Ch. 7], Example 2), i.e.,

ωt = c1(x)× 1(t) in the sense of distributions.

However, Theorem 3.4 implies that ωt is a regular distribution;

thus, we can treat the equality above as equality almost everywhere.

Furthermore,

ω(x, t) = ω(x, 0)+

∫ t

0
c1(x)dτ = ω(x, 0)+ tc1(x).

Since ||ω(·, t)|| ≤ C for all t ∈ R+, c1(x) must be zero. Thus,

ω(x, t) = c2(x),

which together with (29) implies

ϕx = −lc2(x),

ϕ(x, t) = ϕ(0, t)− l

x∫

0

c2(y)dy = c3(x),

ϕtt = 0.

The last equality, together with (29, 31), boundary conditions,

(18) gives us that ϕ,ω are solutions to the following Cauchy

problem (concerning x):

ωx = lϕ,

ϕx = −lω,

ω(0, t) = ϕ(0, t) = 0.

Consequently, ω ≡ ϕ ≡ 0.

Step 2. Let us prove that u ≡ v ≡ w ≡ 0. Due to (N4), we can

use the Taylor expansion of the difference F2(82(t+h))−F2(82(t))
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and thus (u, v,w) satisfy on (0,T)× (L0, L)

ρ2utt − k2uxx + gu(∂x8
2
,8

2
)+∇f2(ζ1,h(x, t)) ·8

2
= 0, (32)

β2vtt − λ2vxx + gv(∂x8
2
,8

2
)+∇h2(ζ2,h(x, t)) ·8

2
= 0, (33)

ρ2wtt − σ2wxx + gw(∂x8
2
,8

2
)+∇g2(ζ3,h(x, t)) ·8

2
= 0 (34)

u(L0, t) = v(L0, t) = w(L0, t) = 0, (35)

u(L, t) = v(L, t) = w(L, t) = 0, (36)

k2(ux + v+ lw)(L0, t) = 0, (37)

vx(L0, t) = 0, σ2(wx − lu)(L0, t) = 0, (38)

8
2
(x, 0) = 82(x, h)−82

0, 8
2
t (x, 0) = 82

t (x, h)−8
2
1, (39)

where gu, gv, gw are linear combinations of ux, vx,wx, u, v,w with

the constant coefficients, ζj,h(x, t) are 3D vector functions whose

components lie between u(x, t+h) and u(x, t), v(x, t+h) and v(x, t),

w(x, t+h) and w(x, t) respectively. Thus, we have a system of linear

equations on (L0, L) with overdetermined boundary conditions.

L2-regularity of ux, vx,wx on the boundary for solutions to a

linear wave equation was established in Ref. [13], thus, boundary

conditions (37, 38) make sense.

It is easy to generalize the Carleman estimate (Ref. [[3], Th.

8.1]), for the system of the wave equations.

Theorem 4.3 (Ref. [3]). For the solution to problems (32)–(39) the

following estimate holds:

∫ T

0
[|ux|

2 + |vx|
2 + |wx|

2](L0, t)dt ≥ C(E(0)+ E(T)),

where

E(t) =
1

2

(
||ut(t)||

2 + ||vt(t)||
2 + ||wt(t)||

2 + ||ux(t)||
2

+ ||vx(t)||
2 + ||wx(t)||

2
)
.

Therefore, if conditions (37, 38) hold true, then u = v = w = 0.

The theorem is proved.

4.2 Asymptotic smoothness

Definition 4.4 (Ref. [9–11]). A dynamical system (X, St) is said to

be asymptotically smooth if, for any closed bounded set B ⊂ X that

is positively invariant (StB ⊆ B), one can find a compact set K =

K(B) that uniformly attracts B, i.e., sup{distX(Sty,K) : y ∈ B} → 0

as t → ∞.

To prove the asymptotical smoothness of the system

considered, we rely on the compactness criterion due to Ref. [14],

which is recalled below in an abstract version formulated in [11].

Theorem 4.5. [11] Let (St ,H) be a dynamical system on a complete

metric space H endowed with a metric d. Assume that for any

bounded positively invariant set B in H and for any ε > 0, there

exists T = T(ε,B) such that

d(STy1, STy2) ≤ ε +9ε,B,T(y1, y2), yi ∈ B, (40)

where9ε,B,T(y1, y2) is a function defined on B× B such that

lim inf
m→∞

lim inf
n→∞

9ε,B,T(yn, ym) = 0

for every sequence yn ∈ B. Then (St ,H) is an asymptotically smooth

dynamical system.

To formulate the result on the asymptotic smoothness of the

system considered, we need the following lemma:

Lemma 4.6. Let assumptions (D1) hold. Let moreover, there exists

a positive constantM such that

γ (s1)− γ (s2)

s1 − s2
≤ M, s1, s2 ∈ R, s1 6= s2. (D3)

Then, for any ε > 0, there exists Cε > 0 such that

∣∣∣∣∣∣

L0∫

0

(γ (ξ1)− γ (ξ2))ζdx

∣∣∣∣∣∣
≤ ε‖ζ‖2+Cε

L0∫

0

(γ (ξ1)−γ (ξ2))(ξ1−ξ2)dx

for any ξ1, ξ2, ζ ∈ L2(0, L0).

The proof is similar to that given in Ref. [11, Th.5.5].

Theorem 4.7. Let assumptions of Theorem 3.4, (D3), and

m ≤
γ (s1)− γ (s2)

s1 − s2
, s1, s2 ∈ R, s1 6= s2 (D4)

withm > 0 hold. Moreover,

k1 = σ1 (41)

ρ1

k1
=
β1

λ1
. (42)

Then the dynamical system (H, St) generated by problems

(1)–(11) is asymptotically smooth.

Proof. In this proof, we perform all the calculations for strong

solutions and then pass to the limit in the final estimate to justify

it for weak solutions. Let us consider strong solutions Û(t) =

(8̂(t), 8̂t(t)) and Ũ(t) = (8̃(t), 8̃t(t)) to the problem (1)–(11) with

initial conditions Û0 = (8̂0, 8̂1) and Ũ0 = (8̃0, 8̃1) lying in a ball,

i.e., there exists an R > 0 such that

‖Ũ0‖H + ‖Û0‖H ≤ R

denote U(t) = Ũ(t) − Û(t) and U0 = Ũ0 − Û0. Obviously, U(t) is

a weak solution to the problem

ρ1ϕtt − k1(ϕx + ψ + lω)x − lσ1(ωx − lϕ)+ f1(ϕ̃, ψ̃ , ω̃)

− f1(ϕ̂, ψ̂ , ω̂) = 0 (43)

β1ψtt − λ1ψxx + k1(ϕx + ψ + lω)+ γ (ψ̃t)− γ (ψ̂t)+ h1(ϕ̃, ψ̃ , ω̃)

− h1(ϕ̂, ψ̂ , ω̂) = 0 (44)

ρ1ωtt − σ1(ωx − lϕ)x + lk1(ϕx + ψ + lω)+ g1(ϕ̃, ψ̃ , ω̃)

− g1(ϕ̂, ψ̂ , ω̂) = 0 (45)

ρ2utt − k2(ux + v+ lw)x − lσ2(wx − lu)+ f2(ũ, ṽ, w̃)

− f2(û, v̂, ŵ) = 0 (46)

β2vtt − λ2vxx + k2(ux + v+ lw)+ h2(ũ, ṽ, w̃)− h2(û, v̂, ŵ) = 0,

(47)

ρ2wtt − σ2(wx − lu)x + lk2(ux + v+ lw)+ g2(ũ, ṽ, w̃)

− g2(û, v̂, ŵ) = 0 (48)

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org

https://doi.org/10.3389/fams.2024.1418656
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Fastovska et al. 10.3389/fams.2024.1418656

with boundary conditions (7, 8–11) and the initial conditions

U(0) = Ũ0 − Û0. It is easy to see by the energy argument that

E(U(T))+
T∫
t

L0∫
0

(γ (ψ̃s)− γ (ψ̂s))ψsdxds

= E(U(t))+
T∫
t

H(Û(s), Ũ(s))ds, (49)

where

H(Û(t), Ũ(t)) =

L0∫

0

(f1(ϕ̂, ψ̂ , ω̂)− f1(ϕ̃, ψ̃ , ω̃))ϕtdx

+

L0∫

0

(h1(ϕ̂, ψ̂ , ω̂)− h1(ϕ̃, ψ̃ , ω̃))ψtdx

+

L0∫

0

(g1(ϕ̂, ψ̂ , ω̂)− g1(ϕ̃, ψ̃ , ω̃))ωtdx

+

L∫

L0

(f2(û, v̂, ŵ)− f2(ũ, ṽ, w̃))utdx

+

L∫

L0

(h2(û, v̂, ŵ)− h2(ũ, ṽ, w̃))vtdx

+

L∫

L0

(g2(û, v̂, ŵ)− g2(ũ, ṽ, w̃))wtdx,

and

E(t) = E1(t)+ E2(t),

here

E1(t) = ρ1

L0∫

0

ω2
t dxdt + ρ1

L0∫

0

ϕ2t dxdt + β1

L0∫

0

ψ2
t dx

+ σ1

L0∫

0

(ωx − lϕ)2dx+

+ k1

L0∫

0

(ϕx + ψ + lω)2dx+ λ1

L0∫

0

ψ2
xdx

and

E2(t) = ρ2

L0∫

0

w2
t dxdt + ρ2

L0∫

0

u2t dxdt + β2

L0∫

0

v2t dx

+ σ2

L0∫

0

(wx − lu)2dx+

+ k2

L0∫

0

(ux + v+ lw)2dx+ λ2

L0∫

0

v2xdx.

Integrating in (49) over the interval (0,T) we come to

TE(U(T))+
T∫
0

T∫
t

L0∫
0

(γ (ψ̃s)− γ (ψ̂s))ψsdxdsdt

=
T∫
0

E(U(t))dt +
T∫
0

T∫
t

H(Û(s), Ũ(s))dsdt. (50)

Now we estimate the first term on the right-hand side of

Equation (50). In what follows, we present formal estimates that

can be performed on strong solutions.

