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θ-Weighted mixture distribution:
the Weibull-Lomax case

Cristian Carvajal-Muquillaza*, Ronald Manríquez and

Eduardo Cabrera
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Universidad de Playa Ancha, Valparaíso, Chile

Introduction: This article introduces a new family of weighted mixture

distributions, referred to as θ-WM. The θ-WM family is generated by combining

two distributions weighted by a parameter θ , o�ering notable flexibility to model

a wide range of complex phenomena. A special case study of the θ-weighted

mixture distribution of Weibull-Lomax (θ-WMWLx) is included, resulting from the

combination of Weibull and Lomax distributions.

Methods: The research thoroughly examines the reliability and statistical

properties of the θ-WMWLx distribution. Key aspects such as stochastic

dominance, survival and hazard functions, mean residual life, and moments

are addressed. The maximum likelihood method is used to estimate unknown

parameters.

Results: The research findings show that the θ-WMWLx distribution provides

a superior fit compared to competing distributions. The analyses are validated

using three real datasets, demonstrating the e�ectiveness of the proposed

distribution.

Discussion: The θ-WMWLx distribution stands out for its ability to model

complex phenomena with high precision. Validation with real data confirms

that the proposed distribution o�ers a better fit than existing distributions,

highlighting its utility and applicability in various statistical analysis contexts.

KEYWORDS

mixture distribution, Weibull distribution, Lomax distribution, survival function,

distribution family

1 Introduction

In scientific research, distribution models constitute conceptual frameworks to

comprehend complex phenomena. These models span from the intricacies of climate

change and pandemic spread to understanding the dynamics of economic indicators

or the lifespan of cellular organisms. Granting these models, significant flexibility is

essential to align them with the inherent complexities of the studied phenomena. The

establishment of new parameters into distribution models gives them greater adaptability

to diverse circumstances.

The study of generalized probability distributions begins with the famous study on

Pearson’s systems of continuous distributions, in which each probability density function

satisfies a differential equation with four parameters on which the shape of the function

depends (see Pearson [1]). In Amoroso [2], the generalization of the beta distribution to

better fit certain income rates is discussed. Following Pearson’s ideas, Burr [3] presents a

system of continuous distributions that also satisfy a differential equation. Later, Johnson

[4] proposed a system to generate distributions using the normalization transformation

with four parameters: two of shape, one of scale, and one of location.

A pivotal contribution in this field emerged from the study of Marshall and Olkin [5],

and their method defines a new survival function as follows:
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Ḡ(x|α) = αF̄(x)

1− ᾱF̄(x)
; (−∞ < x <∞; 0 < α <∞), (1)

where ᾱ = 1 − α, and F̄ represents the survival function of a

random variable X.

From Equation (1), extensive research has led to new

distribution families such as the Marshall-Olkin generalized

exponential linear distribution proposed by Okasha and Kayid

[6], the extended uniform distribution of Marshall-Olkin by Jose

and Krishna [7], the Marshall-Olkin Topp-Leone half-logistic-

G distribution by Sengweni et al. [8], the generalized Marshall-

Olkin transmuted-G family in Handiquea et al. [9] that to extend

the transmuted family proposed in Shaw and Buckley [10], and

the Marshall-Olkin-Weibull-H family applied to COVID-19 data

(see Afify et al. [11]). Based on incorporating parameters into

a reference distribution, this approach has proven effective in

fostering flexibility into new distribution families [12].

Another strategy for creating new distribution families involves

functional transformations. For instance, Souza et al. [13]

introduced the Sin-G family generated by the sine function. In

addition, Shama et al. [14] proposed the Modified Generalized-

G family, a flexible distribution built on power-exponential

transformations. Their theoretical approach is as follows: let Ḡ be

a survival function of an absolutely continuous distribution with

support (0, 1), andH be a decreasing continuous function such that

H(x) ∈ [0, 1] and limx→0 H(x) = 1. Then, the following function is

a valid continuous distribution function:

F(x) = 1− Ḡ(x)H(x). (2)

Shama et al. chose G as the survival function of the T2ExG

family defined with a certain generic baseline distribution andH as

a decreasing exponential function compound with a possible other

baseline distribution.

There is extensive literature associated with the generalization

and/or obtaining of families of distributions that contemplate

different techniques and strategies (see, for instance, Nadarajah and

Kotz [15], Eugene et al. [16], Cordeiro and de Castro [17], Mahdavi

and Kundu [18], and Iriarte et al. [19]).

This study aims to construct a new distribution family

called θ-Weighted Mixture distribution (θ-WM) based on the

approach of Equation (2) by incorporating a parameter θ ∈
[0, 1] and considering H as a survival function and, thus, to

expand de proposal of Shama et al. [14]. This general family is

established as a flexible and adaptable framework for modeling

diverse phenomena; it allows a gradual and flexible transition

between G and H distributions through the weighting parameter

θ , addressing a wider range of problems that require more

accurate modeling. Specifically, we deal with a particular case

within the θ-WM family, denoted by θ-WMWLx, composed of

the Weibull and Lomax distributions. We study the fundamental

reliability components associated with the θ-WMWLx distribution,

along with its basic statistical properties such as survival and

hazard functions, mean residual life, mean inactivity time, useful

expansions, quantile function, Renyi entropy, moments, order

statistics, and estimation methods. Furthermore, we present two

real datasets to compare the behavior of the proposed distribution

with four other models.

The θ-WM family has desirable properties, justified as

follows: (i) The specific submodels of the θ-WM family, such

as θ-WMEW and θ-WMWLx, can represent crucial hazard

rate (hr) shapes, including increasing, decreasing, J-shape, and

reversed J-shape; (ii) in addition, the densities of its submodels

encompass reversed J-shaped, right-skewed, symmetric, left-

skewed, and decreasing–increasing–decreasing patterns; (iii) the

specific θ-WMWLx model provides a better fit compared to

other generalized models using the same baseline distribution, as

demonstrated in the case of the Lomax-exponential distribution

(LED) and the exponentiated Kumaraswamy Inverse Weibull

(EKIW) distribution.

The document is structured as follows: Section 2 introduces

the θ-Weighted Mixture distribution family (θ-WM) based on

Equation (2). In Section 3, we study the θ-WMWLx distribution as

part of the θ-WM family. Section 4 encompasses a comprehensive

reliability analysis, including a detailed exploration of the

fundamental statistical properties of the θ-WMWLx distribution.

In Section 5, a simulation study is incorporated to evaluate

the performance of maximum likelihood estimators (MLE), least

squares estimators (LSE), and weighted least squares estimators

(WLSE) across various sample sizes and parameter configurations.

Finally, two real-world applications are presented to demonstrate

the behavior of the proposed distribution compared to four other

models, and the conclusion drawn from the study is summarized in

Section 6.

2 The θ-Weighted Mixture distribution
family (θ-WM)

In this section, we introduce the definition of the θ-Weighted

Mixture distribution family (θ-WM), based on Equation (2). In

addition, we show two distribution models from this proposed

family as illustrative examples.

Definition 1. Let G(x|η) and 9(x|ξ ) be two absolutely continuous

baseline distribution functions, where Ḡ(x|η) and 9̄(x|ξ ) represent
their respective survival functions (SF). Then, for θ ∈ [0, 1],

the corresponding cumulative distribution function (CDF) and

probability density function (PDF) for the θ-WM distribution

family are obtained as follows:

Fθ (x|η, ξ ) = 1− Ḡ(x|η)1−θ 9̄(x|ξ )θ , η, ξ > 0, x > 0, (3)

and

fθ (x|η, ξ ) = Ḡ(x|η)−θ 9̄(x|ξ )θ
[

(1− θ)g(x|η)+ θḠ(x|η)9̄(x|ξ )−1ψ(x|ξ )
]

, (4)

where g and ψ are the PDFs of the distributions G and 9 ,

respectively.

Remark 1. From the definition 1, we have:

1. The parameter θ determines the weighting between the

survival functions Ḡ and 9̄ in the formation of the combined

distribution.

2. If θ = 0, then F0(x|η, ξ ) = G(x|η).
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3. If θ = 1, then F1(x|η, ξ ) = 9(x|ξ ).
4. If G(x|8) = 9(x|8), then Fθ (x|8) = G(x|8).

2.1 Some models based on the θ-WM
distribution family

In this subsection, two models are shown using Equations (3,

4) to determine both the cumulative distribution function and

probability density function of the θ-WM distribution family for

each of these models.

