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Numerical integration method
for two-parameter singularly
perturbed time delay parabolic
problem

Shegaye Lema Cheru1, Gemechis File Duressa2 and

Tariku Birabasa Mekonnen1*

1Departement of Mathematics, Wollega University, Nekemte, Ethiopia, 2Departement of Mathematics,

Jimma University, Jimma, Ethiopia

This study presents an (ε,µ)−uniform numerical method for a two-parameter

singularly perturbed time-delayed parabolic problems. The proposed approach

is based on a fitted operator finite di�erence method. The Crank–Nicolson

method is used on a uniform mesh to discretize the time variables initially.

Subsequently, the resulting semi-discrete scheme is further discretized in space

using Simpson’s 1/3rd rule. Finally, the finite di�erence approximation of the first

derivatives is applied. The method is unique in that it is not dependent on delay

terms, asymptotic expansions, or fittedmeshes. The fitting factor’s value, which is

used to account for abrupt changes in the solution, is calculated using the theory

of singular perturbations. The developed scheme is demonstrated to be second-

order accurate and uniformly convergent. The proposed method’s applicability

is validated by three model examples, which yielded more accurate results than

some other methods found in the literature.

KEYWORDS

singularly perturbed problems, delay parabolic di�erential equation, numerical

integration, Simpson’s 1/3rd rule, parameter-uniform

1 Introduction

This study examines a 1−D, singularly perturbed delay initial boundary value problem

(IBVP) with two small parameters. Defining∆ = ∆∪ ∂∆, where∆ = ∆x = (0, 1)×∆t =
(0,T] and ∂∆ =

∧

b ∪
∧

l ∪
∧

r with
∧

b = [0, 1] × [−γ , 0],
∧

l = {0} × (0,T], and
∧

r = {1} × (0,T], we consider



























Lε,µw ≡ ε
∂2w

∂x2
(x, t)+ µa(x, t)

∂w

∂x
(x, t)− b(x, t)w(x, t)−

∂w

∂t
(x, t) =

−c(x, t)w(x, t − γ )+̟ (x, t), (x, t) ∈ ∆x,

w|∧
b
= ϒb(x, t),

w|∧
l
= ϒl(t), w|∧

r
= ϒr(t),

(1)

where 0 < ε ≪ 1 and 0 ≤ µ ≤ 1 are the perturbation parameters. The coefficients

a(x, t), b(x, t), c(x, t),̟ (x, t),ϒb(x, t),ϒl(t), and ϒr(t) are presumed to be sufficiently

smooth functions of x and t for (x, t) ∈ ∆ satisfying:

0 < α ≤ a(x, t), 0 < β ≤ b(x, t), 0 < ς ≤ c(x, t), (x, t) ∈ ∆.
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At the corner points, (0, 0), (0, 1), (−γ , 0), and (−γ , 1), the
regularity and compatibility conditions are

w(0, 0) = ϒl(0),w(1, 0) = ϒr(0),w(0,−γ ) =
ϒl(γ ),w(1,−γ ) = ϒr(−γ ),
ε (ϒb)xx (0, 0)+ µa(0, 0) (ϒb)x (0, 0)− b(0, 0) (ϒb) (0, 0)

− (ϒb)t (0, 0) = −c(0, 0) (ϒb) (0,−γ )+̟ (0, 0),

ε (ϒb)xx (1, 0)+ µa(1, 0) (ϒb)x (1, 0)− b(1, 0) (ϒb) (1, 0)

− (ϒb)t (1, 0) = −c(1, 0) (ϒb) (1,−γ )+̟ (1, 0),

for∆ = (0, 1)× (0,T], andϒb(x, t) (initial-boundary data) satisfies

appropriate compatibility criteria at the two corners, (0, 0) and

(1, 0). The problem shown in Equation (1) has a unique solution

in the domain under consideration based on the assumptions

mentioned above. To establish the existence of continuous solution

w(x, t) ∈ C1+d/2,2+d(∆) with d ∈ (0, 1), the assumptions of Hölder

continuity are made on all the coefficients and IBVPs involved in

Equation (1).

Having a time delay γ > 0, in Equation (1), the entire time domain

[−γ , kγ ] for k ∈ N is divided into several subdomains. For the

analysis purpose, k = 2 is used. Because, in the region, [0, 1] ×
[0, γ ] the solution depends on the solution in [0, 1] × [−γ , 0],
which is known, and hence, the analysis is similar to any singularly

perturbed partial differential equations (SPPDEs) having no time

delay [1, 2]. Moreover, our analysis is conducted for the interval

[0, 1]× [γ , 2γ ], where w(x, t − γ ) is the solution in [0, 1]× [0, γ ],

which is known.

The modeling of many physical, biological, and chemical

systems, including population dynamics, problems in control

theory, epidemiology, circadian rhythms, respiratory system,

chemostat models, and tumor growth, frequently involves SPPDEs

with delay. We can incorporate some historical behavior into

these models due to the delay terms, which help us create more

useful models for the phenomena. Time delays, for instance,

are crucial to the processes of transcription and translation; in

population ecology, they represent the hatching period or duration

of gestation; in control systems, delay terms account for the time

delay in actuation and information transmission and processing

(see refs. [3–9]).

SPPDEs connect an unknown function with its derivatives

evaluated at the same time. Compared with convectional

instantaneous SPPDEs, SPPDEs with delay term offermore realistic

models for phenomena in many scientific domains that exhibit

time-lag or after-effect. Several authors have studied SPPDEs

without delay in detail (see refs. [10–17]). However, numerical

methods for SPPDEs with delay are still in their early stages of

development. In recent years, several numerical methods have been

developed to solve SPPDEs with delay term (see refs. [1, 4, 6, 7, 18–

21]).

The models for two-parameter singularly perturbed problems

(TP-SPPs) can be observed in the chemical reactor theory [22],

transport phenomena appearing in chemistry and biology [23], and

lubrication theory [12].

When the parameter µ = 1, the considered problem belongs

to the class of one-parameter time-delayed convection-diffusion

problem, and a boundary layer with width O(ε) arises near x = 0.

When µ = 0, Equation (1) comes under the category of reaction-

diffusion time-delayed problem, and two boundary layers, each

with width O(
√
ε), are observed at both ends x = 0 and x = 1.

When the parameter µ 6= 0, 1, we have two-parameter time-

delayed SPPDEs for which two distinct cases, µ2/ε << 1 and

µ2/ε >> 1, are contributed by the ratio of µ2 to ε and two

boundary layers are observed at x = 0 and x = 1 (see refs.

[17, 24, 25]).

First, we refer to some earlier studies on TP-SPPs. Jha

and Kadalbajoo [26] used the implicit Euler method for time

discretization and upwind scheme on Shishkin–Bakhvalov mesh

for spatial discretization to develop a finite difference method

(FDM) for a time-dependent singularly perturbed convection-

diffusion problem involving two small parameters. Shivhare et

al. [10] developed second-order accurate uniformly convergent

schemes using quadratic B-splines on graded mesh. To find more

literature studies on this, readers may refer to refs. [11, 14, 17, 22,

24–29].