Step 1.We multiply Equation (45) by ω and x · ωx and sum up the

results. After integration by parts for t, we obtain

ρ1

T∫

0

L0∫

0

ωtxωtxdxdt + ρ1

T∫

0

L0∫

0

ω2
t dxdt

+ σ1

T∫

0

L0∫

0

(ωx − lϕ)xxωxdxdt + σ1

T∫

0

L0∫

0

(ωx − lϕ)xωdxdt

− k1l

T∫

0

L0∫

0

(ϕx +ψ + lω)xωxdxdt − k1l

T∫

0

L0∫

0

(ϕx +ψ + lω)ωdxdt

−

T∫

0

L0∫

0

(g1(ϕ̃, ψ̃ , ω̃)− g1(ϕ̂, ψ̂ , ω̂))(xωx + ω)dxdt

= ρ1

L0∫

0

ωt(x,T)xωx(x,T)dx+ ρ1

L0∫

0

ωt(x,T)ω(x,T)dx

− ρ1

L0∫

0

ωt(x, 0)xωx(x, 0)dx− ρ1

L0∫

0

ωt(x, 0)ω(x, 0)dx. (51)

Integrating by parts to x we get

ρ1

T∫

0

L0∫

0

ωtxωtxdxdt = −
ρ1

2

T∫

0

L0∫

0

ω2
t dxdt +

ρ1L0

2

T∫

0

ω2
t (L0, t)dt

(52)

and

σ1

T∫

0

L0∫

0

(ωx − lϕ)xxωxdxdt − k1l

T∫

0

L0∫

0

(ϕx + ψ + lω)xωxdxdt

= σ1

T∫

0

L0∫

0

(ωx − lϕ)xx(ωx − lϕ)dxdt+ σ1l

T∫

0

L0∫

0

(ωx − lϕ)xxϕdxdt

− k1l

T∫

0

L0∫

0

(ϕx + ψ + lω)xωxdxdt = −
σ1

2

T∫

0

L0∫

0

(ωx − lϕ)2dxdt

+
σ1L0

2

T∫

0

(ωx − lϕ)2(L0, t)dt − σ1l

T∫

0

L0∫

0

(ωx − lϕ)ϕdxdt

− 2σ1l

T∫

0

L0∫

0

(ωx − lϕ)x(ϕx + ψ + lω)dxdt
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+ σ1l

T∫

0

L0∫

0

(ωx − lϕ)x(ψ + lω)dxdt

−σ1lL0

T∫

0

(ωx−lϕ)(L0, t)ϕ(L0, t)dt−k1l
2

T∫

0

L0∫

0

(ϕx+ψ+lω)xϕdxdt.

(53)

Analogously,

σ1

T∫

0

L0∫

0

(ωx − lϕ)xωdxdt = −σ1

T∫

0

L0∫

0

(ωx − lϕ)2dxdt

+ σ1

T∫

0

(ωx − lϕ)(L0, t)ω(L0, t)dt − lσ1

T∫

0

L0∫

0

(ωx − lϕ)ϕdxdt.

(54)

It follows from Lemma 3.6, energy relation (25), and property

(N2) that

T∫

0

L0∫

0

|g1(ϕ̃, ψ̃ , ω̃)− g1(ϕ̂, ψ̂ , ω̂)|
2dxdt

≤ C(R,T) max
t∈[0,T]

‖8(·, t)‖2
H1−ǫ , 0 < ǫ < 1/2.

Therefore, for every ε > 0

∣∣∣∣∣∣

T∫

0

L0∫

0

(g1(ϕ̃, ψ̃ , ω̃)− g1(ϕ̂, ψ̂ , ω̂))(xωx + ω)dxdt

∣∣∣∣∣∣

≤ ε

T∫

0

‖ωx − lϕ‖2dt + C(ε,R,T)lot, (55)

where we use the notation

lot = max
t∈[0,T]

(‖ϕ(·, t)‖2
H1−ǫ + ‖ψ(·, t)‖2

H1−ǫ + ‖ω(·, t)‖2
H1−ǫ

+ ‖u(·, t)‖2
H1−ǫ + ‖v(·, t)‖2

H1−ǫ + ‖w(·, t)‖2
H1−ǫ ), 0 < ǫ < 1/2.

Similar estimates hold for nonlinearities g2, fi, hi, i = 1, 2.

We note that for any η ∈ H1(0, L0) [or analogously, η ∈

H1(L0, L)]

η(L0) ≤ sup
(0,L0)

|η| ≤ C‖η‖H1−ǫ , 0 < ǫ < 1/2.

Since due to (41)

2σ1l

∣∣∣∣∣∣

T∫

0

L0∫

0

(ωx − lϕ)x(ϕx + ψ + lω)dxdt

∣∣∣∣∣∣

≤
σ1

16

T∫

0

L0∫

0

(ωx− lϕ)2dxdt+ 16k1l
2L20

T∫

0

L0∫

0

(ϕx+ψ + lω)2dxdt,

the following estimate can be obtained from (51)–(55)

ρ1

2

T∫

0

L0∫

0

ω2
t dxdt +

ρ1L0

2

T∫

0

ω2
t (L0, t)dt

+
13σ1L0

8

T∫

0

(ωx − lϕ)2(L0, t)dt

≤
13σ1

8

T∫

0

L0∫

0

(ωx − lϕ)2dxdt+ 17k1l
2L20

T∫

0

L0∫

0

(ϕx +ψ + lω)2dxdt

+ C(R,T)lot + C(E(0)+ E(T)), (56)

where C > 0.

Step 2. Multiplying equation (45) by ω and (x − L0) · ωx and

arguing as above, we come to the estimate (57)

ρ1

2

T∫

0

L0∫

0

ω2
t dxdt +

13σ1L0

8

T∫

0

(ωx − lϕ)2(0, t)dt

≤
13σ1

8

T∫

0

L0∫

0

(ωx − lϕ)2dxdt + 17k1l
2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

+C(R,T)lot + C(E(0)+ E(T)). (57)

Summing up estimates (56) and (58) and multiplying the result

by 1
2 we get

ρ1

2

T∫

0

L0∫

0

ω2
t dxdt +

ρ1L0

4

T∫

0

ω2
t (L0, t)dt

+
3σ1L0

16

T∫

0

(ωx − lϕ)2(L0, t)dt +
3σ1L0

16

T∫

0

(ωx − lϕ)2(0, t)dt

≤
13σ1

8

T∫

0

L0∫

0

(ωx − lϕ)2dxdt+ 17k1l
2L20

T∫

0

L0∫

0

(ϕx +ψ + lω)2dxdt

+ C(R,T)lot + C(E(0)+ E(T)). (58)

Step 3. Next, we multiply Equation (43) by − 1
l
(ωx − lϕ),

equation (45) by 1
l
ϕx, summing up the results and integrating by

parts with respect to t we arrive at

ρ1

l

T∫

0

L0∫

0

ϕt(ωtx − lϕt)dxdt +
k1

l

T∫

0

L0∫

0

(ϕx + ψ + lω)x(ωx − lϕ)dxdt

+σ1

T∫

0

L0∫

0

(ωx − lϕ)2dxdt −
1

l

T∫

0

L0∫

0

(f1(ϕ̃, ψ̃ , ω̃)

−f1(ϕ̂, ψ̂ , ω̂))(ωx − lϕ)dxdt +
ρ1

l

T∫

0

L0∫

0

ωtϕtxdxdt
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+
σ1

l

T∫

0

L0∫

0

(ωx − lϕ)xϕxdxdt − k1

T∫

0

L0∫

0

(ϕx + ψ + lω)ϕxdxdt

−

T∫

0

L0∫

0

(g1(ϕ̃, ψ̃ , ω̃)− g1(ϕ̂, ψ̂ , ω̂))ϕxdxdt

=
ρ1

l

L0∫

0

ϕt(x,T)(ωx − lϕ)(x,T)dx−
ρ1

l

L0∫

0

ϕt(x, 0)(ωx − lϕ)(x, 0)dx

+
ρ1

l

L0∫

0

ωt(x,T)ϕx(x,T)dx−
ρ1

l

L0∫

0

ωt(x, 0)ϕx(x, 0)dx. (59)

Integrating by parts with respect to x we obtain

∣∣∣∣∣∣
ρ1

l

T∫

0

L0∫

0

ϕtωtxdxdt +
ρ1

l

T∫

0

L0∫

0

ωtϕtxdxdt

∣∣∣∣∣∣

=

∣∣∣∣∣∣
ρ1

l

T∫

0

ϕt(L0, t)ωt(L0, t)dt

∣∣∣∣∣∣

≤
ρ1L0

8

T∫

0

ω2
t (L0, t)dt +

2ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt. (60)

Taking into account (41) we get

k1

l

T∫

0

L0∫

0

(ϕx+ψ+lω)x(ωx−lϕ)dxdt+
σ1

l

T∫

0

L0∫

0

(ωx−lϕ)xϕxdxdt

=
k1

l

T∫

0

(ϕx + ψ + lω)(L0, t)(ωx − lϕ)(L0, t)dt

−
k1

l

T∫

0

(ϕx + ψ + lω)(0, t)(ωx − lϕ)(0, t)dt

+
k1

l

T∫

0

L0∫

0

ψx(ωx − lϕ)dxdt + σ1

T∫

0

L0∫

0

(ωx − lϕ)2dxdt

+ σ1l

T∫

0

L0∫

0

(ωx − lϕ)ϕdxdt. (61)