Figures 1–3 show the HRFs of the submodels in the θ-WM

family. The flexibility of these graphs can be observed, displaying

increasing shapes, J-shapes, unimodal, and asymmetric forms.

Similarly, the densities of these submodels provide great flexibility

in their shapes, which can exhibit left-skewed, bimodal, right-

skewed, unimodal, symmetrical, and J-shaped forms, as illustrated

in Figures 1–3.

2.1.1 The θ-WMEW distribution
We define the θ-WMEWdistribution by taking the exponential

and Weibull distributions as baseline distributions in the θ-WM

distribution family.

Suppose X1 is a random variable that follows an exponential

distribution with parameter λ. Then, the CDF and PDF of X1 are

defined by G(x|λ) = 1 − e−λx and g(x|λ) = λe−λx, respectively,
and the random variable X2 follows a Weibull distribution with

shape parameter α and scale parameter β . The CDF and PDF of

X2 are expressed as 9(x|α,β) = 1 − e−(βx)
α
and ψ(x|α,β) =

αβ(βx)α−1e−(βx)
α
, respectively. Consequently, the CDF and PDF

of the θ-WMEW distribution are given by

Fθ (x|θ , λ,α,β) = 1−
[

e−λx
]1−θ [

e−(βx)
α
]θ

,

and

fθ (x|θ , λ,α,β) = eλx(θ−1)−θ(βx)
α [

(1− θ)λ+ θαβ(βx)α−1
]

.

FIGURE 1

(A) PDF of θ-WMEW. (B) HRF of θ-WMEW.

FIGURE 2

(A) PDF of θ-WMPLxR. (B) HRF of θ-WMPLxR.
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where θ represents a parameter that weights the characteristics

of the exponential and Weibull distributions. Figure 1 shows

the graph of PDF and hazard rate function HRF for different

parameters.

2.1.2 The θ-WMPLxR distribution
The θ-WMPLxR distribution corresponds to the composition

of the Marshall-Olkin power Lomax and Rayleigh distributions.

Then, the CDF and PDF of the θ-WMPLxR distribution are

expressed as follows:

Fθ (x|2) = 1−
[

1−
(

1− λα(λ+ xβ )−α

1− (1− γ )(λα(λ+ xβ )−α)

)]1−θ






e
−

x2

2σ 2







θ

,

and

fθ (x|2) =
[

1−
(

1− λα(λ+ xβ )−α

1− (1− γ )(λα(λ+ xβ )−α)

)]−θ





e
−

x2

2σ 2







θ

×
[

(1− θ) γαβλαxβ−1(λ+ xβ )−α−1
[

1− (1− γ )λα(λ+ xβ )−α
]2

+ θx

σ 2

[

1−
(

1− λα(λ+ xβ )−α

1− (1− γ )(λα(λ+ xβ )−α)

)]]

.

Figure 2 shows the graph of the PDF and HRF of the θ-

WMPLxR distribution for different parameter values.

3 θ-Weighted Mixture Weibull-Lomax
distribution (θ-WMWLx)

Within the framework of the family of θ-weighted mixture

distributions (θ-WM) emerges the θ-weighted mixture Weibull-

Lomax distribution (θ-WMWLx). Based on the strategic fusion of

the Weibull and Lomax distributions, this theoretical expansion

provides a powerful and adaptable tool for modeling phenomena

with diverse and complementary properties.

The specific choice of the Weibull and Lomax distributions is

not arbitrary; rather, it is grounded in their inherent characteristics

that make them exceptionally suitable for modeling different

contexts and phenomena. The Weibull distribution is recognized

for its versatility in modeling product lifetimes, reliability

phenomena, and time to failure, while the Lomax distribution,

known as the two-parameter Pareto distribution, stands out for

its ability to describe phenomena with heavy tails and long-tailed

distributions. For more details, refer to the studies Tahir et al. [20],

Afify et al. [21], Hassan and Abd-Allah [22], Ijaz et al. [23], and

Alzaghal et al. [24].

The main distinction of the θ-WMWLx lies in its ability to

encapsulate both the shape of the Weibull distribution, with its

flexibility in modeling different behaviors, and the heavy-tailed

characteristics of the Lomax distribution. This fusion provides a

powerful and adaptable statistical framework to describe a wide

range of phenomena, from data exhibiting reliability trends and

lifetimes to those showing extreme behaviors and long tails.

Let Ḡ(x|λ, k) and 9̄(x|α,β) be the survival functions of the

Weibull and Lomax distributions, respectively, that is Ḡ(x|λ, k) =
e−(λx)

k
and 9̄(x|α,β) = (1+βx)−α . Then, according to Definition

1, and for 0 ≤ θ ≤ 1, the CDF and PDF for θ-WMWLx are defined

by

Fθ (x|θ , λ, k,α,β) = 1− e−(1−θ)(λx)
k
(1+ βx)−θα ,

λ, k,α,β > 0, x > 0, (5)

and

fθ (x|θ , λ, k,α,β) = e(θ−1)(λx)
k
(1+ βx)−θα

[

(1− θ)λk(λx)k−1 + θαβ(1+ βx)−1
]

. (6)

respectively.

Figure 3 shows the graph of the PDF and HRF of the θ-

WMWLx distribution for a combination of λ, k, β , α, and θ

parameters.

It is evident that the densities of the θ-WMWLx distribution

(Equation 6) exhibit diverse shapes, ranging from symmetric to

asymmetric, with skewness, inverted J-shaped, and unimodal

distributions.

These graphs illustrate how the PDF may show various

behaviors for θ and k values. For instance, when θ = 0 and

0 < k ≤ 1, the PDF decreases. However, if θ = 0 and k > 1,

the PDF increases when X < 1/k((k− 1)/k)1/k and decreases when

X < 1/k((k − 1)/k)1/k. Finally, for θ = 1, the PDF always exhibits

a decreasing trend.

Proposition 1 shows a stochastic order connection between

Ḡ(x|λ, k) and Fθ (x|θ , λ, k,α,β).

Proposition 1. If Fθ (x|θ , λ, k,α,β) is defined as in Equation (5)

and F⊛θ (x|θ , λ, k) = 1 −
[

Ḡ(x|λ, k)
]1−θ

, then Fθ (x|θ , λ, k,α,β)
exhibits first-order stochastic dominance over F⊛θ (x|θ , λ, k),
that is,

Fθ (x|θ , λ, k,α,β) �1 F
⊛

θ (x|θ , λ, k).

Proof. To prove first-order stochastic dominance, we need to prove

that

Fθ (x|θ , λ, k,α,β) ≥ F⊛θ (x|θ , λ, k), ∀x > 0.

Subtracting the CDF functions yields

Fθ (x|θ , λ, k,α,β)− F⊛θ (x|θ , λ, k)

=
(

1− e−(1−θ)(λx)
k
(1+ βx)−θα

)

−
(

1− e−(1−θ)(λx)
k
)

= −e−(1−θ)(λx)k (1+ βx)−θα + e−(1−θ)(λx)
k

= e−(1−θ)(λx)
k (

1− (1+ βx)−θα
)

.

We know that e−(1−θ)(λx)
k

> 0 for all x, so if
(

1− (1+ βx)−θα
)

≥ 0 for all x > 0, stochastic dominance

holds.

The expression
(

1− (1+ βx)−θα
)

≥ 0 is satisfied whenever

(1+ βx)−θα ≤ 1, which is factual since (1+ βx)−θα is a decreasing
function in x and for θ ,α > 0. This proves the result.
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FIGURE 3

(A) PDF of θ-WMWLx distribution. (B) HRF of θ-WMWLx distribution.

FIGURE 4

(A) CDF F0.5(x) and F
⊛

0.5(x). (B) CDF F0.3(x) and F
⊛

0.3(x).

TABLE 1 First quartile, median, and third quartile of θ-WMWLx distribution.

θ α β λ k First quartile Median Third quartile

0
2 1 3 2 0.1788 0.2775 0.3924

0.5 3 1 3 0.6601 0.8849 1.1150

0.2
2 1 3 2 0.1759 0.2868 0.4161

0.5 3 1 3 0.6120 0.8895 1.1562

0.8
2 1 3 2 0.1621 0.3469 0.5956

0.5 3 1 3 0.3378 0.9291 1.5185

0.9
2 1 3 2 0.1586 0.3716 0.6957

0.5 3 1 3 0.2947 0.9512 1.7724
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TABLE 2 Renyi entropy of θ-WMWLx.