Recently, certain scholars studied two-parameter singularly

perturbed time-delay parabolic problems. Ayele et al. [6] examined

a numerical solution of a time-delayed TP-SPPs. The authors

developed the scheme by discretizing the temporal variable on a

uniform mesh using the θ− method, while a cubic spline scheme

is applied by introducing a fitting factor for the spatial variable

discretization. First-order parameter-uniform and nearly second-

order accurate results were developed by Sumit et al. [18] in

the time and space directions, respectively. Negero [4] studied

TP-SPPs with time delay using the Crank–Nicolson method for

time variables and the cubic splines method for spatial variables,

with a fitted operator FDM. Singh et al. [7] used the Crank–

Nicolson scheme in the temporal direction and B-spline collocation

in the spatial direction to generate parameter-uniform numerical

solutions for Equation (1).

The two non-classical FDMs used for solving SPPs are fitted

mesh and fitted operator methods. The non-standard fitted

operator FDMs are designed to address numerical instabilities

and chaotic behavior that often affect many numerical techniques.

Thesemethods are based on the principle of dynamical consistency,

which can vary depending on the specific system being analyzed

[30–32]. Fitted mesh FDMs utilize non-uniform meshes, and due

to the design of the mesh grid, the order of convergence is

typically affected by a logarithmic factor [33]. The schemes in the

studies by Singh et al. [7] and Sumit et al. [18] need a previous

knowledge about the location and width of the boundary layer(s),

which might be difficult to understand for beginner researchers.

The exponentially fitted operator method has gained popularity

as a powerful technique to solve singularly perturbed time delay

parabolic problem [33, 34].

The aforementioned studies serve as our inspiration for

proposing and analyzing the parameter-uniform numerical

solution for TP-SPPs with time delay. As far as the author is aware,

no numerical method described in the literature incorporates

numerical integration (specifically, Simpson’s 1/3rd rule) for

solving time-delayed two-parameter singularly perturbed parabolic

problems. Exponential fitted numerical integration for a class of

ordinary differential equations-based quasilinear SPPs is presented

in the study by Alam et al. [35], Ranjan and Prasad [36], and Reddy
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and Reddy [37]. In this study, we employ the Crank–Nicolson

method on a uniform mesh to discretize the time variables at the

first step. Subsequently, we further discretize these semi-discrete

problems in space using Simpson’s 1/3rd rule, and finally, we

utilize the finite difference approximation of the first derivatives.

This yielded a scheme with three recurrence relation.

The objective of this study is to improve accuracy by using

the Crank–Nicolson scheme for temporal direction and 1/3rd

Simpson’s rule for space direction, with the creation of fitted

operator FDM. The developed scheme is straightforward yet

novel, as it offers a more accurate solution using a uniform

mesh, in contrast to previous research that employed a piecewise

uniform mesh (Shishkin mesh). The main benefit of the proposed

scheme is that it does not rely on an extremely fine mesh or

any other parameters, such as transition or delay arguments.

Furthermore, the original problem does not need to be reduced

to a first-order IBVP through asymptotic expansion. Compared

with previous methods, the current approach is a computationally

advanced integration scheme and produces better results in terms

of accuracy.

The rest of the study is organized as follows: We examine

properties of the continuous problem in Section 2. The semi-

discretized and fully discretized scheme of the continuous problem

are presented in Section 3. In Section 4, the parameter-uniform

convergence analysis is presented. Section 5 presents the numerical

results, and Section 6 summarizes the main conclusions of

the study.

2 Solution bounds for continuous
problem

To conduct a convergence analysis of the proposed approach,

we will establish derivative bounds for the solution using the

minimum principle for Lε,µw.

Lemma 2.1. (Minimum principle). Let Ξ (x, t) ∈ C2(∆) ∩ C0(∆),

such that Ξ (x, t) ≥ 0, ∀(x, t) ∈ ∂∆ =
∧

b ∪
∧

l ∪
∧

r &

Lε,µΞ (x, t) ≤ 0 then,Ξ (x, t) ≥ 0, ∀(x, t) ∈ ∆.

Proof. One can get the proof in the study by Ayele et al. [6] and

Mohye et al. [33].

The following lemma provides the bounds for solution of

Equation (1) and its derivatives.

Lemma 2.2. The solution w(x, t) of the problem (1) is such that

∥

∥w(x, t)−ϒb(x, 0)
∥

∥ ≤ C1t, (x, t) ∈ ∆, (2)

where C1 is a constant which does not depend on ε.

Proof. As ϒb(x, 0) is smooth on∆, the proof is similar to the study

by Singh et al. [7] and Sumit et al. [18].

Lemma 2.3. Let w(x, t) be the solution of Equation (1), it satisfies:

∥

∥w(x, t)
∥

∥ ≤ C∗, for any (x, t) ∈ ∆. (3)

Proof. From Lemma (2.2), we have
∥

∥w(x, t)−ϒb(x, 0)
∥

∥ ≤ C1t ≤
C1T. It follows from Equations (2) and (3) that

∥

∥w(x, t)
∥

∥ =
∥

∥w(x, t)−ϒb(x, 0)+ϒb(x, 0)
∥

∥ ,

≤
∥

∥w(x, t)−ϒb(x, 0)
∥

∥ +
∥

∥ϒb(x, 0)
∥

∥ ,

≤ C1T + sup
x∈[0,1]

∥

∥ϒb(x, 0)
∥

∥ ≤ C∗.

Lemma 2.4. (Uniform Stability Estimate) Let w(x, t) be the

solution to the continuous problem (1), it satisfies the bound

∥

∥w(x, t)
∥

∥

∆
≤

∣

∣ζ−1
∣

∣

∥

∥̟ (x, t)
∥

∥

+max
{
∥

∥ϒb(x, t)
∥

∥ ,
∥

∥ϒl(t)
∥

∥ ,
∥

∥ϒr(t)
∥

∥

}

, ∀(x, t) ∈ ∆, (4)

where 0 < ζ ≤ (b(x, t) + c(x, t)) and ‖·‖∆ are used to

denote maximum norm given in Equation (4) by
∥

∥w(x, t)
∥

∥

∆
=

max(x,t)∈∆
∣

∣w(x, t)
∣

∣.

Proof. See Negero [4] and Ayele et al. [6].

Lemma 2.5. For k,m ∈ Z
+ satisfying 0 ≤ k+2m ≤ 4, the solution

w(x, t) and its derivatives of Equation (1) satisfy the bound:

∥

∥

∥

∥

∥

∂k+mw

∂xk∂tm

∥

∥

∥

∥

∥

≤







Cε−
k
2 for µ2 ≤ εN

α
,

C
(

µ
ε

)k
(

µ2

ε

)m
for µ2 ≥ εN

α
,

(5)

whereN ≈ min(x,t)∈∆
b(x, t)

a(x, t)
and C are independent of ε and µ.

Proof. For the proof of Lemma (2.5), refer to Singh et al. [7] and

Sumit et al. [18].

3 Construction of numerical methods

We first discretized the time direction using the Crank–

Nicolson method with uniform step size k, which leads to a system

of boundary value problem. Then, the discretization of space

direction is made using numerical integration (Simpson’s 1/3rd

rule).