Using the estimates

∣∣∣∣∣∣
k1

l

T∫

0

(ϕx + ψ + lω)(L0, t)(ωx − lϕ)(L0, t)dt

∣∣∣∣∣∣

≤
4k1

l2L0

T∫

0

(ϕx +ψ + lω)2(L0, t)dt+
σ1L0

16

T∫

0

(ωx − lϕ)2(L0, t)dt,

∣∣∣∣∣∣
k1

l

T∫

0

L0∫

0

ψx(ωx − lϕ)dxdt

∣∣∣∣∣∣
≤

4k1

l2

T∫

0

L0∫

0

ψ2
xdxdt

+
σ1

16

T∫

0

L0∫

0

(ωx − lϕ)2dxdt

and (59)–(61) we infer

15σ1

8

T∫

0

L0∫

0

(ωx − lϕ)2dxdt ≤ ρ1

T∫

0

L0∫

0

ϕ2t dxdt

+ 2k1

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt +
4k1

l2

T∫

0

L0∫

0

ψ2
xdxdt

+
4k1

l2L0

T∫

0

(ϕx + ψ + lω)2(L0, t)dt +
σ1L0

8

T∫

0

(ωx − lϕ)2(L0, t)dt

+
4k1

l2L0

T∫

0

(ϕx + ψ + lω)2(0, t)dt +
σ1L0

8

T∫

0

(ωx − lϕ)2(0, t)dt

ρ1L0

8

T∫

0

ω2
t (L0, t)dt +

2ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt

+ C(R,T)lot + C(E(0)+ E(T)). (62)

Adding (62) to (58) we obtain

σ1

4

T∫

0

L0∫

0

(ωx − lϕ)2dxdt+
ρ1

2

T∫

0

L0∫

0

ω2
t dxdt+

ρ1L0

8

T∫

0

ω2
t (0, t)dt

+
σ1L0

16

T∫

0

(ωx − lϕ)2(L0, t)dt +
σ1L0

16

T∫

0

(ωx − lϕ)2(L0, t)dt

≤ ρ1

T∫

0

L0∫

0

ϕ2t dxdt + k1(2+ 17l2L20)

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

+
4k1

l2L0

T∫

0

(ϕx +ψ + lω)2(L0, t)dt+
4k1

l2L0

T∫

0

(ϕx +ψ + lω)2(0, t)dt

+
4k1

l2

T∫

0

L0∫

0

ψ2
xdxdt +

2ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt + C(R,T)lot

+ C(E(0)+ E(T)). (63)

Step 4. Now, we multiply Equation (43) by − 16
l2L20

xϕx and

− 16
l2L20

(x − L0)ϕx and sum up the results. After integration by parts

with respect to t we get

16ρ1

l2L20

T∫

0

L0∫

0

ϕtxϕtxdxdt +
16ρ1

l2L20

T∫

0

L0∫

0

ϕt(x− L0)ϕtxdxdt

+
16k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)xxϕxdxdt

+
16k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)x(x− L0)ϕxdxdt
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+
16σ1

lL20

T∫

0

L0∫

0

(ωx − lϕ)xϕxdxdt

+
16σ1

lL20

T∫

0

L0∫

0

(ωx − lϕ)(x− L0)ϕxdxdt

−
16

l2L20

T∫

0

L0∫

0

(f1(ϕ̃, ψ̃ , ω̃)− f1(ϕ̂, ψ̂ , ω̂))(2x− L0)ϕxdxdt

=
16ρ1

l2L20

L0∫

0

ϕt(x,T)(2x− L0)ϕx(x,T)dx

−
16ρ1

l2L20

L0∫

0

ϕt(x,T)(2x− L0)ϕx(x,T)dx. (64)

It is easy to see that

16ρ1

l2L20

T∫

0

L0∫

0

ϕtxϕtxdxdt +
16ρ1

l2L20

T∫

0

L0∫

0

ϕt(x− L0)ϕtxdxdt

= −
16ρ1

l2L20

T∫

0

L0∫

0

ϕ2t dxdt +
8ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt

(65)

and

16k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)xxϕxdxdt

+
16k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)x(x− L0)ϕxdxdt

= −
16k1

l2L20

T∫

0

L0∫

0

(ϕx+ψ+ lω)2dxdt+
8k1

l2L0

T∫

0

(ϕx+ψ+ lω)2(0, t)dt

+
8k1

l2L0

T∫

0

(ϕx + ψ + lω)2(L0, t)dt

−
16k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)xx(ψ + lω)dxdt

−
16k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)x(x− L0)(ψ + lω)dxdt

= −
16k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

+
8k1

l2L0

T∫

0

(ϕx + ψ + lω)2(0, t)dt

+
8k1

l2L0

T∫

0

(ϕx + ψ + lω)2(L0, t)dt

−
16k1

l2L0

T∫

0

(ϕx + ψ + lω)(L0, t)(ψ + lω)(L0, t)dt

+
32k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)(ψ + lω)dxdt+

+
16k1

lL20

T∫

0

L0∫

0

(ϕx + ψ + lω)(2x− L0)(ωx − lϕ)dxdt

+
16k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)(2x− L0)ψxdxdt

+
16k1

L20

T∫

0

L0∫

0

(ϕx + ψ + lω)(2x− L0)ϕdxdt. (66)

Moreover,

16σ1

lL20

T∫

0

L0∫

0

(ωx−lϕ)xϕxdxdt+
16σ1

lL20

T∫

0

L0∫

0

(ωx−lϕ)(x−L0)ϕxdxdt

=
16σ1

lL20

T∫

0

L0∫

0

(ωx − lϕ)(2x− L0)(ϕx + ψ + lω)dxdt

−
16σ1

lL20

T∫

0

L0∫

0

(ωx − lϕ)(2x− L0)(ψ + lω)dxdt. (67)

Collecting (64)–(67) and using the estimates

∣∣∣∣∣∣
32k1

lL20

T∫

0

L0∫

0

(ϕx + ψ + lω)(2x− L0)(ωx − lϕ)dxdt

∣∣∣∣∣∣

≤
σ1

8

T∫

0

L0∫

0

(ωx − lϕ)2dxdt +
2046k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

and

∣∣∣∣∣∣
16k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)(2x− L0)ψxdxdt

∣∣∣∣∣∣

≤
k1

l2

T∫

0

L0∫

0

ψ2
xdxdt +

64k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

we come to

7k1

l2L0

T∫

0

(ϕx + ψ + lω)2(L0, t)dt +
7k1

l2L0

T∫

0

(ϕx + ψ + lω)2(0, t)dt

+
8ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt ≤
16ρ1

l2L20

T∫

0

L0∫

0

ϕ2t dxdt

+
2150k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt
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+
k1

l2

T∫

0

L0∫

0

ψ2
xdxdt +

3σ1

16

T∫

0

L0∫

0

(ωx − lϕ)2dxdt

+ C(R,T)lot + C(E(0)+ E(T)). (68)

Adding (68) to (63) we arrive at

σ1

16

T∫

0

L0∫

0

(ωx− lϕ)2dxdt+
ρ1

2

T∫

0

L0∫

0

ω2
t dxdt+

ρ1L0

8

T∫

0

ω2
t (L0, t)dt

+
σ1L0

16

T∫

0

(ωx − lϕ)2(L0, t)dt +
σ1L0

16

T∫

0

(ωx − lϕ)2(0, t)dt

+
3k1

l2L0

T∫

0

(ϕx +ψ + lω)2(L0, t)dt+
3k1

l2L0

T∫

0

(ϕx +ψ + lω)2(0, t)dt

+
6ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt ≤ ρ1

(
1+

16

l2L20

) T∫

0

L0∫

0

ϕ2t dxdt

+ k1

(
2+ 17l2L20 +

2150

l2L20

) T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

+
5k1

l2

T∫

0

L0∫

0

ψ2
xdxdt + C(R,T)lot + C(E(0)+ E(T)). (69)

Step 5. Next, we multiply Equation (43) by −
(
1+ 18

l2L20

)
ϕ and

integrate by parts with respect to t

ρ1

(
1+

18

l2L20

) T∫

0

L0∫

0

ϕ2t dxdt

+ k1

(
1+

18

l2L20

) T∫

0

L0∫

0

(ϕx + ψ + lω)xϕdxdt

+ lσ1

(
1+

18

l2L20

) T∫

0

L0∫

0

(ωx − lϕ)ϕdxdt

−

(
1+

18

l2L20

) T∫

0

L0∫

0

(f1(ϕ̃, ψ̃ , ω̃)− f1(ϕ̂, ψ̂ , ω̂))ϕdxdt =

ρ1

(
1+

18

l2L20

) L0∫

0

(ϕt(x,T)ϕ(x,T)− ϕt(x, 0)ϕ(x, 0))dx.

Since

k1

(
1+

18

l2L20

) T∫

0

L0∫

0

(ϕx + ψ + lω)xϕdxdt

= −k1

(
1+

18

l2L20

) T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

+ k1

(
1+

18

l2L20

) T∫

0

(ϕx + ψ + lω)(L0, t)ϕ(L0, t)dt

+ k1

(
1+

18

l2L20

) T∫

0

(ϕx + ψ + lω)(ψ + lω)dxdt

we obtain the estimate

ρ1

(
1+

17

l2L20

) T∫

0

L0∫

0

ϕ2t dxdt

≤ k1

(
2+

18

l2L20

) T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

+
k1

l2L0

T∫

0

(ϕx + ψ + lω)2(L0, t)dt +
σ1

32

T∫

0

L0∫

0

(ωx − lϕ)2dxdt

+ C(R,T)lot + C(E(0)+ E(T)). (70)

Summing up (69) and (70) we get

σ1

32

T∫

0

L0∫

0

(ωx − lϕ)2dxdt

+
ρ1

2

T∫

0

L0∫

0

ω2
t dxdt +

ρ1L0

8

T∫

0

ω2
t (L0, t)dt

+
σ1L0

16

T∫

0

(ωx − lϕ)2(L0, t)dt +
σ1L0

16

T∫

0

(ωx − lϕ)2(0, t)dt

+
2k1

l2L0

T∫

0

(ϕx +ψ + lω)2(L0, t)dt+
2k1

l2L0

T∫

0

(ϕx +ψ + lω)2(0, t)dt

+
6ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt +
1

l2L20

T∫

0

L0∫

0

ϕ2t dxdt

≤ k1

(
4+ 17l2L20 +

2200

l2L20

) T∫

0

(ϕx + ψ + lω)2dxdt

+
6k1

l2

T∫

0

L0∫

0

ψ2
xdxdt + C(R,T)lot + C(E(0)+ E(T)). (71)

Step 6.Next we multiply Equation (44) by C1(ϕx +ψ + lω) and

equation (43) by C1
β1
ρ1
ψx, where C1 = 2(6 + 17l2L20 +

2200
l2L20

). Then

we sum up the results and integrate them into parts concerning t.