θ α β λ k Renyi Entropy
for δ = 2

0 0.5 1 0.3 2 1.67133

0.2 0.5 1 0.3 2 1.81029

0.4 0.5 1 0.3 2 1.91527

0.6 0.5 1 0.3 2 1.98275

0.8 0.5 1 0.3 2 2.01838

1 0.5 1 0.3 2 2.07944

Figure 4 clearly shows the first-order stochastic dominance of

Fθ (x) over F
⊛

θ (x).

4 Reliability elements and statistical
properties of the θ-WMWLx
distribution

In this section, we study the fundamental reliability

components associated with the θ-WMWLx distribution,

along with its basic statistical properties such as survival and

hazard functions, mean residual life, mean inactivity time, useful

expansions, quantile function, Renyi entropy, moments, order

statistics, and estimation methods.

4.1 Survival and hazard functions

In survival analysis, one of the most important functions is the

survival function, defined as the probability that an individual will

survive beyond time x, as stated by Kartsonaki [25]. It is expressed

as

Ḡ(X) = P(X > x) = 1− F(X), x > 0.

Therefore, if X follows a θ-WMWLx (θ , λ, k,α,β) distribution,

then the SF is represented by the equation:

F̄θ (x|θ , λ, k,α,β) = e−(1−θ)(λx)
k
(1+βx)−θα , λ, k,α,β > 0, x > 0.

(7)

This equation describes the probability of an individual’s

continued survival beyond time x. The hazard function, also known

as the failure rate or hazard function, represents a component’s

instantaneous probability of failure, assuming failure has not

occurred before time x (see Baredar et al. [26]). On the other

hand, the reversed hazard rate is defined as the ratio between

the probability density function and its distribution function (see

Kayid et al. [27]). Therefore, if X follows a θ-WMWLx (θ , λ, k,α,β)

distribution, the hazard function and the reversed hazard rate are

expressed as

hθ (x|θ , λ, k,α,β) =
[

(1− θ)λk(λx)k−1 + θαβ(1+ βx)−1
]

(8)

1: Given parameters: α = 0.5, β = 1, λ = 0.3, k = 2,

δ = 2

2: θ_values← [0, 0.2, 0.4, 0.6, 0.8, 1]

3: for θ in θ_values do

4: integrand ← Anonymous function defined as:

5: exp (δ · (θ − 1) · (λ · x)k) · (1+ β · x)−δ·θ ·α

6: ·((1− θ) · λ · k · (λ · x)k−1 + θ · α · β · (1+ β · x)−1)δ

7: Integral value ← integral(integrand, 0, ∞)

8: Renyi entropy ( IR) ← (1/(1 − δ)) ·
log(Integral value )

9: Print “For θ = ", θ , “, the Renyi entropy is:

", IR

10: end for

Algorithm1. Pseudocode to calculate Renyi entropy for given parameters.

and

rθ (x|θ , λ, k,α,β)

=
e(θ−1)(λx)

k
(1+ βx)−θα

[

(1− θ)λk(λx)k−1 + θαβ(1+ βx)−1
]

1− e−(1−θ)(λx)k (1+ βx)−θα
.

4.2 Mean residual life

The mean residual life (MRL) represents the anticipated added

duration once a component has endured up to a time t. The MRL

is crucial for reliability and survival analysis and characterizes the

aging mechanism. It has been established that the MRL exclusively

defines the distribution function, encapsulating all model-relevant

details (see Alshangiti et al. [28]). If the random variable X

represents the life of a component, then the MRL is given by

µT(t) =
1

F̄(t)

∫ ∞

t
F̄(x)dx, t ≥ 0,

where F̄ is the survival function.

The MRL function of a lifetime random variable X with θ-

WMWLx (θ , λ, k,α,β) distribution is given by

µT(t|θ , λ, k,α,β) = 1

e−(1−θ)(λt)k (1+ βt)−θα
∫∞
t e−(1−θ)(λx)

k
(1+ βx)−θαdx, t ≥ 0.

4.3 Mean inactivity time

Themean inactivity time (MIT) function is a reliability measure

with applications in many disciplines, such as reliability theory,

survival analysis, and actuarial studies. The MIT allows describing

the time elapsed since a failure occurred. Let X be a lifetime random

variable with distribution function F. The MIT function of X is

defined by

m(t) = 1

F(t)

∫ t

0
F(x)dx, t > 0.
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The MIT function of a lifetime random variable

X with θ-WMWLx (θ , λ, k,α,β) distribution is

given by

m(t|θ , λ, k,α,β) = 1

1− e−(1−θ)(λt)k (1+ βt)−θα
∫ t
0 1− e−(1−θ)(λx)

k
(1+ βx)−θαdx.

4.4 Useful expansions

In this subsection, we provide an infinite mixture

representation of the probability density function corresponding

to the θ-WMWLx distribution, which will be used in some

subsequent calculations.

It is well known that the exponential series expansion is

given by

e−x =
∞
∑

j=0

(−1)jxj
j!

. (9)

By applying Equation (9) to the PDF of θ-WMWLx, we obtain

fθ (x|θ , λ, k,α,β) =
∞
∑

j=0
vjwθα,(k−1)(x), (10)

where

vj =
(1− θ)j(−1)j

j
, and

wθα,(k−1)(x) = (λx)kj (1+ βx)−θα
[

(1− θ) λk (λx)k−1 + θαβ (1+ βx)−1
]

.

4.5 Quantile function

The quantile function is obtained by solving:

Q[ϕ(u)] = u, u ∈ (0, 1),

whereQ(·) is the CDF of θ-WMWLx (θ , λ, k,α,β) distribution.

In this case, the quantile function is the solution of the

non-linear equation:

(1− θ)(λxu)k + θα ln(1+ βxu)+ ln(1− u) = 0. (11)

By setting u = 0.5 in Equation (11), we can obtain the median

(Me) of the θ-WMWLx distribution. Furthermore, the lower and

higher quartiles can be obtained by setting u = 0.25 and u = 0.75,

respectively.

Table 1 shows the quantiles Q1,Me, and Q3 for different values

of the weighting parameter θ . These values were obtained using

the root-findingmethod, specifically implemented computationally

through the uniroot() function in R software version 4.3.3.

The uniroot() function is used to find the roots of non-

linear equations, and in this context, it was applied to solve an

equation that models the relationship between the quantiles and the

parameter θ .

4.6 Rényi entropy

The entropy of a random variable X is a measure of the

uncertain variation. The Rényi entropy is defined by

IR(δ) =
1

1− δ log[I(δ)],

where I(δ) =
∫

R
f δ(x)dx, δ ∈ R

+ − {1} > 0.

Let X ∼ θ-WMWLx (θ , λ, k,α,β). The corresponding Renyi

entropy is obtained as

IR(δ) =
1

1− δ log
[

∫∞
0 eδ(θ−1)(λx)

k
(1+ βx)−δθα

(

(1− θ)λk(λx)k−1 + θαβ(1+ βx)−1
)δ

dx

]

.

Table 2 shows the Renyi entropy for θ-WMWLx with δ = 2,

α = 0.5, β = 1, λ = 0.3, k = 2, and different choices of

parameter θ .

For the calculation of Renyi entropy, the numerical integration

method based on the integral() function in MATLAB version

R2024a was used (see Algorithm 1).

4.7 Moments

Moments in statistical analysis are essential measures that

describe diverse probability distribution characteristics. They

provide insights into the shape, center, spread, and other important

features of the distribution. Specifically, moments help to quantify

properties such as mean, variance, skewness, and kurtosis.

Theorem 2. If X ∼ θ-WMWLx (θ , λ, k,α,β), then the rth moment

of X (for r < α, when θ = 1) is obtained by

µ
′
r =

∞
∑

j=0
vj

(

(1− θ)kλk(j+1)
βr+k(j+1)

B
[

r + k(j+ 1),−r − k(j+ 1)+ θα
]

+ θαλ
kj

βr+kj
B
[

r + kj+ 1,−r − kj+ θα
]

)

,

where vj =
(−1)j(1− θ)j

j!
and B(x, y) =

∫ 1
0 tx−1(1− t)y−1dt is

the Beta function.

Proof. We know that

µ
′
r = E(xr) =

∫ ∞

0
xrfθ (θ , λ, k,α,β)dx. (12)

Substituting Equation (10) into Equation (12) yields

µ
′
r =

∞
∑

j=0
vj

[

(1− θ)kλk(j+1)
∫ ∞

0
xr+k(j+1)−1(1+ βx)−θαdx

+ θαβλkj
∫ ∞

0
xr+kj(1+ βx)−(θα+1)dx

]

.
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TABLE 3 Mean, variance, kurtosis, and skewness of θ-WMWLx distribution.