3.1 Temporal semi-discretization

For discretizing the domain3M
t = [0,T], we use uniformmesh

with time step k as follows:

3M
t =

{

tj = kj, j = 0(1)M, tM = T, k =
T

M

}

,

Λm
γ =

{

tj = jk, j = 0(1)m, tm = γ , k =
γ

m

}

,

where M and m are the number of mesh points in the intervals

[0,T] and [−γ , 0], respectively.
The Taylor series expansion was applied to w(x, t) at the point

(

x, tj+1/2

)

to derive the Crank–Nicolson in the temporal direction

as follows:

wj+1(x) = wj+1/2(x)+ k
2

dwj+1/2(x)

dt
+ k2

8

d2wj+1/2(x)

dt2
+

k3

48

d3wj+1/2(x)

dt3
+ ... (6)
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wj(x) = wj+1/2(x)− k
2

dwj+1/2(x)

dt
+ k2

8

d2wj+1/2(x)

dt2
−

k3

48

d3wj+1/2(x)

dt3
+ ... (7)

By substracting Equation (6) from Equation (7), we eliminate

the term wj+1/2(x) and we have

dwj+1/2(x)

dt
=

wj+1(x)− wj(x)

k
+ TEj+1/2(x), (8)

where the term TEj+1/2(x) is local truncation error (LTE) of the

scheme and is given by

TEj+1/2(x) =
k3

24

d3wj+1/2(x)

dt3
+Higher order terms (9)

which is order three. The semi-discretization of Equation (1) is

given below:

ε

2

[

w
j+1
xx + w

j
xx

]

+
µ

2

[

aj+1(x)w
j+1
x + aj(x)w

j
x

]

−

1

2

[

bj+1(x)wj+1(x)+ bj(x)wj(x)
]

=
wj+1(x)− wj(x)

k
+

TEj+1/2(x)+
1

2

[

̟ j+1(x)+̟ j(x)
]

−
1

2

[

cj+1(x)wj+1−m(x)+

cj(x)wj−m(x)
]

,

⇒
ε

2

[

w
j+1
xx + w

j
xx

]

+
µ

2

[

aj+1(x)w
j+1
x + (a′(x))j+1wj+1(x)+ (a′(x))jwj(x)+

aj(x)w
j
x

]

=
1

2

[

bj+1(x)wj+1(x)+ bj(x)wj(x)
]

+

wj+1(x)− wj(x)

k
+

1

2

[

̟ j+1(x)+̟ j(x)
]

−

1

2

[

cj+1(x)wj+1−m(x)+ cj(x)wj−m(x)
]

+
µ

2

[

(a′(x))j+1wj+1(x)+ (a′(x))jwj(x)
]

,

⇒
ε

2

[

w
j+1
xx + w

j
xx

]

+
µ

2

[

aj+1(x)wj+1(x)+ aj(x)wj(x)
]′ =

1

2

[

bj+1(x)wj+1(x)+ bj(x)wj(x)
]

+
wj+1(x)− wj(x)

k
+

1

2

[

̟ j+1(x)+̟ j(x)
]

−

1

2

[

cj+1(x)wj+1−m(x)+ cj(x)wj−m(x)
]

+
µ

2

[

(a′(x))j+1wj+1(x)+ (a′(x))jwj(x)
]

,

where (′) denotes derivative of the function. The foregoing

expression is rewritten as follows:















































































L
M
ε,µw

j+1(x) : =
ε
2

[

w
j+1
xx + w

j
xx

]

+
µ

2

[

aj+1(x)wj+1(x)+ aj(x)wj(x)
]′ −

1

2

[

bj+1(x)wj+1(x)+ bj(x)wj(x)
]

=
wj+1(x)− wj(x)

k
+

1

2

[

̟ j+1(x)+̟ j(x)
]

−
1

2

[

cj+1(x)wj+1−m(x)+ cj(x)wj−m(x)
]

+
µ

2

[

(a′(x))j+1wj+1(x)+ (a′(x))jwj(x)
]

,

wj+1(0) = ϒl(tj+1), wj+1(1) = ϒr(tj+1), 0 ≤ j ≤ M,

wj+1(x) = ϒb(x, tj+1), (x, tj+1) ∈ [0, 1]× [−γ , 0],
(10)

It is possible to further simplify Equation (10) as follows:











































L
M
ε,µw

j+1(x) : = ε
2

(

wxx(x)
)j+1 +

µ

2

[

(

aj+1(x)wj+1(x)
)′ − (a′(x))j+1wj+1(x)

]

−
(

1

2
bj+1(x)+ 1

k

)

wj+1(x) = G
j+1(x),

wj+1(0) = ϒl(tj+1), wj+1(1) = ϒr(tj+1), 0 ≤ j ≤ M,

wj+1(x) = ϒb(x, tj+1), (x, tj+1) ∈ [0, 1]× [−γ , 0],
(11)

where G
j+1(x) = − ε

2

(

wxx(x)
)j +

µ

2

[

(a′(x))jwj(x)−
(

aj(x)wj(x)
)′
]

+
(

1

2
bj(x)− 1

k

)

wj(x) +
1

2

[

̟ j+1(x)+̟ j(x)
]

−
1

2

[

cj+1(x)wj+1−m(x)+ cj(x)wj−m(x)
]

. By

using the initial condition, we can evaluate the right hand-side of

Equation (11) as follows:

G
j+1(x) =



























































































− ε
2

(

wxx(x)
)j +

µ

2

[

(a′(x))jwj(x)−
(

aj(x)wj(x)
)′
]

+
(

1

2
bj(x)− 1

k

)

wj(x)−
1

2

[

cj+1(x)ϒb(x, tj+1−m)+ cj(x)ϒb(x, tj−m)
]

+
1

2

[

̟ j+1(x)+̟ j(x)
]

, j = 0(1)m,

− ε
2

(

wxx(x)
)j +

µ

2

[

(a′(x))jwj(x)−
(

aj(x)wj(x)
)′
]

+
(

1

2
bj(x)− 1

k

)

wj(x)−
1

2

[

cj+1(x)w(x, tj+1−m)+ cj(x)w(x, tj−m)
]

+
1

2

[

̟ j+1(x)+̟ j(x)
]

, j = m+ 1(1)M.

Lemma 3.1. (Semi-discrete Minimum Principle). At (j+ 1)th time

level, let Ψ (x, tj+1) ∈ C2(∆x) be smooth function such that

Ψ (0, tj+1) ≥ 0 andΨ (1, tj+1) ≥ 0, then L
M
ε,µΨ (x, tj+1) ≤ 0, ∀x ∈ ∆

implies Ψ (x, tj+1) ≥ 0 ∀x ∈ ∆x.

Proof. Let
(

χ∗, tj+1

)

∈
{(

x, tj+1

)

: x ∈ ∆x

}

be such that

Ψ (χ∗, tj+1) = minx∈∆x
Ψ (x, tj+1) and let Ψ (χ∗, tj+1) < 0.

Then,
(

χ∗, tj+1

)

/∈
{

(0, tj+1), (1, tj+1)
}

, also Ψx(χ
∗, tj+1) = 0 and

Ψxx(χ
∗, tj+1) ≥ 0. By using this assumption and Equation (11),we

arrive on L
M
ε,µΨ (x, tj+1) > 0, which is a contradiction to the

hypothesis, LM
ε,µΨ (x, tj+1) ≤ 0. Hence, our asumption is wrong,

so Ψ (χ∗, tj+1) ≥ 0, and this implies that Ψ (x, tj+1) ≥ 0, ∀x ∈ ∆x.
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Definition 3.1. [19] The global and local errors of the time semi-

discretization method in Equation (11) are given as follows:

Ej+1 = maxj+1≤T/k

∥

∥wj+1(x)−Wj+1(x)
∥

∥ , ej+1 =
∣

∣wj+1(x)−Wj+1(x)
∣

∣ , (12)

respectively. The contribution of each time step to the global error

of the time semi-discretization is measured by the local error. After

every time semi-discretization step, the LTE is calculated using the

precise values wj+1(x) as the initial data rather than Wj+1(x). The

consistency and stability of the Crank–Nicolson method, which are

required to assess the order of convergence in the time direction,

are obtained using the following lemmas.