Taking into account (41, 42), we come to

− β1C1

T∫

0

L0∫

0

ϕtψtxdxdt − λ1C1

T∫

0

L0∫

0

(ϕx + ψ + lω)xψxdxdt

− lC1λ1

T∫

0

L0∫

0

(ωx − lϕ)ψxdxdt
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+ C1
β1

ρ1

T∫

0

L0∫

0

(f1(ϕ̃, ψ̃ , ω̃)− f1(ϕ̂, ψ̂ , ω̂))ψxdxdt

− β1C1

T∫

0

L0∫

0

ψt(ϕxt + ψt + lωt)dxdt

− λ1C1

T∫

0

L0∫

0

ψxx(ϕx + ψ + lω)dxdt

+ k1C1

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

+ C1

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))(ϕx + ψ + lω)dxdt

+ C1

T∫

0

L0∫

0

(h1(ϕ̃, ψ̃ , ω̃)− h1(ϕ̂, ψ̂ , ω̂))(ϕx + ψ + lω)dxdt

= β1C1

L0∫

0

ϕt(x, 0)ψx(x, 0)dx

−β1C1

L0∫

0

ϕt(x,T)ψx(x,T)dx+β1C1

L0∫

0

ψt(x, 0)(ϕx+ψ+lω)(x, 0)dx

− β1C1

L0∫

0

ψt(x,T)(ϕx + ψ + lω)(x,T)dx. (72)

Integrating by parts with respect to x we get

∣∣∣∣∣∣
β1C1

T∫

0

L0∫

0

ϕtψtxdxdt + β1C1

T∫

0

L0∫

0

ψt(ϕxt + lωt)dxdt

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
β1C1

T∫

0

ϕt(L0, t)ψt(L0, t)dt + β1C1l

T∫

0

L0∫

0

ψtωtdxdt

∣∣∣∣∣∣

≤
ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt +
β21C

2
1l
2L0

4ρ1

T∫

0

ψ2
t (L0, t)dt

+
ρ1

4

T∫

0

L0∫

0

ω2
t dxdt +

β21C
2
1l
2

ρ1

T∫

0

L0∫

0

ψ2
t dxdt (73)

and

∣∣∣∣∣∣
λ1C1

T∫

0

L0∫

0

(ϕx + ψ + lω)xψxdxdt

+λ1C1

T∫

0

L0∫

0

ψxx(ϕx + ψ + lω)dxdt

∣∣∣∣∣∣

=

∣∣∣∣∣∣
λ1C1

T∫

0

(ϕx + ψ + lω)(L0, t)ψx(L0, t)dt

−λ1C1

T∫

0

(ϕx + ψ + lω)(0, t)ψx(0, t)dt

∣∣∣∣∣∣

≤
k1

l2L0

T∫

0

(ϕx +ψ + lω)2(L0, t)dt+
k1

l2L0

T∫

0

(ϕx +ψ + lω)2(0, t)dt

+
l2L0λ

2
1C

2
1

4k1

T∫

0

ψ2
x (L0, t)dt +

l2L0λ
2
1C

2
1

4k1

T∫

0

ψ2
x (0, t)dt. (74)

Moreover,

∣∣∣∣∣∣
lC1λ1

T∫

0

L0∫

0

(ωx − lϕ)ψxdxdt

∣∣∣∣∣∣

≤
σ1

64

T∫

0

L0∫

0

(ωx − lϕ)2dxdt +
16l2C2

1λ
2
1

σ1

T∫

0

L0∫

0

ψ2
xdxdt. (75)

It follows from Lemma 4.6 with ε = k1C1
4

∣∣∣∣∣∣
C1

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))(ϕx + ψ + lω)dxdt

∣∣∣∣∣∣

≤
k1C1

4

T∫

0

L0∫

0

(ϕx+ψ+lω)2dxdt+C

T∫

0

L0∫

0

(γ (ψ̃t)−γ (ψ̂t))ψtdxdt

(76)

Consequently, by collecting (72)–(76), we obtain

C1k1

2

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt ≤
σ1

64

T∫

0

L0∫

0

(ωx − lϕ)2dxdt

+
20l2C2

1λ
2
1

σ1

T∫

0

L0∫

0

ψ2
xdxdt + C1

(
β1 +

β21 l
2

ρ1

) T∫

0

L0∫

0

ψ2
t dxdt+

k1

l2L0

T∫

0

(ϕx +ψ + lω)2(L0, t)dt +
k1

l2L0

T∫

0

(ϕx +ψ + lω)2(0, t)dt

+
l2L0λ

2
1C

2
1

4k1

T∫

0

ψ2
x (L0, t)dt +

l2L0λ
2
1C

2
1

4k1

T∫

0

ψ2
x (0, t)dt

+
ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt+
β21C

2
1l
2L0

4ρ1

T∫

0

ψ2
t (L0, t)dt+

ρ1

4

T∫

0

L0∫

0

ω2
t dxdt

+C

T∫

0

L0∫

0

(γ (ψ̃t)−γ (ψ̂t))ψtdxdt+C(R,T)lot+C(E(0)+E(T)).

(77)
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Combining (77) with (71), we get

σ1

64

T∫

0

L0∫

0

(ωx− lϕ)2dxdt+
ρ1

4

T∫

0

L0∫

0

ω2
t dxdt+

ρ1L0

8

T∫

0

ω2
t (L0, t)dt

+
σ1L0

16

T∫

0

(ωx − lϕ)2(L0, t)dt +
σ1L0

16

T∫

0

(ωx − lϕ)2(0, t)dt

+
k1

l2L0

T∫

0

(ϕx +ψ + lω)2(L0, t)dt+
k1

l2L0

T∫

0

(ϕx +ψ + lω)2(0, t)dt

+
5ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt +
1

l2L20

T∫

0

L0∫

0

ϕ2t dxdt

+ 2k1

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

≤

(
6k1

l2
+

20l2C2
1λ

2
1

σ1

) T∫

0

L0∫

0

ψ2
xdxdt

+ C1

(
β1 +

β21 l
2

ρ1

) T∫

0

L0∫

0

ψ2
t dxdt

+
l2L0λ

2
1C

2
1

4k1

T∫

0

ψ2
x (L0, t)dt +

l2L0λ
2
1C

2
1

4k1

T∫

0

ψ2
x (0, t)dt

+
β21C

2
1l
2L0

4

T∫

0

ψ2
t (L0, t)dt + C

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))ψtdxdt

+ C(R,T)lot + C(E(0)+ E(T)). (78)

Step 7.Our next step is to multiply Equation (44) by−C2xψx−

C2(x − L0)ψx, where C2 =
l2λ1C

2
1

k1
. After integration by parts with

respect to t, we obtain

β1C2

T∫

0

L0∫

0

ψtxψxtdxdt + β1C2

T∫

0

L0∫

0

ψt(x− L0)ψxtdxdt

+ λ1C2

T∫

0

L0∫

0

ψxxxψxdxdt + λ1C2

T∫

0

L0∫

0

ψxx(x− L0)ψxdxdt

− k1C2

T∫

0

L0∫

0

(ϕx + ψ + lω)(2x− L0)ψxdxdt

− C2

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))(2x− L0)ψxdxdt

+

T∫

0

L0∫

0

(h1(ϕ̃, ψ̃ , ω̃)− h1(ϕ̂, ψ̂ , ω̂))(2x− L0)ψxdxdt

= β1C2

L0∫

0

ψt(x,T)(2x− L0)ψx(x,T)dx

− β1C2

L0∫

0

ψt(x, 0)(2x− L0)ψx(x, 0)dx. (79)

After integration by parts for x, we get

β1C2

T∫

0

L0∫

0

ψtxψxtdxdt + β1C2

T∫

0

L0∫

0

ψt(x − L0)ψxtdxdt

= −β1C2

T∫

0

L0∫

0

ψ2
t dxdt +

β1C2L0

2

T∫

0

ψ2
t (L0, t)dt (80)

and

λ1C2

T∫

0

L0∫

0

ψxxxψxdxdt + λ1C2

T∫

0

L0∫

0

ψxx(x− L0)ψxdxdt

=
λ1C2L0

2

T∫

0

ψ2
x (L0, t)dt +

λ1C2L0

2

T∫

0

ψ2
x (0, t)dt

− λ1C2

T∫

0

L0∫

0

ψ2
xdxdt. (81)

Furthermore,

∣∣∣∣∣∣
k1C2

T∫

0

L0∫

0

(ϕx + ψ + lω)(2x− L0)ψxdxdt

∣∣∣∣∣∣

≤ k1

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt +
k1C

2
2L

2
0

4

T∫

0

L0∫

0

ψ2
xdxdt. (82)

By Lemma 4.6 with ε =
k1C2

2L20
4 we have

∣∣∣∣∣∣
C2

T∫

0

L0∫

0

ψt(2x− L0)ψxdxdt

∣∣∣∣∣∣
≤

k1C
2
2L

2
0

4

T∫

0

L0∫

0

ψ2
xdxdt

+C

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))ψtdxdt. (83)

As a result of (79)–(83) we obtain the estimate

β1C2L0

2

T∫

0

ψ2
t (L0, t)dt +

λ1C2L0

2

T∫

0

ψ2
x (L0, t)dt

+
λ1C2L0

2

T∫

0

ψ2
x (0, t)dt

≤ k1

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt +
(
k1C

2
2L

2
0 + λ1C2

)
T∫

0

L0∫

0

ψ2
xdxdt

+ β1C2

T∫

0

L0∫

0

ψ2
t dxdt

+C

T∫

0

L0∫

0

(γ (ψ̃t)−γ (ψ̂t))ψtdxdt+C(R,T)lot+C(E(0)+E(T)).