θ α β λ k Mean Variance Kurtosis Skewness

0

2.89 1.55 3.62 2.14 0.2446 0.0144 3.0933 0.5432

0.5 3.75 1.89 3.45 0.4756 0.0232 2.7114 0.0378

2.8 4.5 1.75 6.24 0.5312 0.0098 3.0726 –0.3970

1.9 0.25 7.25 0.99 0.1385 0.0195 9.2043 2.0303

3.5 3.8 0.75 1.85 1.1842 0.4410 3.4658 0.7389

0.2

2.89 1.55 3.62 2.14 0.2397 0.0184 3.0744 0.5682

0.5 3.75 1.89 3.45 0.4753 0.0341 2.8055 –0.2030

2.8 4.5 1.75 6.24 0.3669 0.0488 1.685 –0.2022

1.9 0.25 7.25 0.99 0.1708 0.0297 9.2286 2.0333

3.5 3.8 0.75 1.85 0.5943 0.3865 5.7856 1.6016

0.4

2.89 1.55 3.62 2.14 0.2371 0.0233 3.1849 0.6886

0.5 3.75 1.89 3.45 0.4809 0.0477 2.5321 –0.1891

2.8 4.5 1.75 6.24 0.2614 0.0488 2.0194 0.5922

1.9 0.25 7.25 0.99 0.2226 0.0507 9.2838 2.0403

3.5 3.8 0.75 1.85 0.3319 0.2013 13.5392 2.7981

0.6

2.89 1.55 3.62 2.14 0.2383 0.0306 3.5391 0.8891

0.5 3.75 1.89 3.45 0.4978 0.0678 2.2718 –0.0804

2.8 4.5 1.75 6.24 0.1926 0.0394 3.5502 1.2446

1.9 0.25 7.25 0.99 0.3196 0.1052 9.4328 2.0593

3.5 3.8 0.75 1.85 0.2066 0.0970 29.371 4.1098

0.8

2.89 1.55 3.62 2.14 0.2482 0.0452 4.5116 1.2335

0.5 3.75 1.89 3.45 0.5455 0.1099 2.0946 0.0988

2.8 4.5 1.75 6.24 0.1470 0.0302 6.4252 1.9140

1.9 0.25 7.25 0.99 0.5683 0.3423 10.0267 2.1352

3.5 3.8 0.75 1.85 0.1417 0.0478 60.5299 5.5037

If u = βx, then du = βdx, hence

µ
′
r =

∞
∑

j=0
vj

[

(1− θ)kλk(j+1)
βr+k(j+1)

∫ ∞

0
ur+k(j+1)−1(1+ u)−θαdu

+ θαλ
kj

βr+kj

∫ ∞

0
ur+kj(1+ u)−(θα+1)du

]

.

Again, if u = z

1− z
, then du = dz

(1− z)2
, hence

µ
′
r =

∞
∑

j=0
vj

[

(1− θ)kλk(j+1)
βr+k(j+1)

∫ 1

0
zr+k(j+1)−1(1− z)−r−k(j+1)+θα−1dz

+ θαλ
kj

βr+kj

∫ 1

0
zr+kj(1− z)−r−kj+θα−1dz

]

,

µ
′
r =

∞
∑

j=0
vj

(

(1− θ)kλk(j+1)
βr+k(j+1)

B
[

r + k(j+ 1),

−r − k(j+ 1)+ θα
]

+ θαλ
kj

βr+kj
B
[

r + kj+ 1,−r − kj+ θα
]

)

.

From the above, the mean of X is given by E(X) = µ = µ′1. To
determine the variance of X, we use the Koenig-Huygens formula,

that is to say, Var(X) = E(X2)−
[

E(X)
]2
.

The r-th central moment is given by

µr = E
[

(X − µ)r
]

=
r
∑

j=0

(

r

j

)

(−1)jµjµ′r−j. (13)

By using Equation (13), we can obtain the skewness and

kurtosis of X as follows:

Sk =
µ3

(µ2)3/2
and Kt =

µ4

(µ2)2
.
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FIGURE 5

PDF and HRF of 1/2-WMWLx1 distribution.

FIGURE 6

Mean inactivity time and residual life of the 1/2-WMWLx1 distribution.

TABLE 4 Basic statistics of the 1/2-WMWLx1 distribution.

Mean Variance Kurtosis Skewness First quartile Median Third quartile

0.7706 0.3715 3.9265 1.0395 0.2815 0.6349 1.1248

Table 3 shows different moments of X for specific parameter

combinations. MATLAB version R2024a was employed for their

computation.

4.8 Order statistics

Suppose X(1),X(2), · · · ,X(n) are the order statistics from

the θ-WMWLx distribution. The probability density function

of the i-th order statistic (with parameters suppressed) is

given by

fx(i) (x) =
1

B(i, n− i+ 1)
f (x)

[

F(x)
]i−1 [

1− F(x)
]n−i

.

Applying the binomial expansion, we have

fx(i) (x) =
1

B(i, n− i+ 1)
f (x)

n−i
∑

p=0
(−1)p

(

n− i

p

)

[

F(x)
]p+i−1

, (14)

where
[

F(x)
]p+i−1

can be written as

[

F(x)
]p+i−1 =

∞
∑

l=0
(−1)l

(

p+ i− 1

l

)

e−l(1−θ)(λx)
k
(1+ βx)−lθα .

(15)
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TABLE 5 Simulation results.

n Method θ = 0.5,α = 2, λ = 1, k = 2,β = 1 θ = 0.5,α = 1.5, λ = 2, k = 1.5,β = 1

Parameter SE MSE Parameter SE MSE

α 0.0026766 0.0072713 α 0.0085191 0.0842450

MLE λ 0.0007385 0.0005584 λ 0.0063004 0.0432720

k 0.0028428 0.0086853 k 0.0097155 0.1266200

β 0.0010304 0.0022534 β 0.0069850 0.0490760

α 0.130510 23.876700 α 0.0501490 2.9943000

20 LSE λ 1.4213000 2019.3611 λ 0.0711850 5.2008000

k 0.0956240 9.7974000 k 0.1272900 23.316100

β 0.0401720 1.7466000 β 0.0573600 3.9970000

α 0.2949300 95.935500 α 0.0515200 2.6926000

λ 0.0589020 3.4702000 λ 0.1336000 27.794600

WLSE k 0.1973700 38.974300 k 0.0852920 21.504100

β 0.0256380 0.9610400 β 0.0272330 2.0570000

α 0.00066397 0.0004623 α 0.0063901 0.0519880

MLE λ 0.00056153 0.00036809 λ 0.0059448 0.0423710

k 0.00145860 0.00234100 k 0.0096493 0.1238600

β 0.00071411 0.00193460 β 0.0030746 0.0095873

α 0.1005900 11.615400 α 0.0162120 0.5901500

50 LSE λ 0.0834070 6.9618000 λ 0.0437700 2.0422000

k 0.0170970 2.6616000 k 0.0618030 5.4477000

β 0.0206610 0.4285000 β 0.0298590 1.1875000

α 0.1205500 33.601400 α 0.0637040 4.0890000

λ 0.1556400 25.031800 λ 0.1247200 24.913000

WLSE k 0.087398 10.229000 k 0.1066200 25.128300

β 0.0249160 0.9178500 β 0.0453830 3.7696000

α 0.0005321 0.0003277 α 0.0066844 0.0511550

MLE λ 0.0004892 0.0003163 λ 0.0070742 0.0418856

k 0.0006038 0.0004729 k 0.0103190 0.1212700

β 0.0003949 0.0017647 β 0.0036105 0.0030830

α 0.0690580 4.7766000 α 0.0080895 0.3341300

100 LSE λ 0.0359750 1.3115000 λ 0.0298820 1.0003000

k 0.0062162 2.2903000 k 0.0428510 2.1415000

β 0.0144910 0.2891600 β 0.0237340 0.6631500

α 0.0629470 28.193600 α 0.0689620 4.9764000

λ 0.1413400 21.517100 λ 0.1441700 26.481200

WLSE k 0.0054331 3.4600000 k 0.1100500 18.674000

β 0.0146890 0.5754500 β 0.0372280 2.4712000

α 0.0004960 0.0003131 α 0.0077255 0.0462740

MLE λ 0.0005041 0.0003113 λ 0.0085586 0.0588870

k 0.0005299 0.0003987 k 0.0110450 0.1164500

β 0.0002552 0.0015758 β 0.0036089 0.0014591

α 0.0036444 0.4880200 α 0.0032777 0.1411100

(Continued)
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TABLE 5 (Continued)