Lemma 3.2. If the solution w(x, t) of Equation (1) and its time

derivatives are bounded in (x, t) ∈ ∆ = [0, 1]× [0,T], independent

of ε,µ,N &M, then the LTE associated with Equation (10) satisfies
∥

∥ej+1
∥

∥ ≤ C(k3).

Proof. The proof is a straightforward consequence of Equations (8,

9).

Lemma 3.3. The global error estimate Ej+1 defined in

Equation (12) at the (j + 1)th time level is bounded by

Ej+1 ≤ C(k2), ∀j ≤ T/k, with a constant C that is independent of

ε,µ, x, and t.

Proof. The proof is on Clavero and Jorge [2], Das and Mehrmann

[27], and Clavero et al. [38].

To evaluate the proposed approach, one needs to know how the

derivatives of the exact solution behave in the semi-discretized form

of Equation (10). The characteristic equation of the homogenous

part of Equation (10) is obtained after some rearrangements and is

given as follows:

ελ2 + µaj+1(x)λ− β j+1(x) = 0, (13)

where β j+1(x) = bj+1(x)+ 2/k, and Equation (13) has two roots λ1
and λ2, where

λ1 = −
µaj+1(x)

2ε
+

√

(

µaj+1(x)

2ε

)2

+
β j+1(x)

ε
≥ 0,

λ2 = −
µaj+1(x)

2ε
−

√

(

µaj+1(x)

2ε

)2

+
β j+1(x)

ε
≤ 0.

These roots represent the boundary layer behavior of the

solution in the neighborhood of x = 0 and x = 1 [4, 6, 14]. Let

̺1 = −maxx∈[0,1] λ2(x) and ̺2 = minx∈[0,1] λ1(x), we have three

cases: (i) when µ2

ε
→ 0, as ε → 0, ̺1 = ̺2 =

√

β j+1

ε
, where

0 < β∗ < β j+1 and (ii) when ε
µ2 → 0, as µ → 0, ̺1 = ̺2 = µa∗

ε

and ̺2 = 0, where, 0 < a∗ < aj+1, (iii) when ̺2 << ̺1, the

solutions exhibit a stronger boundary layer along x = 0 and x = 1

[4].

Next, we give the semi-discrete bound of the solution wj+1(x)

of Equation (10).

Lemma 3.4. The solution wj+1(x) of Equation (10) satisfies the

derivative bound as follows:

∣

∣

∣

∣

dqwj+1(x)

dxq

∣

∣

∣

∣

≤ C
(

1+ ̺q1e−τ̺1x + ̺
q
2e

−τ̺2(1−x)
)

, q = 0(1)r, r > 1

and 0 < τ < 1. (14)

Proof. For the proof, see [27, 28].

3.2 Spatial discretization

We discretized the spatial domain [0, 1] into N

equal number of mesh elements as follows: 3N
x =

{

xi = ih, i = 0(1)N, x0 = 0, xN = 1, h = 1/N
}

. Integrating

Equation (10), in the interval [xi−1, xi+1] , i = 1(1)N− 1, we obtain

as follows:

ε

2

∫ xi+1

xi−1

[

w
j+1
xx + w

j
xx

]

(x)dx+

µ

2

∫ xi+1

xi−1

[

aj+1(x)wj+1(x)+ aj(x)wj(x)
]′
dx−

1

2

∫ xi+1

xi−1

[

bj+1(x)wj+1(x)+ bj(x)wj(x)
]

dx =

1

k

∫ xi+1

xi−1

[

wj+1(x)− wj(x)
]

dx+

1

2

∫ xi+1

xi−1

[

̟ j+1(x)+̟ j(x)
]

dx−

1

2

∫ xi+1

xi−1

[

cj+1(x)wj+1−m(x)+ cj(x)wj−m(x)
]

dx

+
µ

2

∫ xi+1

xi−1

[

(a′(x))j+1wj+1(x)+ (a′(x))jwj(x)
]

dx,

⇒
ε

2

[

(

wx(xi+1)
)j+1 −

(

wx(xi−1)
)j+1 +

(

wx(xi+1)
)j −

(

wx(xi−1)
)j
]

+
µ

2

[

aj+1(xi+1)w
j+1(xi+1)− aj+1(xi−1)w

j+1(xi−1)+ aj(xi+1)w
j(xi+1)−

aj(xi−1)w
j(xi−1)

]

=
∫ xi+1

xi−1

2j(x)dx,

(15)

where

2j(x)dx =
1

2

[

bj+1(x)wj+1(x)+ bj(x)wj(x)
]

+

1

k

[

wj+1(x)− wj(x)
]

+

1

2

[

̟ j+1(x)+̟ j(x)
]

−

1

2

[

cj+1(x)wj+1−m(x)+ cj(x)wj−m(x)
]

+
µ

2

[

(a′(x))j+1wj+1(x)+ (a′(x))jwj(x)
]

.

In Equation (15), there is definite integral, and to approximate

this integral, we use Simpson’s 1/3rd formula, and by using the
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notation wj(xi) = W
j
i , Equation (15) is reduced to:

ε

2

[

(Wx)
j+1
i+1 − (Wx)

j+1
i−1 + (Wx)

j
i+1 − (Wx)

j
i−1

]

+
µ

2

[

a
j+1
i+1W

j+1
i+1 − a

j+1
i−1W

j+1
i−1 + a

j
i+1W

j
i+1 − a

j
i−1W

j
i−1

]

=
h

3

[

2
j
i+1 + 42

j
i +2

j
i−1

]

.

(16)

The first derivative of wj+1(x) and wj(x) with respect to x at

the grid point xi, i = 1(1)N − 1 is approximated by the following

formula:

(wx)
j+1
i ≈

W
j+1
i+1 −W

j+1
i−1

2h
,

(wx)
j+1
i+1 ≈

3W
j
i+1 − 4W

j+1
i +W

j+1
i−1

2h
,

(wx)
j+1
i−1 ≈

−W
j+1
i+1 + 4W

j+1
i − 3W

j+1
i−1

2h
,

(17)

The formula in Equation (17) is also used for the jth time level.

Substituting Equation (17) into Equation (16) and simplifying, we

arrive at the following relation:

ε

h

[

W
j+1
i+1 − 2W

j+1
i +W

j+1
i−1 +W

j
i+1 − 2W

j
i +W

j
i−1

]

+
µ

2

[

a
j+1
i+1W

j+1
i+1 − a

j+1
i−1W

j+1
i−1 + a

j
i+1W

j
i+1 − a

j
i−1W

j
i−1

]

=
h

3

[

2
j
i+1 + 42

j
i +2

j
i−1

]

.