(84)
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Summing up (78) and (84) and using (42) we infer

σ1

64

T∫

0

L0∫

0

(ωx− lϕ)2dxdt+
ρ1

4

T∫

0

L0∫

0

ω2
t dxdt+

ρ1L0

8

T∫

0

ω2
t (L0, t)dt

+
σ1L0

16

T∫

0

(ωx − lϕ)2(L0, t)dt +
σ1L0

16

T∫

0

(ωx − lϕ)2(0, t)dt

+
k1

l2L0

T∫

0

(ϕx +ψ + lω)2(L0, t)dt+
k1

l2L0

T∫

0

(ϕx +ψ + lω)2(0, t)dt

+
5ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt+
1

l2L20

T∫

0

L0∫

0

ϕ2t dxdt+k1

T∫

0

L0∫

0

(ϕx+ψ+lω)2dxdt

l2L0λ
2
1C

2
1

4k1

T∫

0

ψ2
x (L0, t)dt +

l2L0λ
2
1C

2
1

4k1

T∫

0

ψ2
x (0, t)dt

+
β21C

2
1l
2L0

4ρ1

T∫

0

ψ2
t (L0, t)dt

≤

(
6k1

l2
+

20l2C2
1λ

2
1

σ1
+ λ1C2 + k1C

2
2L

2
0

) T∫

0

L0∫

0

ψ2
xdxdt

+

(
(C1 + C2)β1 +

C1β
2
1 l
2

ρ1

) T∫

0

L0∫

0

ψ2
t dxdt

+C

T∫

0

L0∫

0

(γ (ψ̃t)−γ (ψ̂t))ψtdxdt+C(R,T)lot+C(E(0)+E(T)).

(85)

Step 8. Now we multiply Equation (44) by C3ψ , where C3 =

2
λ1

(
6k1
l2

+
20l2C2

1λ
2
1

σ1
+ λ1C2 + k1C

2
2L

2
0

)
and integrate by parts with

respect to t (86)

− C3β1

T∫

0

L0∫

0

ψ2
t dxdt − λ1C3

T∫

0

L0∫

0

ψxxψdxdt

+ k1C3

T∫

0

L0∫

0

(ϕx + ψ + lω)ψdxdt

+ C3

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))ψdxdt + C3

T∫

0

L0∫

0

(h1(ϕ̃, ψ̃ , ω̃)

− h1(ϕ̂, ψ̂ , ω̂))ψdxdt

= C3β1

L0∫

0

ψt(x, 0)ψ(x, 0)dx− C3β1

L0∫

0

ψt(x,T)ψ(x,T)dx (86)

After integration by parts, we infer the estimate

λ1C3

T∫

0

L0∫

0

ψ2
xdxdt ≤

k1

2

T∫

0

(ϕx + ψ + lω)2dxdt

+ C3β1

T∫

0

L0∫

0

ψ2
t dxdt +

l2L0λ
2
1C

2
1

8k1

T∫

0

ψ2
x (L0, t)dt

+C

T∫

0

L0∫

0

(γ (ψ̃t)−γ (ψ̂t))ψtdxdt+C(R,T)lot+C(E(0)+E(T)).

(87)

Combining (87) with (85), we obtain

σ1

64

T∫

0

L0∫

0

(ωx− lϕ)2dxdt+
ρ1

4

T∫

0

L0∫

0

ω2
t dxdt+

ρ1L0

8

T∫

0

ω2
t (L0, t)dt

+
σ1L0

16

T∫

0

(ωx − lϕ)2(L0, t)dt +
σ1L0

16

T∫

0

(ωx − lϕ)2(0, t)dt

+
k1

l2L0

T∫

0

(ϕx +ψ + lω)2(L0, t)dt+
k1

l2L0

T∫

0

(ϕx +ψ + lω)2(0, t)dt

+
5ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt +
1

l2L20

T∫

0

L0∫

0

ϕ2t dxdt

+
k1

2

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

l2L0λ
2
1C

2
1

8k1

T∫

0

ψ2
x (L0, t)dt +

l2L0λ
2
1C

2
1

4k1

T∫

0

ψ2
x (0, t)dt

+
β21C

2
1l
2L0

4ρ1

T∫

0

ψ2
t (L0, t)dt

+

(
6k1

l2
+

20l2C2
1λ

2
1

σ1
+ λ1C2 + k1C

2
2L

2
0

) T∫

0

L0∫

0

ψ2
xdxdt

≤

(
(C1 + C2)β1 +

C1β
2
1 l
2

ρ1
+ C3β1

) T∫

0

L0∫

0

ψ2
t dxdt

+ C

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))ψtdxdt

+ C(R,T)lot + C(E(0)+ E(T)).

(88)

Step 9. Consequently, it follows from (88) and assumption (D4)

for any l > 0 where there exist constantsMi, i = {1, 3} (depending

on l) such that

T∫

0

E1(t)dt +

T∫

0

B1(t)dt ≤ M1

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))ψtdxdt

+M2(R,T)lot +M3(E(T)+ E(0)),

where (89)
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B1(t) =

T∫

0

(ωx − lϕ)2(L0, t)dt +

T∫

0

(ϕx + ψ + lω)2(L0, t)dt

+

T∫

0

ψ2
x (L0, t)dt +

T∫

0

ω2
t (L0, t)dt +

T∫

0

ψ2
t (L0, t)dt

+

T∫

0

ϕ2t (L0, t)dt. (89)

Step 10. Finally, we multiply Equation (46) by (x − L)ux,

Equation (47) by (x − L)vx, and (48) by (x − L)wx. Summing up

the results and integrating by parts with respect to t, we arrive at

−ρ2

T∫

0

L∫

L0

ut(x−L)utxdxdt−k2

T∫

0

L∫

L0

(ux+v+lw)x(x−L)uxdxdt

− lσ2

T∫

0

L∫

L0

(wx − lu)(x− L)uxdxdt +

T∫

0

L∫

L0

(f2(ũ, ṽ, w̃)

− f2(û, v̂, ŵ))(x− L)uxdxdt

− β2

T∫

0

L∫

L0

vt(x− L)vxtdxdt − λ2

T∫

0

L∫

L0

vxx(x− L)vxdxdt

+ k2

T∫

0

L∫

L0

(ux + v+ lw)(x− L)vxdxdt +

T∫

0

L∫

L0

(h2(ũ, ṽ, w̃)

− h2(û, v̂, ŵ))(x− L)vxdxdt

− ρ2

T∫

0

L∫

L0

wt(x− L)wxtdxdt − σ2

T∫

0

L∫

L0

(wx − lu)x(x− L)wxdxdt

+ lk2

T∫

0

L∫

L0

(ux + v+ lw)(x− L)wxdxdt +

T∫

0

L∫

L0

(g2(ũ, ṽ, w̃)

− g2(û, v̂, ŵ))(x− L)wxdxdt =

− ρ2

L∫

L0

(x− L)((utux)(x,T)− (utux)(x, 0))dx

− β2

L∫

L0

(x− L)((vtvx)(x,T)− (vtvx)(x, 0))dx

− ρ2

L∫

L0

(x− L)((wtwx)(x,T)− (wtwx)(x, 0))dx. (90)

After integration by parts to x, we infer

− ρ2

T∫

0

L∫

L0

ut(x− L)utxdx− β2

T∫

0

L∫

L0

vt(x− L)vxtdxdt

− ρ2

T∫

0

L∫

L0

wt(x− L)wxtdxdt

=
ρ2

2

T∫

0

L∫

L0

u2t dx+
β2

2

T∫

0

L∫

L0

v2t dxdt +
ρ2

2

T∫

0

L∫

L0

w2
t dxdt

−
ρ2(L− L0)

2

T∫

0

u2t (L0)dt −
β2(L− L0)

2

T∫

0

v2t (L0)dt

−
ρ2(L− L0)

2

T∫

0

w2
t (L0)dt (91)

and

− k2

T∫

0

L∫

L0

(ux + v+ lw)x(x− L)uxdxdt

− lσ2

T∫

0

L∫

L0

(wx − lu)(x− L)uxdxdt

−λ2

T∫

0

L∫

L0

vxx(x−L)vxdxdt+k2

T∫

0

L∫

L0

(ux+v+ lw)(x−L)vxdxdt

− σ2

T∫

0

L∫

L0

(wx − lu)x(x− L)wxdxdt

+ lk2

T∫

0

L∫

L0

(ux + v+ lw)(x− L)wxdxdt =

− k2

T∫

0

L∫

L0

(ux + v+ lw)x(x− L)(ux + v+ lw)dxdt

−σ2

T∫

0

L∫

L0

(wx−lu)x(x−L)(wx−lu)dxdt−λ2

T∫

0

L∫

L0

vxx(x−L)vxdxdt

− lσ2(L− L0)

T∫

0

(wx − lu)(L0)u(L0)dt

+ k2(L− L0)

T∫

0

(ux + v+ lw)(L0)v(L0)dt

+ lk2(L− L0)

T∫

0

(ux + v+ lw)(L0)w(L0)dt =

−
k2(L− L0)

2

T∫

0

(ux+ v+ lw)2(L0)dt+
k2

2

T∫

0

L∫

L0

(ux+ v+ lw)2dxdt

+
σ2

2

T∫

0

L∫

L0

(wx − lu)2dxdt −
σ2(L− L0)

2

T∫

0

(wx − lu)2(L0)dt
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+
λ2

2

T∫

0

L∫

L0

v2xdxdt

−
λ2(L− L0)

2

T∫

0

v2x(L0)dt − lσ2(L− L0)

T∫

0

(wx − lu)(L0)u(L0)dt

+ k2(L− L0)

T∫

0

(ux + v+ lw)(L0)v(L0)dt

+ lk2(L− L0)

T∫

0

(ux + v+ lw)(L0)w(L0)dt. (92)

Consequently, it follows from (90)–(92) that for any l > 0, there

exist constantsM4,M5,M6 > 0 such that

T∫

0

E2(t)dt ≤ M4

T∫

0

B2(t)dt +M5(R,T)lot +M6(E(T)+ E(0)),

where

B2(t) =

T∫

0

(wx − lu)2(L0, t)dt +

T∫

0

(ux + v+ lw)2(L0, t)dt

+

T∫

0

v2x(L0, t)dt+

T∫

0

w2
t (L0, t)dt+

T∫

0

v2t (L0, t)dt+

T∫

0

u2t (L0, t)dt.