n Method θ = 0.5,α = 3, λ = 1, k = 2.5,β = 1 θ = 0.5,α = 1.5, λ = 2, k = 1,β = 1

Parameter SE MSE Parameter SE MSE

500 LSE λ 0.0506570 2.6432000 λ 0.0142110 0.3668000

k 0.0026698 1.9585000 k 0.0218630 0.7986100

β 0.0028420 0.2054200 β 0.0136250 0.2529700

α 0.0276170 30.202400 α 0.0723550 5.8992000

λ 0.0738480 5.7776000 λ 0.0898350 8.8818000

WLSE k 0.0035250 3.6516000 k 0.0571360 3.4679000

β 0.0088773 0.6856100 β 0.0252230 0.6458100

Thus, by substituting Equation (15) into Equation (14), we

obtain

fx(i) (x) =
1

B(i, n− i+ 1)
f (x)

n−i
∑

p=0
(−1)p

(

n− i

p

)

·
∞
∑

l=0
(−1)l

(

p+ i− 1

l

)

e−l(1−θ)(λx)
k
(1+ βx)−lθα . (16)

Subsequently, by substituting Equation (10) into Equation (16),

we get

fx(i) (x) =
1

B(i, n− i+ 1)

∞
∑

l,j=0

n−i
∑

p=0
tl,j,pδθα(l+1),k−1(x), (17)

where tl,j,p and δθα(l+1),k−1(x) are, respectively, given by

tl,j,p =
(

n− i

p

)(

p+ i− 1

l

)

(1− θ)j(−1)p+l+j
j!

and

δθα(l+1),k−1(x) = e−l(1−θ)(λx)
k
(λx)kj(1+ βx)−θα(l+1)

[

(1− θ)λk(λx)k−1 + θαβ(1+ βx)−1
]

.

If we set i = 1 and i = n in Equation (17), we obtain the PDF

of the minimum and the PDF of the maximum of the θ-WMWLx

distribution, respectively.

4.9 Estimation methods

This section presents three different methods for estimating the

parameters of the proposedmodel: maximum likelihood estimators

(MLE), least squares estimators (LSE), and weighted least squares

estimators (WLSE).

4.9.1 Maximum likelihood estimators
Suppose that X1,X2, . . . ,Xn is a random sample from θ-

WMWLx distribution, the likelihood function is given by

L(X|θ , λ, k,α,β) =
∏n

i=1 e
(θ−1)(λxi)k (1+ βxi)−θα

[

(1− θ)λk(λxi)k−1 + θαβ(1+ βxi)−1
]

.

Then, the logarithm of the likelihood function is

l(X|θ , λ, k,α,β) = (θ − 1)λk
∑n

i=1 x
k
i − θα

∑n
i=1 ln (ui)

+
∑n

i=1 ln
(

(1− θ)λk(λxi)k−1 + θαβu−1i

)

,(18)

where ui = (1+ βxi).
We obtain maximum likelihood estimates by differentiating

l with respect to each parameter λ, k, α, and β and setting the

result equal to zero. The partial derivatives of l with respect to each

parameter or the score function are given by

Un (2) =
[

∂ l

∂λ
,
∂ l

∂k
,
∂ l

∂α
,
∂ l

∂β

]

These equations cannot be solved analytically. Therefore,

statistical software can be used to solve them numerically.

The components of the score vector Un are

∂ l

∂λ
=
∑n

i=1
(1− θ)k2(λxi)k−1

(1− θ)λk(λxi)k−1 + θαβu−1i

+(θ − 1)kλk−1
∑n

i=1 u
−θα
i xki = 0,

∂ l

∂k
=
∑n

i=1

(

(1− θ)λ(λxi)k−1
)

(

1+ k ln(λxi)
)

(1− θ)λk(λxi)k−1 + θαβu−1i

+(θ − 1)
∑n

i=1(λxi)
k ln(λxi)u

−θα
i = 0,

∂ l

∂α
=
∑n

i=0
βθu−1i

(1− θ)λk(λxi)k−1 + θαβu−1i

+(θ − θ2)
∑n

i=1(λxi)
ku−θαi ln(ui) = 0,

∂ l

∂β
=
∑n

i=1

αθ

ui
− αβθxi

u2i

(1− θ)λk(λxi)k−1 + θαβu−1i

+αθ(1− θ)
∑n

i=1 xi(λxi)
ku
−(αθ+1)
i = 0.
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TABLE 6 Simulation results.

n Method θ = 0.5,α = 3, λ = 1, k = 2.5,β = 1 θ = 0.5,α = 1.5, λ = 2, k = 1,β = 1

Parameter SE MSE Parameter SE MSE

α 0.0011070 0.0012246 α 0.0011128 0.0147610

MLE λ 0.0002768 0.0000776 λ 0.0013653 0.0161620

k 0.0009670 0.0009633 k 0.0012026 0.0014458

β 0.0006565 0.0021980 β 0.0007689 0.0107400

α 0.1452300 22.801200 α 0.0558450 3.2350000

20 LSE λ 0.1927900 37.219700 λ 0.0988380 9.8013000

k 0.1327000 18.136900 k 0.1511600 25.221500

β 0.0533450 3.0154000 β 0.4200700 176.70910

α 0.3597600 130.44330 α 0.0841070 8.1153000

λ 0.0674760 4.5578000 λ 0.1439700 22.006700

WLSE k 0.1094400 13.416400 k 0.2070100 90.893800

β 0.0312300 1.0327000 β 0.1574800 30.894700

α 0.0001972 0.0000400 α 0.0008142 0.0139120

MLE λ 0.0001323 0.0000181 λ 0.0011190 0.0145790

k 0.0002709 0.0007500 k 0.0007818 0.0006513

β 0.0004474 0.0020303 β 0.0005266 0.0105994

α 0.0952910 9.1703000 α 0.0290570 1.1189000

50 LSE λ 5.007500 250.82230 λ 0.0936530 8.7629000

k 0.0602630 7.1737000 k 0.0569820 3.8532000

β 0.0224860 0.5053600 β 0.0757400 5.8482000

α 0.0526380 11.463100 α 0.0261940 1.3786000

λ 0.0472900 2.6152000 λ 0.973180 95.021410

WLSE k 0.0261020 5.1386000 k 0.2988400 57.597400

β 0.0142220 0.3255200 β 0.5918000 36.56631

α 0.0002964 0.00003781 α 0.0005952 0.0135270

MLE λ 0.0001111 0.00001277 λ 0.0012344 0.0149200

k 0.0003472 0.0006123 k 0.0006046 0.0004130

β 0.0003401 0.0020079 β 0.0003768 0.0119290

α 0.0693930 5.5122000 α 0.0149730 0.4775300

100 LSE λ 0.6670600 217.69450 λ 0.0440010 1.9351000

k 0.0163140 3.8753000 k 0.0409350 1.8926000

β 0.0160810 0.3346700 β 0.0391740 1.5504000

α 0.0380350 11.324400 α 0.0284430 1.3295000

λ 0.0420900 2.5314000 λ 0.1606700 27.023900

WLSE k 0.0169390 5.0278000 k 0.5428600 69.637900

β 0.0166280 0.4637700 β 0.5542800 24.266100

α 0.0000642 0.0000041 α 0.0002565 0.0122180

MLE λ 0.0000475 0.0000023 λ 0.0007173 0.0137670

k 0.0004744 0.0002305 k 0.0002789 0.0000819

β 0.0002030 0.0019787 β 0.0002509 0.011455

α 0.0281670 2.8674000 α 0.0007836 0.2356200

(Continued)
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TABLE 6 (Continued)

n Method θ = 0.5,α = 3, λ = 1, k = 2.5,β = 1 θ = 0.5,α = 1.5, λ = 2, k = 1,β = 1

Parameter SE MSE Parameter SE MSE

500 LSE λ 0.0305320 1.0213000 λ 0.0171830 0.3044100

k 0.0231020 2.9810000 k 0.0262760 0.6958100

β 0.0078387 0.1982000 β 0.0214690 0.4822300

α 0.0566390 11.455400 α 0.0135730 0.5329400

λ 0.0305110 1.2966000 λ 0.0867940 8.8674000

WLSE k 0.0317100 4.2489000 k 1.0813000 122.70340

β 0.0131850 0.3860800 β 1.0710000 117.36960

TABLE 7 MLEs for the first application.