(18)

To treat the effect of perturbation parameter, exponential fitting

factor (σ (ρ)) is multiplied Equation (18) on the term containing ε

as follows:

εσ (ρ)

h

[

W
j+1
i+1 − 2W

j+1
i +W

j+1
i−1 +W

j
i+1 − 2W

j
i +W

j
i−1

]

+
µ

2

[

a
j+1
i+1W

j+1
i+1 − a

j+1
i−1W

j+1
i−1 + a

j
i+1W

j
i+1 − a

j
i−1W

j
i−1

]

=
h

3

[

2
j
i+1 + 42

j
i +2

j
i−1

]

.

(19)

Let ρ =
h

ε
and taking the limit of Equation (19) as h → 0

lim
h→0

σ (ρ)

ρ

[

W
j+1
i+1 − 2W

j+1
i +W

j+1
i−1 +W

j
i+1 − 2W

j
i +W

j
i−1

]

+

lim
h→0

µ

2

[

a
j+1
i+1W

j+1
i+1 − a

j+1
i−1W

j+1
i−1 + a

j
i+1W

j
i+1 − a

j
i−1W

j
i−1

]

= 0.

(20)

3.3 Determination of fitting factor

From the theory of singular perturbations [4, 5], the solution of

Equation (11) is written as follows:

Wj+1(x) =































W
j+1
0 (x)+

[

W
j+1
0 (0)−ϒ j+1

l
(0)

]

exp

(

−
µaj+1(0)

ε
(x)

)

,

at Left Layer,

W
j+1
0 (x)+

[

W
j+1
0 (1)−ϒ j+1

r (1)
]

exp

(

µaj+1(1)

ε
(1− x)

)

,

at Right Layer,

whereW
j+1
0 (x) is the solution of reduced problem (see refs. [4, 6]).

Using Taylor series expansion for a(x) near the point x = 0 and

x = 1 and considering h is reasonably small and evaluating the

result in Equation (20) at x = xi = h gives

W
j+1
i = (21)































(W0)
j+1
i +

[

W
j+1
0 (0)−ϒ j+1

l
(0)

]

exp

(

−
µaj+1(0)

ε
(ih)

)

,

left layer,

(W0)
j+1
i +

[

W
j+1
0 (1)−ϒ j+1

r (1)
]

exp

(

µaj+1(1)

ε
(1− ih)

)

,

right layer.

For left layer, substituting Equation (21) into Equation (20) and

taking ρ = h
ε

σ

ρ

[

e(−µa
j+1(0)ρ) − 2+ e(µa

j+1(0)ρ)
]

= −
µ

2
aj+1(0)

[

e(−µa
j+1(0)ρ) + e(µa

j+1(0)ρ)
]

,

⇒ −
σ

ρ









e





µaj+1(0)ρ

2





− e



−
µaj+1(0)ρ

2













2

=

−µ
2

aj+1(0)









e





µaj+1(0)ρ

2





− e



−
µaj+1(0)ρ

2













,

After some simplification of the above expression, we have

σ (ρ) =
ρµaj+1(0)

2
coth

(

µaj+1(0)ρ

2

)

. (22)

We use the same process for the left layers to create the right

layer as well. After computing σ (ρ) and taking limits on both sides

as h → 0, we have:

σ (ρ) =















ρµaj+1(0)

2
coth

(

µaj+1(0)ρ

2

)

, for x = 0,

ρµaj+1(1)

2
coth

(

µaj+1(1)ρ

2

)

, for x = 1.

(23)

where ρ = h/ε. Substituting Equation (22) into Equation (19) and

solving for2
j
i, we evaluate at:























































































































[

σ (ρ)

ρ
−
µ

2
a
j+1
i−1 −

h

6
b
j+1
i−1 −

h

3k
−

h

6
µ(a′)

j+1
i−1

]

W
j+1
i−1+

[

−
2σ (ρ)

ρ
−

2h

3
b
j+1
i +

4h

3k
−

2h

3
µ(a′)

j+1
i

]

W
j+1
i +

[

σ (ρ)

ρ
+
µ

2
a
j+1
i+1 −

h

6
b
j+1
i+1 −

h

3k
−

h

6
µ(a′)

j+1
i+1

]

W
j+1
i+1 =

[

−
σ (ρ)

ρ
+
µ

2
a
j
i−1 +

h

6
b
j
i−1 −

h

3k
+

h

6
µ(a′)

j
i−1

]

W
j
i−1+

[

2σ (ρ)

ρ
+

2h

3
b
j
i −

4h

3k
+

2h

3
µ(a′)

j
i

]

W
j
i+

[

−
σ (ρ)

ρ
−
µ

2
a
j
i+1 +

h

6
b
j
i+1 −

h

3k
+

h

6
µ(a′)

j
i+1

]

W
j
i+1+

h

6

[

̟
j+1
i+1 +̟ j

i+1

]

+
2h

3

[

̟
j+1
i +̟ j

i

]

+
h

6

[

̟
j+1
i−1 +̟ j

i−1

]

−
h

6

[

c
j+1
i−1W

j+1−m
i−1 + c

j
i−1W

j−m
i−1

]

− 2h
3

[

c
j+1
i W

j+1−m
i + c

j
iW

j−m
i

]

− h
6

[

c
j+1
i+1W

j+1−m
i+1 + c

j
i−1W

j−m
i+1

]

.

(24)
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Now, Equation (24) can be expressed as a three-term recurrence

relation as follows:























L
N,M
ε,µ W

j+1
i = A−

i W
j+1
i−1 + Ac

iW
j+1
i + A+

i W
j+1
i+1 = B−i W

j
i−1+

BciW
j
i + B+i W

j
i+1 + F

j
j ,

W
j+1
i = ϒb(xi, tj+1), i = 1, ...,N − 1,−(m+ 1) ≤ j ≤ −1,

W
j+1
0 = ϒl(tj+1), W

j+1
N+1 = ϒr(tj+1), 0 ≤ j ≤ M − 1.

(25)

For i = 0, 1, ...,N and j = 0, 1, ...,M where











































































A−
i =

σ (ρ)

ρ
−
µ

2
a
j+1
i−1 −

h

6
b
j+1
i−1 −

h

3k
−

h

6
µ(a′)

j+1
i−1,

Ac
i = −

2σ (ρ)

ρ
−

2h

3
b
j+1
i −

4h

3k
−

2h

3
µ(a′)

j+1
i ,

A+
i =

σ (ρ)

ρ
+
µ

2
a
j+1
i+1 −

h

6
b
j+1
i+1 −

h

3k
−

h

6
µ(a′)

j+1
i+1,

B−i = −
σ (ρ)

ρ
+
µ

2
a
j
i−1 +

h

6
b
j
i−1 −

h

3k
+

h

6
µ(a′)

j
i−1,

Bci =
2σ (ρ)

ρ
+

2h

3
b
j
i −

4h

3k
+

2h

3
µ(a′)

j
i,

B+i = −
σ (ρ)

ρ
−
µ

2
a
j
i+1 +

h

6
b
j
i+1 −

h

3k
+

h

6
µ(a′)

j
i+1,

(26)

and the right hand side is given as follows:

F
j
i =























































































































− h
6

[

c
j+1
i−1ϒb(xi−1, tj+1)+ 2c

j+1
i ϒb(xi, tj+1)+

c
j+1
i+1ϒb(xi+1, tj+1)

]

− h
6

[

c
j
i−1ϒb(xi−1, tj)+ 2c

j
iϒb(xi, tj)+ c

j
i+1ϒb(xi+1, tj)

]

+
h

6

[

̟
j+1
i−1 + 2̟

j+1
i +̟ j+1

i+1

]

+
h

6

[

̟
j
i−1 + 2̟

j
i +̟

j
i+1

]

,

for tj < m, j = 0(1)M − 1,

− h
6

[

c
j+1
i−1W(xi−1, tj+1−m)+ 2c

j+1
i W(xi, tj+1−m)+

c
j+1
i+1W(xi+1, tj+1−m)

]

− h
6

[

c
j
i−1W(xi−1, tj−m)+ 2c

j
iW(xi, tj−m)+

c
j
i+1W(xi+1, tj−m)

]

+
h

6

[

̟
j+1
i−1 + 2̟

j+1
i +̟ j+1

i+1

]

+
h

6

[

̟
j
i−1 + 2̟

j
i +̟

j
i+1

]

, for tj > m, j = 0(1)M − 1.