Then, due to conditions (8)–(11), there exist δ,M7,M8 > 0

(depending on l), such that

T∫
0

E(t)dt ≤ δ
T∫
0

L0∫
0

(γ (ψ̃t)− γ (ψ̂t))ψtdxdt

+M7(R,T)lot +M8(E(T)+ E(0)). (93)

It follows from (49) that there exists C > 0 such that

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))ψtdxdt ≤ C


E(0)+

T∫

0

|H(Û(t), Ũ(t))|dt


 .

(94)

By Lemma 3.6 we have that for any ε > 0 there exists C(ε,R) >

0 such that

T∫

0

|H(Û(t), Ũ(t))|dt ≤ ε

T∫

0

L0∫

0

E(t)dxdt + C(ε,R,T)lot. (95)

Combining (95) with (94), we arrive at

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))ψtdxdt ≤ CE(0)+ C(R,T)lot. (96)

Substituting (96) into (93), we obtain

T∫

0

E(t)dt ≤ C(R,T)lot + C(E(T)+ E(0)) (97)

for some C,C(R,T) > 0.

Our remaining task is to estimate the last term in (50).

∣∣∣∣∣∣

T∫

0

T∫

t

H(Û(s), Ũ(s))dsdt

∣∣∣∣∣∣
≤

T∫

0

E(t)dt + T3C(R)lot. (98)

Then, it follows from (50, 98) that

TE(T) ≤ C

T∫

0

E(t)dt + C(T,R)lot. (99)

Then the combination of (99) with (97) leads to

TE(T) ≤ C(R,T)lot + C(E(T)+ E(0)).

Choosing T large enough one can obtain an estimate (40) which

together with Theorem 4.5 immediately leads to the asymptotic

smoothness of the system.

4.3 Existence of attractors

The following statement collects criteria on the existence and

properties of attractors to gradient systems.

Theorem 4.8 (Ref. [10, 11]). Assume that (H, St) is a gradient

asymptotically smooth dynamical system. Assume its Lyapunov

function L(y) is bounded from above on any bounded subset of H

and the set WR = {y : L(y) ≤ R} is bounded for every R. If the set

N of stationary points of (H, St) is bounded, then (St ,H) possesses

a compact global attractor. Moreover, the global attractor consists

of full trajectories γ = {U(t) : t ∈ R} such that

lim
t→−∞

distH(U(t),N) = 0 and lim
t→+∞

distH(U(t),N) = 0 (100)

and

lim
t→+∞

distH(Stx,N) = 0 for any x ∈ H; (101)

i.e., any trajectory stabilizes to the setN of stationary points.

Now we state the result of the existence of an attractor.

Theorem 4.9. Let the assumptions of Theorems 4.2 and 4.7, hold

true. Moreover,

lim inf
|s|→∞

h1(s)

s
> 0, (N5)

∇F2(u, v,w)(u, v,w)− a1F2(u, v,w) ≥ −a2, ai ≥ 0.

Then, the dynamical system (H, St) generated by (1)–(11)

possesses a compact global attractor A possessing properties (100)

and (101).

Proof. In view of Theorems 4.2, 4.7, 4.8, our remaining task is to

show the boundedness of the set of stationary points and the set

WR = {Z : L(Z) ≤ R}, where L is given by (28).

The second statement follows immediately from the structure

of function L and property (N5).

The first statement can be easily shown by energy-like estimates

for stationary solutions, taking into account (N5).

Frontiers in AppliedMathematics and Statistics 17 frontiersin.org

https://doi.org/10.3389/fams.2024.1418656
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Fastovska et al. 10.3389/fams.2024.1418656

5 Singular limits on finite time
intervals

5.1 Singular limit l → 0

Let the nonlinearities fj, hj, gj be such that

f1(ϕ,ψ ,ω) = f1(ϕ,ψ), h1(ϕ,ψ ,ω) = h1(ϕ,ψ),

g1(ϕ,ψ ,ω) = g1(ω),

f2(u, v,w) = f2(u, v), h2(u, v,w) = h2(u, v),

g2(u, v,w) = g2(w). (N6)

If we formally set l = 0 in (17)–(23), we obtain the contact

problem for a straight Timoshenko beam

ρ1ϕtt − k1(ϕx + ψ)x + f1(ϕ,ψ) = p1(x, t),

(x, t) ∈ (0, L0)× (0,T), (102)

β1ψtt − λ1ψxx + k1(ϕx + ψ)+ γ (ψt)+ h1(ϕ,ψ) = r1(x, t),

(x, t) ∈ (0, L0)× (0,T), (103)

ρ2utt − k2(ux + v)x + f2(u, v) = p2(x, t),

(x, t) ∈ (L0, L)× (0,T), (104)

β2vtt − λ2vxx + k2(ux + v)+ h2(u, v) = r2(x, t),

(x, t) ∈ (L0, L)× (0,T), (105)

ϕ(0, t) = ψ(0, t) = 0, u(L, t) = v(L, t) = 0, (106)

ϕ(L0, t) = u(L0, t), ψ(L0, t) = v(L0, t), (107)

k1(ϕx + ψ)(L0, t) = k2(ux + v)(L0, t),

λ1ψx(L0, t) = λ2vx(L0, t), (108)

and an independent contact problem for wave equations

ρ1ωtt − σ1ωxx + g1(ω) = q1(x, t), (x, t) ∈ (0, L0)× (0,T),

(109)

ρ2wtt − σ2wxx + g2(w) = q2(x, t), (x, t) ∈ (L0, L)× (0,T),

(110)

σ1ωx(L0, t) = σ2wx(L0, t), ω(L0, t) = w(L0, t), (111)

w(L, t) = 0, ω(0, t) = 0. (112)

The following theorem states that solutions to (17)–(23) when

l → 0, are close in an appropriate sense to the solution of decoupled

system (102)–(112).

Theorem 5.1. Assume that the conditions of Theorem 3.4, (D3),

(N6) hold. Let8(l) be the solution to (17)–(23) with the fixed l and

the initial data

8(x, 0) = (ϕ0,ψ0,ω0, u0, v0,w0)(x),

8t(x, 0) = (ϕ1,ψ1,ω1, u1, v1,w1)(x).

Then for every T > 0

8(l) ∗
⇀ (ϕ,ψ ,ω, u, v,w) in L∞(0,T;Hd) as l → 0,

8
(l)
t

∗
⇀ (ϕt ,ψt ,ωt , ut , vt ,wt) in L∞(0,T;Hv) as l → 0,

where (ϕ,ψ , u, v) is the solution to (102)–(108) with the initial

conditions

(ϕ,ψ , u, v)(x, 0) = (ϕ0,ψ0, u0, v0)(x),

(ϕt ,ψt , ut , vt)(x, 0) = (ϕ1,ψ1, u1, v1)(x),

and (ω,w) is the solution to (109–(112) with the initial conditions

(ω,w)(x, 0) = (ω0,w0)(x), (ωt ,wt)(x, 0) = (ω1,w1)(x).

The proof is similar to that of Theorem 3.1 in Ref. [4] for the

homogeneous Bresse beam with obvious changes, except for the

limit transition in the nonlinear dissipation term. For future use,

we formulate it as a lemma.

Lemma 5.2. Let (D3) hold. Then

∫ T

0

∫ L0

0
γ (ψ (l)(x, t))γ 1(x, t)dxdt

→

∫ T

0

∫ L0

0
γ (ψ(x, t))γ 1(x, t)dxdt as l → 0

for every γ 1 ∈ L2(0,T;H1(0, L0)).

Proof. Since (D1) and (D3) hold |γ (s)| ≤ Ms, therefore

||γ (ψ (l))||L∞(0,T;L2(0,L0)) ≤ C(||ψ (l)||L∞(0,T;L2(0,L0))).

Thus, due to Lemmas 2.1 and 3.6, the sequence

R8
(l)
tt = A8(l) + Ŵ(8

(l)
t )+ F(8(l))+ P

is bounded in L∞(0,T;H−1(0, L)) and we can extract

a subsequence form 8
(l)
tt , that converges ∗-weakly in

L∞(0,T;H−1(0, L)). Thus,

8
(l)
t → 8t strongly in L2(0,T;H−ε(0, L)), ε > 0.

Consequently,

∣∣∣∣∣

∫ T

0

∫ L0

0
(γ (ψ (l)(x, t))− γ (ψ(x, t)))γ 1(x, t)dxdt

∣∣∣∣∣ ≤

C(L)

∫ T

0

∫ L0

0
|ψ (l)(x, t)− ψ(x, t)||γ 1(x, t)|dxdt → 0.

We perform numerical modeling for the original problem

with l = 1, 1/3, 1/10, 1/30, 1/100, 1/300, 1/1, 000, and the limiting

problem (l = 0) with the following values of constants: ρ1 = ρ2 =

1, β1 = β2 = 2, σ1 = 4, σ2 = 2,λ1 = 8, λ2 = 4, L = 10, L0 = 4,

and the right-hand side

p1(x) = sin x, r1(x) = x, q1(x) = sin x, (113)

p2(x) = cos x, r2(x) = x+ 1, q2(x) = cos x. (114)

In this subsection, we consider the nonlinearities with the

potential

F1(ϕ,ψ ,ω) = |ϕ + ψ |4 − |ϕ + ψ |2 + |ϕψ |2 + |ω|3,

F2(u, v,w) = |u+ v|4 − |u+ v|2 + |uv|2 + |w|3.

Frontiers in AppliedMathematics and Statistics 18 frontiersin.org

https://doi.org/10.3389/fams.2024.1418656
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Fastovska et al. 10.3389/fams.2024.1418656

Consequently, the nonlinearities have the form

f1(ϕ,ψ ,ω) = 4(ϕ + ψ)3 − 2(ϕ + ψ)+ 2ϕψ2,

f2(u, v,w) = 4(u+ v)3 − 2(u+ v)+ 2uv2,

h1(ϕ,ψ ,ω) = 4(ϕ + ψ)3 − 2(ϕ + ψ)+ 2ϕ2ψ ,

h2(u, v,w) = 4(u+ v)3 − 2(u+ v)+ 2u2v,

g1(ϕ,ψ ,ω) = 3|ω|ω,

g2(u, v,w) = 3|w|w.