Models θ̂ λ̂ k̂ α̂ β̂

θ-WMWLx 0.99999 0.071822 6.7431 0.18317 0.55999

(6.75e-6) (0.0074) (0.6109) (0.0505) (0.3795)

1/2-WMWLx1 – 0.014 7.134 0.296 –

– (0.001) (2.592) (0.070) –

W – – – 0.9490 44.9125

– – – (0.1208) (7.0518)

Lx – 84.7502 – 3847.6691 –

– (415.8422) – (5.3629) –

EKIW 0.35329 5.4053 176.062 74.4398 0.219

(0.0545) (0.1266) (10.7016) (4.5385) (0.011)

OKIW 0.10591 19.0126 1.0102 1.2801 0.25141

(1.1751) (0.2505) (0.8501) (3.4699) (0.181)

LED – 0.36228 0.053935 0.11279 –

– (0.2132) (0.0302) (0.9965) –

FTLLx 78.0083 2.3655 0.0015422 0.12127 71.8406

(0.2478) (0.00870) (0.00035) (0.069235) (0.17954)

APPLx 98.6969 1277.533 – 5.8648 0.78438

(24.7343) (340.9696) – (3.1649) (0.03121)

KPL 3.9588 15504.8704 2180.0369 921.436 0.25076

(0.58035) (19968.1378) (2806.8895) (1184.8074) (0.04277)

The normal approximation of the maximum likelihood

estimator (MLE) of 2 can be used to construct approximate

confidence intervals and test hypotheses about the parameters.

Under regularity conditions (see Schafer [29]), we have that

√
n(2̂−2) ≈ N4(0,K

−1
2 ),

where ≈ means “approximately distributed" and K−12 is the

unit information matrix. The asymptotic behavior remains valid

if K−12 = limn→∞ n−1Jn(2), where Jn(2) is the observed

information matrix, which is replaced by the average sample

information matrix evaluated at 2̂, that is, n−1Jn(2).

Jn(2) = −











Lλλ Lλk Lλα Lλβ
Lkλ Lkk Lkα Lkβ
Lαλ Lαk Lαα Lαβ
Lβλ Lβk Lβα Lββ











The elements of the main diagonal in the observed information
matrix are given as follows:

Lλλ =(θ − 1)k2λk−1
n
∑

i=1

(1− θ)(k− 1)k2xi(λxi)
k−2

(1− θ)kλ(λxi)k−1αβθ(1+ βxi)−1

+
(1− θ)k2(λxi)k−1

[

(1− θ)(k− 1)kλxi(λxi)
k−2 + (1− θ)k(λxi)k−1

]

(

(1− θ)kλ(λxi)k−1 + αβθ(1+ βxi)−1
)2
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TABLE 8 Goodness-of-fit statistics and information criteria for the first application.

Models AIC CAIC HQIC BIC D A∗ W∗

θ-WMWLx 444.9610 445.6424 448.6016 454.5212 0.1013 1.2123 0.1028

1/2-WMWLx1 440.5440 440.8049 442.7283 446.2801 0.098657 1.3027 0.13798

W 486.0036 486.1313 487.4599 489.8277 0.8703 124.9 0.5589

Lx 486.4697 486.5974 487.9259 490.2938 0.97245 123.856 1.2153

EKIW 500.3307 501.0125 503.9712 509.8908 0.5035 19.317 4.1673

OKIW 568.2197 568.9016 571.8603 577.7799 0.8373 53.067 10.7454

LED 480.2970 480.5579 482.4813 486.0331 0.2682 –82.875 1.3988

FTLLx 477.0685 477.7503 480.7091 486.6286 0.15984 2.5019 0.36016

APPLx 487.7325 488.1769 490.6449 495.3806 0.16357 3.5885 0.4542

KPL 493.4107 494.0926 497.0513 502.9709 0.81153 –47.5227 18.104

Lkk =
n
∑

i=1

(1− θ)(λxi)k−1 ln(λxi)(k ln(λxi)+ 1)λ(λxi)
k+1

(1− θ)kλ(λxi)k−1 + αβθ(1+ βxi)−1

+ (1− θ) ln(λxi)λ(λxi)k−1
(1− θ)kλ(λxi)k−1 + αβθ(1+ βxi)−1

−
(1− θ)λ(λxi)k−1(k ln(λxi)+ 1)

[

(1− θ)λ(λxi)k−1 + (1− θ)kλ(λxi)k−1 ln(λxi)
]

(

(1− θ)kλ(λxi)k−1 + αβθ(1+ βxi)−1
)2

+ (θ − 1)

n
∑

i=1
(λxi)

k ln2(λxi)(1+ βxi)−θα

Lαα =
n
∑

i=1

−β2θ2λ(1+ βxi)−1

(1+ βxi)
(

kλ(1− θλ)(λxi)k−1 + αβθλ(1+ βxi)−1
)2

+ θ2(θ − 1)

n
∑

i=1
(λxi)

k ln2(1+ βxi)(1+ βxi)−αθ

Lββ =
n
∑

i=1

αθx2i

[

2(θ − 1)k(1+ βxi)(λxi)k − αθ(2βxi + 1)
]

(1+ βxi)2
[

(θ − 1)k(1+ βxi)(λxi)k − αβθxi
]2

+ α(θ − 1)θ

n
∑

i=1
x2i

[

(αθ + 1)(λxi)
k(1+ βxi)−αθ−2

]

Then, the asymptotic variance–covariance matrix I−1(�̂)
for the maximum likelihood estimators (MLEs) is obtained by

inverting the observed information matrix I(�̂), or equivalently:

I−1(2̂) =











var(λ̂) Cov(λ̂, k̂) Cov(λ̂, α̂) Cov(λ̂, β̂)

Cov(k̂, λ̂) var(k̂) Cov(k̂, α̂) Cov(k̂, β̂)

Cov(α̂, λ̂) Cov(α̂, k̂) var(α̂) Cov(α̂, β̂)

Cov(β̂ , λ̂) Cov(β̂ , k̂) Cov(β̂ , α̂) var(β̂)











The approximate confidence intervals (ACI) of (1− δ)100% for

the parameters are

2̂± zδ/2

√

Var(2̂), 2̂ = (λ̂, k̂, α̂, β̂)

where Var(2̂) are the variances of λ̂, k̂, α̂, and β̂ , given by the

diagonal elements of I−1(2̂), and zδ/2 is the upper (δ/2) percentile

of the standard normal distribution.

4.9.2 Least squares estimators
Suppose X(1),X(2), . . . ,X(n) are ordered observations from the

θ-WMWLx distribution with CDF Fθ (θ , λ, k,α,β). Then, the least

squares estimators (LSE), as described by Swain et al. [30], are

obtained by minimizing

L(θ , λ, k,α,β) =
n
∑

i=1

[

Fθ
(

x(i)
∣

∣θ , λ, k,α,β
)

− i

n+ 1

]2

=
n
∑

i=1

[

(

1− e−(1−θ)(λx)
k
(1+ βx)−θα

)

− i

n+ 1

]2

(19)

with respect to the parameters λ, k, α, and β .

4.9.3 Weighted least squares estimators
Suppose X(1),X(2), . . . ,X(n) are ordered observations from the

θ-WMWLx distribution with CDF Fθ (θ , λ, k,α,β). Then, the

weighted least squares estimators (WLSE), as described by Swain

et al. [30], are obtained by minimizing

WL(θ , λ, k,α,β) =
n
∑

i=1

1

Var
[

Fθ
(

x(i)
∣

∣θ , λ, k,α,β
)]

[

Fθ
(

x(i)
∣

∣θ , λ, k,α,β
)

− i

n+ 1

]2

=
n
∑

i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

[

(

1− e−(1−θ)(λx)
k
(1+ βx)−θα

)

− i

n+ 1

]2

(20)

with respect to the parameters λ, k, α, and β .

4.10 A parsimonious special case:
1/2-WMWLx1

In this subsection, we consider a special case of the θ-WMWLx

model by setting θ = 1/2 and β = 1. This particular case results in
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FIGURE 7

Fitted densities and box plot of the θ-WMWLx model for lifetime of a device.