To solve the problem in Equation (1), the required scheme

developed in Equation (25) is referred to as a fitted operator FDM

obtained through Simpson’s 1/3rd rule. By multiplying both sides

of Equation (24) by negative, ensuring that the row sums are non-

negative and the off-diagonal entries are non-positive, one can

establish an M-matrix criterion using the provided coefficients. For

TABLE 1 Computed E
N,M
ε,µ ,EN,M, and R

N,M

ε,µ for example (5.1) at µ = 10−9 and comparison with Negero [4] and Sumit et al. [18].

ε N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

↓ M = 8 M = 16 M = 32 M = 64 M = 128 M = 256

Present method

10−2 7.6693e− 04 1.9032e− 04 4.7589e− 05 1.1889e− 05 2.9723e− 06 7.4306e− 07

2.0107 1.9997 2.0010 2.0000 2.0000 −

10−4 1.2817e− 03 2.8886e− 04 6.5466e− 05 1.6164e− 05 4.0250e− 06 1.0057e− 06

2.1496 2.1416 2.0180 2.0057 2.0008 −

10−6 1.3615e− 03 3.6324e− 04 9.3536e− 05 2.3162e− 05 5.2037e− 06 1.1491e− 06

1.9062 1.9573 2.0138 2.1542 2.1790 −

10−8 1.3617e− 03 3.6351e− 04 9.3962e− 05 2.3888e− 05 6.0206e− 06 1.5086e− 06

1.9053 1.9518 1.9758 1.9883 1.9967 −

10−10 1.3617e− 03 3.6351e− 04 9.3964e− 05 2.3890e− 05 6.0231e− 06 1.5122e− 06

1.9053 1.9518 1.9757 1.9878 1.9939 −

10−12 1.3617e− 03 3.6351e− 04 9.3964e− 05 2.3890e− 05 6.0231e− 06 1.5122e− 06

1.9053 1.9518 1.9757 1.9878 1.9939 −

EN,M 1.3617e− 03 3.6351e− 04 9.3964e− 05 2.3890e− 05 6.0231e− 06 1.5122e− 06

R
N,M

1.9053 1.9518 1.9757 1.9878 1.9939 −

Result in Sumit et al. [18] (Uniform S-mesh)

EN,M 4.3817e− 2 1.6750e− 02 7.4019e− 3 3.7490e− 3 1.9008e− 3 9.5719e− 4

R
N,M

1.3873 1.1781 0.9813 0.9799 0.9898 −

Result in Negero [4] (Fitted cubic spline in tension method )

EN,M 3.2186e− 03 7.9382e− 04 1.9871e− 04 4.9629e− 05 1.2404e− 05 3.1012e− 06

R
N,M

2.0195 1.9981 2.0014 2.0004 1.9999 −
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TABLE 2 Computed maximum point-wise error and rate of convergence for example (5.1) at µ = 10−4 and comparison with the study by Govindarao et

al. [20] for N = M.

ε N = 32 N = 64 N = 128 N = 256 N = 512

↓ M = 32 M = 64 M = 128 M = 256 M = 512

Present method

10−4 1.2721e− 03 2.8911e− 04 6.5457e− 05 1.6144e− 05 4.0406e− 06

2.1375 2.1430 2.01955 1.99836

10−6 1.3591e− 03 3.6573e− 04 9.4783e− 05 2.3704e− 05 5.4139e− 06

1.8938 1.9481 1.9995 2.1304

10−8 1.3606e− 03 3.6879e− 04 9.7117e− 05 2.5534e− 05 9.0849e− 06

1.8834 1.9250 1.9273 1.4909

10−10 1.3606e− 03 3.6879e− 04 9.7117e− 05 2.5534e− 05 9.0851e− 06

1.8834 1.9250 1.9273 1.4908

10−12 1.3606e− 03 3.6879e− 04 9.7117e− 05 2.5534e− 05 9.0851e− 06

1.8834 1.9250 1.9273 1.4908

Result in Govindarao et al. [20] (Standard Shishkin mesh) (µ = 10−4)

EN,M 2.8286e− 3 1.4280e− 3 7.1747e− 4 3.5960e− 4 1.8002e− 4

R
N,M

0.9861 0.9930 0.9965 0.9982

Result in Govindarao et al. [20] (Bakhvalov-Shishkin mesh) (µ = 10−4)

EN,M 1.8789e− 3 9.9691e− 4 5.0033e− 4 2.5064e− 4 1.2544e− 4

R
N,M

0.9891 0.9945 0.9973 0.9986

TABLE 3 Maximum point-wise error, convergence rate, and CPU time (in seconds) for example (5.1) with ε = 10−4 and N = M.

µ N = 32 N = 64 N = 128 N = 256 N = 512

↓ M = 32 M = 64 M = 128 M = 256 M = 512

Present method

10−4 1.2721e− 03 2.8911e− 04 6.5457e− 05 1.6144e− 05 4.0406e− 06

2.1375 2.1430 2.0195 1.9984

10−6 1.2693e− 03 2.8796e− 04 6.5267e− 05 1.6096e− 05 4.0083e− 06

2.1401 2.1414 2.0197 2.0056

10−8 1.2693e− 03 2.8795e− 04 6.5265e− 05 1.6096e− 05 4.0080e− 06

2.1401 2.1415 2.0196 2.0057

10−10 1.2693e− 03 2.8795e− 04 6.5265e− 05 1.6096e− 05 4.0080e− 06

2.1401 2.1414 2.0196 2.0057

10−12 1.2693e− 03 2.8795e− 04 6.5265e− 05 1.6096e− 05 4.0080e− 06

2.1401 2.1414 2.0196 2.0057

CPU(s) 0.52 1.72 12.20 117.92 910.86

Result in Govindarao et al. [20] (Standard Shishkin mesh) (ε = 10−4)

EN,M 2.8183e− 3 1.4253e− 3 7.1638e− 4 3.5904e− 4 1.7973e− 4

R
N,M

0.9835 0.9925 0.9965 0.9983

Result in Govindarao et al. [20] (Bakhvalov-Shishkin mesh) (ε = 10−4)

EN,M 1.9653e− 3 9.9001e− 4 4.9686e− 4 2.4891e− 4 1.2531e− 4

R
N,M

0.9892 0.9946 0.9973 0.9986
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small mesh size, it can be observed from the tridiagonal system of

Equations (25, 26) that

∣

∣Ac
i

∣

∣ ≥
∣

∣A−
i

∣

∣ +
∣

∣A+
i

∣

∣ . (27)

This shows the coefficient matrix associated with L
N,M
ε,µ is

irreducibly diagonally dominant as shown in Equation (27) and

non-singular. As a result, the matrix is anM−matrix, and with the

specified boundary conditions, matrix inverse can be used to solve

Equation (25).