For modeling, we choose the following dissipation (globally

Lipschitz)

γ (s) =





1

100
s3, |s| ≤ 10,

10s, |s| > 10.

and the following initial data:

ϕ(x, 0) = −
3

16
x2 +

3

4
x, u(x, 0) = 0,

ψ(x, 0) = −
1

12
x2 +

7

12
x, v(x, 0) = −

1

6
x+

5

3
,

ω(x, 0) =
1

16
x2 −

1

4
x, w(x, 0) = −

1

12
x2 +

7

6
x−

10

3
,

ϕt(x, 0) =
x

4
, ut(x, 0) = −

1

6
(x− 10),

ψt(x, 0) =
x

4
, vt(x, 0) = −

1

6
(x− 10),

ωt(x, 0) =
x

4
, wt(x, 0) = −

1

6
(x− 10).

Figures 2–7 show the behavior of solutions when l → 0 for the

chosen cross-sections of the beam.

5.2 Singular limit ki → ∞, l → 0

The singular limit for the straight Timoshenko beam (l = 0) as

ki → +∞ is the Euler–Bernoulli beam equation in Ref. [15, Ch.

4]. We have a similar result for the Bresse composite beam when

ki → ∞, and l → 0.

Theorem 5.3. Let the conditions of Theorem 3.4, (N6), and (D3)

hold.

We also let the following assumptions be satisfied

(ϕ0, u0) ∈
{
ϕ0 ∈ H2(0, L0), u0 ∈ H2(L0, L), ϕ0(0) = u0(L) = 0,

∂xφ0(0) = ∂xu0(L) = 0, ∂xϕ0(L0, t) = ∂xu0(L0, t)
}
;

(I1)

ψ0 = −∂xϕ0, v0 = −∂xu0; (I2)

(ϕ1, u1) ∈ {ϕ1 ∈ H1(0, L0), u1 ∈ H1(L0, L), ϕ1(0) = u1(L) = 0,

ϕ1(L0, t) = u1(L0, t)}; (I3)

ω0 = w0 = 0; (I4)

h1, h2 ∈ C1(R2); (N6)

r1 ∈ L∞(0,T;H1(0, L0)), r2 ∈ L∞(0,T;H1(L0, L)),

r1(L0, t) = r2(L0, t) for allmost all t > 0.
(R3)

Let k
(n)
j → ∞, l(n) → 0 as n → ∞, and 8(n) be the solutions

to (17)-(23) with the fixed k
(n)
j , l(n) and the same initial data

8(x, 0) = (ϕ0,ψ0,ω0, u0, v0,w0)(x),

8t(x, 0) = (ϕ1,ψ1,ω1, u1, v1,w1).

Then for every T > 0

8(n) ∗
⇀ (ϕ,ψ ,ω, u, v,w) in L∞(0,T;Hd) as n → ∞,

8
(n)
t

∗
⇀ (ϕt ,ψt ,ωt , ut , vt ,wt) in L∞(0,T;Hv) as n → ∞,

where

• (ϕ, u) is the solution to

ρ1ϕtt − β1ϕttxx + λ1ϕxxxx − γ
′(−ϕtx)ϕtxx + ∂xh1(ϕ,−ϕx)

+ f1(ϕ,−ϕx) = p1(x, t)+ ∂xr1(x, t), (x, t) ∈ (0, L0)× (0,T),

(115)

ρ2utt − β2uttxx + λ2uxxxx + ∂xh2(u,−ux)+ f2(u,−ux)

= p2(x, t)+ ∂xr2(x, t), (x, t) ∈ (L0, L)× (0,T),

(116)

ϕ(0, t) = ϕx(0, t) = 0, u(L, t) = ux(L, t) = 0, (117)

ϕ(L0, t) = u(L0, t),ϕx(L0, t) = ux(L0, t), (118)

λ1ϕxx(L0, t) = λ2uxx(L0, t), (119)

λ1ϕxxx(L0, t)− β1ϕttx(L0, t)+ h1(ϕ(L0, t),

− ϕx(L0, t))+ γ (−ϕtx(L0, t)) =

λ2uxxx(L0, t)− β2uttx(L0, t)+ h2(u(L0, t),−ux(L0, t)),

(120)

with the initial conditions

(ϕ, u)(x, 0) = (ϕ0, u0)(x), (ϕt , ut)(x, 0) = (ϕ1, u1)(x).

• ψ = −ϕx, v = −ux;

• (ω,w) is the solution to

ρ1ωtt − σ1ωxx + g1(ω) = q1(x, t), (x, t) ∈ (0, L0)× (0,T),

(121)

ρ2wtt − σ2wxx + g2(w) = q2(x, t), (x, t) ∈ (L0, L)× (0,T),

(122)

ω(0, t) = 0, w(L, t) = 0, (123)

σ1ωx(L0, t) = σ2wx(L0, t), ω(L0, t) = w(L0, t) (124)

with the initial conditions

(ω,w)(x, 0) = (0, 0), (ωt ,wt)(x, 0) = (ω1,w1)(x).

Proof. The proof uses the idea from Ref. [15, Ch. 4.3] and differs

from it mainly in transmission conditions. We skip the details of

the proof, which coincides with Ref. [15].

Energy inequality (25) implies (125)

∂t(ϕ
(n),ψ (n),ω(n), u(n), v(n),w(n)) bounded in L∞(0,T;Hv),

(125)

ψ (n) bounded in L∞(0,T;H1(0, L0)),

(126)
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FIGURE 2

Transversal displacement of the beam, cross-section x = 2.

FIGURE 3

Transversal displacement of the beam, cross-section x = 6.

FIGURE 4

Shear angle variation of the beam, cross-section x = 2.

v(n) bounded in L∞(0,T;H1(L0, L)) (127)

ω(n)
x − l(n)ϕ(n) bounded in L∞(0,T; L2(0, L0)), (128)

w(n)
x − l(n)u(n) bounded in L∞(0,T; L2(L0, L)),

(129)

k
(n)
1 (ϕ(n)x + ψ (n) + l(n)ω(n)) bounded in L∞(0,T; L2(0, L0)),

(130)

k
(n)
2 (u(n)x + v(n) + l(n)w(n)) bounded in L∞(0,T; L2(L0, L)),

(131)
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FIGURE 5

Shear angle variation of the beam, cross-section x = 6.

FIGURE 6

Longitudinal displacement of the beam, cross-section x = 2.

FIGURE 7

Longitudinal displacement of the beam, cross-section x = 6.

Thus, we can extract subsequences that converge in

corresponding spaces ∗-weak. Similarly to Ref. [15] we have

ϕ(n)x + ψ (n) + l(n)ω(n) ∗
⇀ 0 in L∞(0,T; L2(0, L0)),

therefore

ϕx = −ψ .

Analogously,

ux = −v.

Equations (126)–(131) imply

ω(n) ∗
⇀ ω in L∞(0,T;H1(0, L0)),

w(n) ∗
⇀ w in L∞(0,T;H1(L0, L)), (132)
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ϕ(n)
∗
⇀ ϕ in L∞(0,T;H1(0, L0)),

u(n)
∗
⇀ u in L∞(0,T;H1(L0, L)). (133)

Thus, the Aubin’s lemma gives that

8(n) → 8 strongly in C(0,T; [H1−ε(0, L0)]
3 × [H1−ε(L0, L)]

3)

(134)

for every ε > 0 and then

∂xϕ0 + ψ0 + l(n)ω0 → 0 strongly in H−ε(0, L0),

This implies that

∂xϕ0 = −ψ0, ω0 = 0.

Analogously,

∂xu0 = −v0, w0 = 0.

Let us take a test function of the form B =

(β1,−β1x , 0,β
2,−β2x , 0) ∈ FT such that β1x (L0, t) = β2x (L0, t)

for almost all t. Due to (132)–134) and Lemma 5.2 we can

pass to the limit in variational equality (24) as n → ∞. In

the same way as in Ref. [15, Ch. 4.3] we obtain, that limiting

functions ϕ, u are of higher regularity and satisfy the following

variational equality

∫ T

0

∫ L0

0

(
ρ1ϕtβ

1
t − β1ϕtxβ

1
tx

)
dxdt

+

∫ T

0

∫ L

L0

(
ρ2utβ

2
t − β1utxβ

2
tx

)
dxdt

−

∫ L0

0

(
ρ1(ϕtβ

1
t )(x, 0)− β1(ϕtxβ

1
tx)(x, 0)

)
dx

+

∫ L

L0

(
ρ2(utβ

2
t )(x, 0)− β1(utxβ

2
tx)(x, 0)

)
dx

+

∫ T

0

∫ L0

0
λ1ϕxxβ

1
xxdxdt

+

∫ T

0

∫ L

L0

λ2uxxβ
2
xxdxdt

−

∫ T

0

∫ L0

0
γ ′(−ϕxt)ϕtxxβ

1dxdt

+

∫ T

0

∫ L0

0

(
f1(ϕ,−ϕx)β

1 − h1(ϕ,−ϕx)β
1
x

)
dxdt

+

∫ T

0

∫ L

L0

(
f2(u,−ux)β

2 − h2(u,−ux)β
2
x

)
dxdt

=

∫ T

0

∫ L0

0

(
p1β

1 − r1β
1
x

)
dxdt

+

∫ T

0

∫ L

L0

(
p2β

2 − r2β
2
x

)
dxdt. (135)

Provided ϕ and u are smooth enough, we

can integrate (135) by parts concerning x and t

and obtain

∫ T

0

∫ L0

0
(ρ1−β1∂xx)ϕttβ

1dxdt+

∫ T

0

∫ L

L0

(ρ2−β2∂xx)uttβ
2dxdt

+

∫ T

0

[
β1ϕttx(t, L0)− β2uttx(t, L0)

]
β1(t, L0)dt

+

∫ T

0

∫ L0

0
λ1ϕxxxxβ

1dxdt +

∫ T

0

∫ L

L0

λ2uxxxxβ
2dxdt

+

∫ T

0
[λ1ϕxx − λ2uxx] (t, L0)β

1
x (t, L0)dt

−

∫ T

0
[λ1ϕxxx − λ2uxxx] (t, L0)β

1(t, L0)dt

−

∫ T

0

∫ L0

0
γ ′(−ϕxt)ϕxxtβ

1dxdt

−

∫ T

0
γ (−ϕxt(L0, t))β

1(L0, t)

+

∫ T

0

∫ L0

0

(
f1(ϕ,−ϕx)+ ∂xh1(ϕ,−ϕx)

)
β1dxdt

+

∫ T

0

∫ L

L0

(
f2(u,−ux)+ ∂xh2(u,−ux)

)
β2dxdt

+

∫ T

0

(
h2(u(L0, t),−ux(L0,T))− h1(ϕ(L0, t),−ϕx(L0,T))

)
β1(L0, t)dt

=

∫ T

0

∫ L0

0
(p1 + ∂xr1)β

1dxdt +

∫ T

0

∫ L

L0

(p2 + ∂xr2)β
2dxdt

+

∫ T

0

[
r2(t, L0)− r1(t, L0)

]
β1(t, L0)dt. (136)

Requiring all the terms containing β1(L0, t), β
1
x (L0, t) to be zero,

we get transmission conditions (119)–(116). Equations (115 and

116) are recovered from the variational equality (136). Problem

(121)–(124) can be obtained in the same way.