FIGURE 8

The P-P and Q-Q plots of the θ-WMWLx model for lifetime of a device.

a simplified form of the PDF, defined as

f (x|λ, k,α) = 1

2
e−(1/2)(λx)

k
(1+x)−(1/2)α

[

λk(λx)k−1 + α(1+ x)−1
]

.

The choice of θ = 1/2 and β = 1 is particularly interesting for

several reasons:

Equivalent weight in the mixture: Setting θ = 1/2 grants equal

weight to the reference distributions in the resulting mixture. This

means that the influence of both distributions is balanced, which

can simplify the analysis and provide a clearer representation of

how each component contributes to the final model.

Model parsimony: Choosing β = 1 simplifies the model

structure by reducing the number of parameters affecting the scale

of the distribution. With β = 1, the parameter λ takes on a

more central role as the sole parameter affecting the scale, favoring

the parsimony of the resulting model. This parsimony can be

beneficial in applications where simpler and more efficient models

are preferred without the need for multiple parameters for scale or

distribution shape.

Previous studies have shown inconsistencies in the maximum

likelihood estimator (ML) and high estimation errors in practical

applications. These issues may indicate challenges associated

with model identifiability and complexity arising from multiple

parameters of scale and shape. Presenting the parsimonious model

1/2-WMLx1 offers a robust and straightforward solution. This

model maintains the necessary flexibility for practical applications

while reducing complexity and potentially improving the stability

and accuracy of estimates. Figures 5, 6 show the plots of the PDF,

hazard, mean residual life, and mean inactivity time functions

for the 1/2-WMWLx1 distribution with various parameter

combinations. Table 4 displays the fundamental statistics of the

1/2-WMWLx1 distribution with α = 2, λ = 1, and

k = 2.

5 Simulation and application

In this section, we analyze the performance of the proposed

model through simulation and its application on two sets of real-

world data.

5.1 Simulation

Simulations allow us to visualize the behavior of the proposed

model. In this case, we conducted a simulation to analyze the
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TABLE 9 MLEs for the second application.

Models θ̂ λ̂ k̂ α̂ β̂

θ-WMWLx 0.87932 0.72072 2.7614 0.015934 10.9032

(0.1912) (0.3885) (0.3041) (0.0231) (0.31698)

1/2-WMWLx1 – 0.420 2.850 0.126 –

– (0.027) (0.305) (0.086) –

W – – – 2.8629 2.3744

- - – (0.1377) (0.2106)

MOPLx 133.9809 66.8539 – 166.3862 0.76174

(27.7244) (166.8602) – (409.398) (0.0486)

OKIW 0.8264 1.7365 1693.0013 1907.1241 0.23285

(0.2763) (0.3795) (2038.8) (2299.7) (0.0171)

EKIW 0.75686 1.1504 259.8279 227.994 0.36439

0.0916 (0.1541) 34.199 (30.0648) (0.0278)

Lx – 312.0618 – 122.2683 –

– (2.3216) – (5.236) –

FTLx 0.3382 1.3688 1.2366e-5 0.61502 1.8457e-7

(1953.79) (4246.24) (7.2584) (469.0017) (0.1519)

KPL 0.44752 3603.3834 0.26643 313.0526 3.2451

(0.10179) (76.5271) (0.029143) (6.6797) (0.074019)

LIEP 3.1993 0.064092 – 0.69674 4.745e-6

(0.19965) (0.011527) – (0.1735) (0.6214)

TABLE 10 Goodness-of-fit statistics and information criteria for the second application.

Models AIC CAIC HQIC BIC D A∗ W∗

θ-WMWLx 262.5444 262.929 267.4302 274.6985 0.0875 0.7417 0.08068

1/2-WMWLx1 259.0392 259.1892 261.9707 266.3317 0.090086 0.77052 0.086364

W 264.1067 264.1807 266.0610 268.9683 0.76149 1.6078 232.2154

MOPLx 265.1646 265.4177 269.0732 274.8878 0.98808 5.2035 28

OKIW 272.3116 272.6962 277.1974 284.4657 0.95463 3.12586 38.2645

EKIW 294.2124 294.597 299.0982 306.3665 1.3253 1520.1358 38.236

Lx 330.3101 330.3842 332.2644 344.0334 0.11905 1.1204 0.28345

FTLx 399.0807 399.4653 403.9665 411.2348 0.30931 11.9305 2.1958

KPL 273.4634 273.8480 278.3492 285.6175 0.95788 –81.81499 27.151

LIEP 284.6981 284.9512 288.6067 294.4213 0.13569 1.9226 0.19922

performance of the maximum likelihood estimator (MLE), least

squares estimators (LSE), and weighted least squares estimators

(WLSE) in terms of standard errors (SE),and mean squared error

(MSE) for different sample sizes and various parameter values. We

generated 1,000 replications using different parameter sets with

sample sizes of n = 20, n = 50, n = 100, and n = 500

from the θ-WMWLx distribution. The pseudo-random numbers

are generated using the exponential distribution inverse transform

method, where each number xi is sampled from an exponential

distribution with rate parameter λtrue. MLE, LSE, and WLS were

computed using the fminsearch function provided byMATLAB

version R2024a to minimize the expressions defined in Equations

(18–20) with respect to the parameters λ, k, α, and β .

The simulation results (see Tables 5, 6) indicate that the

MLE method showed superior performance in terms of

standard error (SE) and mean squared error (MSE) for

all parameter combinations. The LSE and WLSE methods

exhibited higher MSE, and their estimates were less accurate.

These results highlight the robustness of MLE under

various conditions.
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FIGURE 9

Fitted densities and box plot of the θ-WMWLx model for aircraft windshield failure time.

FIGURE 10

P-P and Q-Q plots of the θ-WMWLx model for aircraft windshield failure time.

5.2 Applications on real data

In this section, we study the behavior of the θ-WMWLx

distribution applied to three real datasets. We compute the

maximum likelihood estimates (MLEs) for the parameters using

MATLAB version R2024a’s fmincon function and compare

the fit with the Weibull (W), exponentiated Kumaraswamy

inverse Weibull (EKIW) [31], odd Kumaraswamy inverse Weibull

(OKIW) [32], Marshall-Olkin power Lomax (MOPLx) [33],

Lomax-exponential distribution (LED) [34], Lomax-Rayleigh

(LR) [35], Fréchet Topp-Leone Lomax (FTLLx) [36], alpha-power

power-Lomax (APPLx) [37], Kumaraswamy generalized power

Lomax (KPL) [38], Lomax-inverse exponential power (LIEP) [39],

special case (1/2-WMWLx1), and Lomax (Lx) distributions. Below,

we present the probability density functions of the mentioned

distributions:

1. w: f (x|β ,α) = β
α

(

x
α

)β−1
e−(x/α)

β
.

2. EKIW: f (x|β , λ, θ , k,α) =
βλθkαβx−(β+1)e(−λu)

[

1− e(−λu)
]k−1 [

1−
(

1− e−λu
)k
]θ−1

,

where u = (α/x)β .

3. OKIW: f (x|2) = βkλθαβx−(β+1)
[

1− e1−
(

1−e−λu
)−k
]θ−1

e1−
(

1−e−λu
)−k−λu (1− e−λu

)−k−1
,

where2 = (β , k, λ, θ ,α), and u = (α/x)β .

4. MOPLx: f (x|θ ,α,β , λ) = θαβλαxβ−1(λ+xβ )−α−1
(1−(1−θ)λα(λ+xβ )−α )2 .

5. LED: f (x|λ, k,α) = λkαkeλx

(

eλx + α − 1
)k+1 .

6. LR: f (x|α, λ) = 2λαλx

(θ + x2)λ+1
.

7. FTLLx:

f (x|α,β , θ , k, λ) = 2αβαλθk(1 + kx)−2θ−1
(

1− (1+ kx)−2θ
)−λα−1 (

1−
(

1− (1+ kx)−2θ
)λ
)α−1

×

exp

{

−βα
(

1− (1− (1+ kx)−2θ )λ

(1− (1+ kx)−2θ )λ

)α
}

8. APPLx:

f (x|α,β , λ, θ)

=







logα

α − 1
θβλθ xβ−1(λ+ xβ )−θ−1α1−λ

θ (λ+xβ )−θ , if, α 6= 1,α > 0,

θβλθ xβ−1(λ+ xβ )−θ−1, if, α = 1.
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TABLE 11 MLEs for the third application.