4 Parameter-uniform convergence
analysis

We have shown that the continuous solution and its derivatives

are bounded. We can also estimate and control the errors

caused by the discrete approximation in the time variable. To

ensure the stability and consistency of the developed scheme, we

investigate the error estimate in the spatial variable and the total

discrete scheme.

Lemma 4.1. (Discrete Minimum Principle-) Assume 4j+1(x) be

a mesh function satisfying, 4(0, tj+1) ≥ 0,4(1, tj+1) ≥ 0, and

g
N,M
L,µ 4(xi, tj+1) ≤ 0 on ∆N

x × ∆M
t . Then, 4(xi, tj) ≥ 0 at each

point∆
N
x ×∆

M
t , where∆N

x and∆M
t are discretized domain.

Proof. Let(xϑ , tj+1) ∈
{

(xi, tj+1) : i = 1(1)N
}

such that

4j+1(xϑ ) = min1≤i≤N 4
j+1(xi) and let 4j+1(xϑ ) < 0. From

this
(

xϑ , tj+1

)

/∈
{

(0, tj+1), (1, tj+1)
}

, which implies that

(xϑ , tj+1) ∈
{

(xi, tj+1) : i = 1(1)N − 1
}

. Then, from Equation (25),

we have

L
N,M
ε,µ 4

j+1
ϑ = A−

i 4
j+1
ϑ−1 + Ac

i4
j+1
ϑ + A+

i 4
j+1
ϑ+1 ≥ 0,

since
∣

∣A−
i

∣

∣ > 0,
∣

∣Ac
i

∣

∣ > 0 and
∣

∣A+
i

∣

∣ > 0, which is a contradiction.

As a result, 4j+1(xϑ ) ≥ 0. Therefore, 4j+1(xi) ≥ 0, ∀(xi, tj+1) ∈
{

(xi, tj+1) : i = 1(1)N − 1
}

.

According to Lemma (4.1), the discrete operator L
N.M
ε,µ

follows discrete minimum principle, which results in a monotone

coefficient matrix. Furthermore, because it is irreducibly diagonally

dominant, it is an M− matrix. This guarantees the existence of a

distinct discrete solution.

Lemma 4.2. (Estimating Discrete Uniform Stability-) The solution

W
j+1
i of the discrete scheme in Equation (25) on L

N,M
ε,µ gratifies the

following estimate:

∥

∥

∥
W

j+1
i

∥

∥

∥
≤ ζ−1

∥

∥

∥
L
N,M
ε,µ W

j+1
i

∥

∥

∥
+

max
{
∣

∣ϒl(tj+1)
∣

∣ ,
∣

∣ϒr(tj+1)
∣

∣ ,
∣

∣ϒb(xi, tj+1)
∣

∣

}

, (28)

for i = 1(1)N − 1 and 0 < ζ ≤ b(x, t)+ c(x, t).

Proof. Let Γ = ζ−1
∥

∥

∥
L
N,M
ε,µ W

j+1
i

∥

∥

∥
+

max
{
∣

∣ϒl(tj+1)
∣

∣ ,
∣

∣ϒr(tj+1)
∣

∣ ,
∣

∣ϒb(xi, tj+1)
∣

∣

}

and describe the

barrier functions as follows:

(

▽±)j+1

i
= Γ ±W

j+1
i . (29)

TABLE 4 Computed E
N,M
ε,µ ,EN,M, and R

N,M
for example (5.1) at ε = 2−10 and comparison with the study by Singh et al. [7] for varying values of µ.

µ N = M = 16 N = M = 32 N = M = 64 N = M = 128 N = M = 256

↓
Present method

2−10 3.8671e− 03 8.4813e− 04 2.0860e− 04 5.2782e− 05 1.3498e− 05

2.1889 2.0235 1.9826 1.9673

2−14 3.8321e− 03 8.3554e− 04 2.0594e− 04 5.1017e− 05 1.2814e− 05

2.1974 2.0205 2.0132 1.9933

2−18 3.8301e− 03 8.3478e− 04 2.0578e− 04 5.0910e− 05 1.2726e− 05

2.1979 2.0203 2.0151 2.0002

2−22 3.8299e− 03 8.3474e− 04 2.0577e− 04 5.0904e− 05 1.2720e− 05

2.1979 2.0203 2.0152 2.0007

2−26 3.8299e− 03 8.3473e− 04 2.0577e− 04 5.0903e− 05 1.2720e− 05

2.1979 2.0203 2.0152 2.0007

2−30 3.8299e− 03 8.3473e− 04 2.0577e− 04 5.0903e− 05 1.2720e− 05

2.1979 2.0203 2.0152 2.0007

EN,M 3.8671e− 03 8.4813e− 04 2.0860e− 04 5.2782e− 05 1.3498e− 05

R
N,M

2.1889 2.0235 1.9826 1.9673

Result in Singh et al. [7] (Crank-Nicolson+Cubic B-Spline on S-mesh)

EN,M 2.5202e− 02 9.9355e− 03 3.3543e− 03 9.0485e− 04 2.4036e− 04

R
N,M

1.3429 1.5666 1.8903 1.9125
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The discrete function▽±(xi, tj+1) given in Equation (29) on the

boundary and interval functions is as follows:

▽± (0, tj+1) = Γ +max
{
∣

∣ϒl(tj+1)
∣

∣ ,
∣

∣ϒr(tj+1)
∣

∣ ,
∣

∣ϒb(0, tj+1)
∣

∣

}

±ϒl(tj+1) ≥ 0,

▽± (1, tj+1) = Γ +max
{
∣

∣ϒl(tj+1)
∣

∣ ,
∣

∣ϒr(tj+1)
∣

∣ ,
∣

∣ϒb(1, tj+1)
∣

∣

}

±
ϒr(tj+1) ≥ 0,

▽± (xi, 0) = Γ +max
{
∣

∣ϒl(0)
∣

∣ ,
∣

∣ϒr(0)
∣

∣ ,
∣

∣ϒb(xi, 0)
∣

∣

}

±ϒb(xi, 0) ≥ 0.

Additionally, on the discretized domain, it is given as follows:

L
N,M
ε,µ

(

▽±)j+1

i
= Γ ±W

j+1
i = A−

i

(

Γ ±W
j+1
i−1

)

+

Ac
i

(

Γ ±W
j+1
i

)

+ A+
i

(

Γ ±W
j+1
i+1

)

,

=
(

A−
i + Ac

i + A+
i

)

Γ ±H
j
i ≥ 0,

where H
j
i is the right hand side of Equation (25). Using

Lemma (4.1), Equation (28) holds true.

Truncation error for Discrete scheme

To establish a parametric uniform convergence of the discrete

scheme of Equation (25), let Ti(h) represent an LTE of the proposed

discrete scheme. The LTE is given as follows:

Ti(h) = A−
i W

j+1
i−1 + Ac

iW
j+1
i + A+

i W
j+1
i+1 −

(

B−i W
j
i−1 + BciW

j
i + B+i W

j
i+1 + F

)

(30)

To calculate the spatial truncation error, use Equation (25) at
xι, ι = i, i± 1 in Equation (30).