We perform numerical modeling for the original problem with

the initial parameters

l(1) = 1, k
(1)
1 = 4, k

(1)
2 = 1.

We model the simultaneous convergence l → 0 and

k1, and k2 → ∞ in the following way: we divide l by the factor

χ and multiply k1, k2 by the factor χ . Calculations were performed

for the original problem with

χ = 1, χ = 3, χ = 10, χ = 30, χ = 100, χ = 300,

and the limiting problem (115)–(120). The other constants in the

original problem are the same as in the previous subsection, and we

change functions in the right-hand side (113, 114) as follows:

r1(x) = x+ 4, r2(x) = 2x.

The nonlinear feedbacks are

f1(ϕ,ψ ,ω) = 4ϕ3 − 2ϕ, f2(u, v,w) = 4u3 − 8u,

h1(ϕ,ψ ,ω) = 0, h2(u, v,w) = 0,

g1(ϕ,ψ ,ω) = 3|ω|ω, g2(u, v,w) = 6|w|w.
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We use linear dissipation γ (s) = s, and we chose the following

initial displacement and shear angle variation:

ϕ0(x) = −
13

640
x4 +

6

40
x2 −

23

40
x2,

u0(x) =
41

2160
x4 −

68

135
x3 +

823

180
x2 −

439

27
x+

520

27
.

ψ0(x) = −

(
−

13

160
x3 +

27

40
x2 −

23

20
x

)
,

v0(x) = −

(
41

540
x3 −

68

45
x2 +

823

90
x−

439

27

)
.

and set

ω0(x) = w0(x) = 0.

We choose the following initial velocities

ϕ1(x) = −
1

32
x3 +

3

16
x2, u1(x) =

1

108
x3 −

7

36
x2 +

10

9
x−

25

27
,

ω1(x) = ψ1(x) =
3

5
x,

w1(x) = v1(x) = −
2

5
x+ 4.

The double limit case appeared to be more challenging from

the point of view of numerics than the case l → 0. The numerical

simulations of the coupled system in equations (1)–(7), including

the interface conditions in (8)–(11), were done by a semi-discrete

of the functions φ,ψ ,ω, u, v,w with respect to the position x and

by using an explicit scheme for the time integration. That allows

the choice of discretized values at grid points near the interface

in a separate step so that they obey the transmission conditions.

It was necessary to solve a nonlinear system of equations for

the six functions at three grid points (at the interface, and left

and right of the interface) in each time step. Any attempt to

use a fully implicit numerical scheme led to extremely time-

expensive computations due to the large nonlinear system’s overall

discretized values which were to be solved in each time step.

On the other hand, increasing k1 and k2 increases the stiffness

of the system of ordinary differential equations, which results

from the semidiscretization, and the CFL conditions require small

time steps; otherwise, numerical oscillations occur. Figures 8–13

present smoothed numerical solutions, which were particularly

necessary for large factors χ , e.g., χ = 300. When the parameters

k1 and k2 are large, the material of the beam gets stiff, and so

does the discretized system of differential equations. Nevertheless,

the oscillations are still noticeable in the graph. By the way,

the observation that the factor χ cannot be arbitrarily enlarged

underlines the importance of having the limit problem for χ → ∞

in (1)-(15).

6 Discussion

The classical Kirchhoff model of elasticity is based on the

hypothesis that the shear angleψ can be represented asψ = −∂xϕ,

where φ is the transverse displacement of the beam. In this case,

the beam is initially straight and nonshearable. The Bresse model

describes the dynamics of an initially curved beam and takes into

consideration shear effects (for details, see, e.g., Ref. [2]). In real-

world applications, it is important to investigate networks of elastic

objects with different elastic properties and contact conditions,

such as spacecraft structures, trusses, robot arms, antennae, etc. In

the present study, we evaluate the dynamics of two Bresse beams

with rigid contact and, moreover, show that if the curvature l tends

to zero, solutions to the Bresse transmission problem lean to be

the solutions of two problems. The longitudinal displacements in

this case incline to be the solutions to a transmission problem

for a wave equation, and the transversal displacements and shear

angles be the to solutions to the Timoshenko problem, describing

the dynamics of a straight shearable beam. In the case of a double

limit, if curvature l tends to zero and shear moduli k1, and k2
tend to infinity, the longitudinal displacements, in this case, tend

to be the solutions of a transmission problem for a wave equation,

and the transversal displacements to solutions of a transmission

Kirchhoff problemwith rotational inertia.We illustrate these effects

by means of numerical modeling. These results show that in cases

of small initial curvature and large shear moduli, shear effects can

be neglected and the dynamics can be described by the well-known

Kirchhoff model. Figures show that the speed of convergence to the

limit model in the case of a single limit l → 0 is higher than in the

case of a double limit l → 0, ki → ∞, when not only the geometric

configuration but also the elastic properties of the beam change.

There are many studies devoted to long-time behavior of linear

homogeneous Bresse beams (with various boundary conditions and

dissipation natures). If damping is present in all three equations, it

appears to be sufficient for the exponential stability of the system

without additional assumptions on the parameters of the problems

(see, e.g., Ref. [16–18]).

The situation is different if we have a dissipation of any kind

in two or one equation only. First of all, it matters in which

equations the dissipation acts. There are results on the Timoshenko

beams (see Ref. [19]) and the Bresse beams (see Ref. [20]) showing

that damping in only one of the equations does not guarantee

the exponential stability of the whole system. It seems that for

the Bresse system, the presence of dissipation in the shear angle

equation is necessary for stability of any kind. To get exponential

stability, one needs additional assumptions on the coefficients of

the problem, usually the equality of the propagation speeds:

k1 = σ1,
ρ1

k1
=
β1

λ1

Otherwise, only polynomial (non-uniform) stability holds (see

e.g., Ref. [21] for mechanical dissipation and Ref. [20] for thermal

dissipation). In Ref. [22] analogous results are established in the

case of nonlinear damping.

If dissipation is present in all three equations of the Bresse

system, corresponding problems with nonlinear source forces

of a local nature possess global attractors under the standard
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FIGURE 8

Transversal displacement of the beam, cross-section x = 2.

FIGURE 9

Transversal displacement of the beam, cross-section x = 6.

FIGURE 10

Shear angle variation of the beam, cross-section x = 2.

assumptions for nonlinear terms (see e.g., [4]). Otherwise,

nonlinear source forces create technical difficulties and may cause

instability in the system. To the best of our knowledge, there is no

literature on such cases.

The damping force is a function of the system’s velocity. In

the linear case, it is standard linear viscous damping; however,

in some mechanical systems, for instance, nonlinear suspension

and isolation systems (see e.g., Ref. [23] Section 2d), the damping

force can be nonlinear. Therefore, we consider a general nonlinear

damping term and find assumptions under which the problem is

well-posed and possesses a compact global attractor. In this case,

linear damping is a particular case of the damping considered.
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FIGURE 11

Shear angle variation of the beam, cross-section x = 6.

FIGURE 12

Longitudinal displacement of the beam, cross-section x = 2.

FIGURE 13

Longitudinal displacement of the beam, cross-section x = 6.

The presence of nonlinear feedback complicates the structure

the of attractors. The homogeneous problem without nonlinear

feedbacks is exponentially stable, and its trajectories stabilize to

zero for infinite time. Nonlinear problems usually have more

complex limiting regimes. In this case, the attractor consists of full

trajectories stabilizing the set of stationary points, which can consist

of multiple points.

In this study, we investigate a transmission problem for the

Bresse system.

Transmission problems for various equation types have already

had some history of investigation. One can find many research

concerning their well-posedness, long-time behavior, and other

aspects (see e.g., Ref. [24] for a nonlinear thermoelastic/isothermal

plate, Ref. [25] for the Kirchhoff/Timoshenko beam, and Ref. [26]
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for the full von Karman beam). Problems with localized damping

are close to transmission problems. In recent years a number

of such problems for the Bresse beams have been studied, e.g.,

Ref. [4, 22]. To prove the existence of attractors in this case, a

unique continuation property is an important tool, as well as the

frequency method.

The only interpretation we know on a transmission problem

for the Bresse system is Ref. [27]. The beam in this work consists of

thermoelastic (damped) and elastic (undamped) parts, both purely

linear. Despite the presence of dissipation in all three equations for

the damped part, the corresponding semigroup is not exponentially

stable for any set of parameters but only polynomially (non-

uniformly) stable. In contrast to Ref. [27], we consider mechanical

damping only in the equation for the shear angle for the damped

part. However, we can establish exponential stability for the linear

problem and the existence of an attractor for the nonlinear one

under restrictions on the coefficients in the damped part only. The

assumption on the nonlinearities can be simplified in the 1D case

(cf. e.g., Ref. [28]).
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