Models θ̂ λ̂ k̂ α̂ β̂

θ-WMWLx 0.0070987 1.7046 3.9553 78.7351 0.95014

(0.038911) (0.0946) (0.5467) (49.3484) (6.2373)

1/2-WMWLx1 – 2.0286 3.9521 1.0661 –

– (0.10044) (0.44333) (0.36614) –

W – – – 0.5236 2.6012

– – – (0.0202) (0.2107)

MOPLx 12.8395 26.3304 – 214.4599 1.5263

(8.7693) (14.1765) – (113.5197) (0.28859)

OKIW 0.65756 0.63636 178.1179 139.8408 0.39516

(0.0745) (0.0237) (20.5559) (16.1875) (0.00624)

EKIW 0.62444 46.759 19.6656 0.0069252 0.61243

(0.98564) (3.0111) (1.3263) (0.00646) (0.01538)

Lx – 76.0454 – 162.4385 –

– (10.3262) – (3.25691) –

LR – 182.8232 – 46.7524 –

– (458.0913) – (117.4975) –

FTLLx 2700.9811 0.48183 0.0037457 0.24526 3405.4494

(371.1891) (0.0868) (0.0006) (0.01955) (468.3646)

APPLx 2.7601 8.888 – 5.9397e-9 2.6226

(23.3102) (61.7939) – (3.46e-6) (1.0338)

KPL 0.20242 0.5 1.0125 9.2022 8.7908

(1.6823) (3.2578) (6.3793) (2.7534) (0.11828)

LIEP 0.28571 1604.4225 – 0.52375 13007.4722

(0.013858) (587.98) – (0.062248) (4779.78)

9. KPL: f (x|α,β , λ, θ , k) = θkαβ
λ

xβ−1
(

λ
λ+xβ

)α+1

(

1−
(

λ
λ+xβ

)α)θ−1 (

1−
(

1−
(

λ
λ+xβ

)α)θ
)k−1

10. LIEP: f (x|α,β , λ,̟ ) =

αβα̟λ̟ x−(̟+1)e

(

λ

x

)̟ 




β − 1+ e

(

λ

x

)̟





−(α+1)

.

11. Lx: f (x|α, λ) = αλα

(x+λ)α+1 .

The model selection is based on the Akaike information

criterion (AIC), the Bayesian information criterion (BIC),

the consistent Akaike information criterion (CAIC), and the

Hannan-Quinn information criterion (HQIC). In addition, as

a measure of the goodness of fit, we consider the Anderson–

Darling (A⋆), Cramer–von Mises (W⋆), and Kolmogorov–Smirnov

(D) statistics.

5.2.1 First application: lifetime of a device

The data for this initial application consisted of 50 observations

representing the lifetime of a device (see Aarset [40] for

more details on the data). Here, we will compare the fits of

the θ-WMWLx distribution with those of other competitive

models, namely, Lx, W, LED, OKIW, EKIW, FTLLx, APPLx,

KPL, and 1/2-WMWLx1. Table 7 shows the MLEs for the

parameters, along with their corresponding standard errors

(in parentheses), while Table 8 presents the values of the

information criteria AIC, BIC, CAIC, and HQIC, as well

as the goodness-of-fit statistics for the models. Figures 7, 8

illustrate the fitted densities, the boxplot, and the P–P and

Q–Q plots.

5.2.2 Second application: aircraft windshield

failure data

In this second application, we will use data on aircraft

windshield failure times. This dataset contains 84 observations

and is available in the study of Murthy et al. [41]. Tables 9, 10

show the MLEs for the parameters, along with their corresponding

standard errors (in parentheses), and the goodness-of-fit statistics

for the models: θ-WMWLx, W, OKIW, EKIW, MOPLx, Lx,

FTLLx, KPL, LIEP, and 1/2-WMWLx1. In addition, Figures 9,

10 illustrate the fitted densities, the boxplot, and the P–P and

Q–Q plots.
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TABLE 12 Goodness-of-fit statistics and information criteria for the third application.

Models AIC CAIC HQIC BIC D A∗ W∗

θ-WMWLx –49.5458 –49.2488 –44.1282 –36.1817 0.05318 0.36059 0.031241

1/2-WMWLx1 –53.5458 –53.4293 –50.2952 –45.5273 0.0532 0.36058 0.031255

W –38.6950 –38.6373 –36.5280 –33.3494 3.2146 2393.5683 0.9776

MOPLx –45.7155 –45.5194 –41.3814 –35.0242 0.0580 0.51431 0.0344

OKIW –29.3034 –29.0064 –23.8858 –15.9393 0.10908 2.4512 0.457

EKIW 21.0026 21.2996 26.4203 34.3668 1.92503 228.230 42.3256

Lx 56.4500 56.5077 58.6171 71.1413 –5.0212 358.026 1.9502

LR –28.9356 –28.8779 –6.7685 –23.5899 0.14108 3.8318 0.76977

FTLLx –16.7707 –16.4736 –11.353 –3.4065 0.10494 2.9417 0.46645

APPLx –31.8947 –31.6986 -27.5606 –21.2034 0.090001 2.0316 0.28921

KPL –45.0621 –44.7651 –39.6445 –31.6980 0.9877 –104.82 34.4056

LIEP 16.7305 16.9266 21.0646 27.4218 0.17291 6.385 1.0671

FIGURE 11

Fitted densities and box plot of the θ-WMWLx model for milk production.

5.2.3 Third application: milk production

In this application, we utilized a dataset concerning the total

milk production in the first birth of 107 cows from SINDI race.

Please refer to Yousof et al. [42]. Tables 11, 12 show the MLEs for

the parameters, accompanied by their respective standard errors

(in parentheses), and the goodness-of-fit statistics for the following

models: θ-WMWLx, W, OKIW, EKIW, MOPLx, LR, Lx, FTLLx,

APPLx, KPL, LIEP, and 1/2-WMWLx1. In addition, Figure 11 and

Table 12 illustrate the fitted densities, the box plot, as well as the P-P

and Q-Q plots.

The results presented in Tables 8, 10, 12 indicate that the

θ-WMWLx distribution consistently shows the lowest values in

information criteria (AIC, BIC, CAIC, and HQIC) compared to

its competitor counterparts. This pattern is equally reflected in the

goodness-of-fit statistics, where the θ-WMWLx distribution excels.

Therefore, we can conclude that the θ-WMWLx distribution offers

the most optimal fit for these three datasets.

On the other hand, the graphs in Figures 7–12 reveal that the

θ-WMWLx distribution fits more accurately to the three datasets

studied compared to other competing models. This observation

further reinforces the superiority of the θ-WMWLx distribution in

terms of fitting capability and predictive accuracy.

6 Conclusion and comments

The research introduces the family of θ-weighted mixture

distributions, offering a flexible approach to modeling the joint

distribution of random variables. This family combines survival

functions from baseline distributions, resulting in diverse shapes

and characteristics determined by the parameters’ behavior. A

specific case, θ-WMWLx, was investigated, combining the survival

functions of the Weibull and Lomax distributions, revealing a

spectrum of shapes, from symmetric to asymmetric, with various

biases.

Statistical properties and reliability aspects of θ-WMWLx were

examined, demonstrating that an increase in sample size enhances

the precision of the maximum likelihood estimator (MLE). The
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FIGURE 12

P-P and Q-Q plots of the θ-WMWLx model for milk production.

significance of the parameter θ in shaping and fitting the resulting

distribution is underscored, posing a future challenge to explore

methods for determining its optimal value, which could enhance

the utility of this methodology.

A notable special case is the 1/2-WMWLx1, which simplifies

the model structure by balancing the weight of the baseline

distributions and reducing the number of parameters affecting the

scale. This parsimony can be beneficial in practical applications by

improving the stability and accuracy of the estimates, facilitating

a clearer and more efficient analysis. This was reflected in the

application section of the study, where this special case, along with

the general case, proved to be the best in terms of performance.

In addition to the aforementioned aspects, several additional

research challenges could be addressed in future studies. One

such challenge could involve generalizing the proposed model to

accommodate a broader range of baseline distributions, allowing

for greater flexibility in modeling various data types. Furthermore,

a more in-depth analysis of the survival and hazard functions

using the θ-WMWLx could be conducted, exploring how these

functions vary across different parameter settings and how they can

contribute to a better understanding of data behavior in diverse

scenarios. These endeavors could advance our comprehension

of the joint distribution of random variables and foster the

development of more effective tools for their modeling and analysis

across various applied contexts.
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