Ti(h) =






































































[

A−
i W

j+1
i−1 − h

(

εW
j+1
xx + µaj+1(x)W

j+1
x − β j+1(x)Wj+1

)

i−1

]

+
[

Ac
iW

j+1
i − h

(

εW
j+1
xx + µaj+1(x)W

j+1
x − β j+1(x)Wj+1

)

i

]

+
[

A+
i W

j+1
i+1 − h

(

εW
j+1
xx + µaj+1(x)W

j+1
x − β j+1(x)Wj+1

)

i+1

]

+
[

B−i W
j
i−1 − h

(

εW
j
xx + µaj(x)W

j
x − β j(x)Wj

)

i−1

]

+
[

BciW
j
i − h

(

εW
j
xx + µaj(x)W

j
x − β j(x)Wj

)

i

]

+
[

B+i W
j
i+1 − h

(

εW
j
xx + µaj(x)W

j
x − β j(x)Wj

)

i+1

]

(31)

TABLE 5 Computed E
N,M
ε,µ ,R

N,M

ε,µ ,EN,M,R
N,M

and CPU time (in seconds) for example (5.2) at µ = 10−9 and comparison with the study by Negero [4] and

Sumit et al. [18].

ε N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

↓ M = 8 M = 16 M = 32 M = 64 M = 128 M = 256

Present method

10−2 2.6587e− 03 1.4769e− 03 7.7335e− 04 3.9503e− 04 1.9957e− 04 1.0029e− 04

0.84815 0.93338 0.96916 0.98507 0.99272 −

10−4 2.7254e− 03 1.5152e− 03 7.9322e− 04 4.0520e− 04 2.0470e− 04 1.0287e− 04

0.84696 0.93372 0.96909 0.98512 0.99269 −

10−6 2.7261e− 03 1.5156e− 03 7.9342e− 04 4.0530e− 04 2.0475e− 04 1.0290e− 04

0.8469 0.9337 0.9691 0.9851 0.9926 −

10−8 2.7261e− 03 1.5156e− 03 7.9342e− 04 4.0530e− 04 2.0475e− 04 1.0290e− 04

0.8469 0.9337 0.9691 0.9851 0.9926 −

10−10 2.7261e− 03 1.5156e− 03 7.9342e− 04 4.0530e− 04 2.0475e− 04 1.0290e− 04

0.8469 0.9337 0.9691 0.9851 0.9926 −

10−12 2.7261e− 03 1.5156e− 03 7.9342e− 04 4.0530e− 04 2.0475e− 04 1.0290e− 04

0.8469 0.9337 0.9691 0.9851 0.9926 −

CPU(s) 0.38 0.78 3.69 26.83 299.73 4195.14

Result in Negero [4] (Fitted cubic spline in tension method)

10−2 2.7509e− 03 1.7964e− 03 1.0154e− 03 5.3861e− 04 2.7722e− 04 1.4062e− 04

10−4 2.8224e− 03 1.8422e− 03 1.0409e− 03 5.5203e− 04 2.8411e− 04 1.4410e− 04

10−6 2.8230e− 03 1.8426e− 03 1.0412e− 03 5.5216e− 04 2.8418e− 04 1.4414e− 04

10−8 2.8231e− 03 1.8426e− 03 1.0412e− 03 5.5216e− 04 2.8418e− 04 1.4414e− 04

10−10 2.8231e− 03 1.8426e− 03 1.0412e− 03 5.5216e− 04 2.8418e− 04 1.4414e− 04

10−12 2.8231e− 03 1.8426e− 03 1.0412e− 03 5.5216e− 04 2.8418e− 04 1.4414e− 04

Result in Sumit et al. [18] (Uniform S-mesh)

EN,M 1.110e− 2 5.0838e− 03 2.4640e− 3 1.2162e− 3 6.0457e− 4 3.0142e− 4

R
N,M

1.1265 1.0449 1.0185 1.0084 1.0041 −
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Replacing Taylor’s series expansion of







































































































































































W
j+1
i−1

∼= W
j+1
i − h

1!

dW
j+1
i

dx
+ h2

2!

d2W
j+1
i

dx2
− h3

3!

d3W
j+1
i

dx3
+ h4

4!

d4W
j+1
i

dx4

+O(h5),

W
j+1
i+1

∼= W
j+1
i + h

1!

dW
j+1
i

dx
+ h2

2!

d2W
j+1
i

dx2
+ h3

3!

d3W
j+1
i

dx3
+ h4

4!

d4W
j+1
i

dx4

+O(h5),

W
j
i−1

∼= W
j
i −

h
1!

dW
j
i

dx
+ h2

2!

d2W
j
i

dx2
− h3

3!

d3W
j
i

dx3
+ h4

4!

d4W
j
i

dx4
+ O(h5),

W
j
i+1

∼= W
j
i +

h
1!

dW
j
i

dx
+ h2

2!

d2W
j
i

dx2
+ h3

3!

d3W
j
i

dx3
+ h4

4!

d4W
j
i

dx4
+ O(h5),

(Wx)
j+1
i−1

∼= (Wx)
j+1
i − h

1! (Wxx)
j+1
i + h2

2! (Wxxx)
j+1
i − h3

3! (Wxxxx)
j+1
i + O(h4),

(Wx)
j+1
i+1

∼= (Wx)
j+1
i + h

1! (Wxx)
j+1
i + h2

2! (Wxxx)
j+1
i + h3

3! (Wxxxx)
j+1
i + O(h4),

(Wx)
j
i−1

∼= (Wx)
j
i −

h
1! (Wxx)

j
i +

h2

2! (Wxxx)
j
i −

h3

3! (Wxxxx)
j
i +

O(h4),

(Wx)
j
i+1

∼= (Wx)
j
i +

h
1! (Wxx)

j
i +

h2

2! (Wxxx)
j
i +

h3

3! (Wxxxx)
j
i +

O(h4),

(Wxx)
j+1
i−1

∼= (Wxx)
j+1
i − h

1! (Wxxx)
j+1
i + h2

2! (Wxxxx)
j+1
i + O(h3),

(Wxx)
j+1
i+1

∼= (Wxx)
j+1
i + h

1! (Wxxx)
j+1
i + h2

2! (Wxxxx)
j+1
i + O(h3),

(Wxx)
j
i+1

∼= (Wxx)
j
i +

h
1! (Wxxx)

j
i +

h2

2! (Wxxxx)
j
i + O(h3),

(Wxx)
j
i−1

∼= (Wxx)
j
i +

h
1! (Wxxx)

j
i +

h2

2! (Wxxxx)
j
i + O(h3),

(32)

Equation (32) with Equation (31), we have

Ti(h) =
[

ξ
j+1
0 W

j+1
i + ξ j0W

j
i

]

+
[

ξ
j+1
1 W

j+1
x,i + ξ j1W

j
x,i

]

+
[

ξ
j+1
2 W

j+1
xx,i + ξ

j
2W

j
xx,i

]

+
[

ξ
j+1
3 W

j+1
xxx,i + ξ

j
3W

j
xxx,i

]

+ higher order terms,

(33)

where the coefficients in Equation (33) are given as follows:



























































































































































ξ
j+1
0 =

(

A−
i + Ac

i + A+
i

)

+ h
(

β
j+1
i−1 + β

j+1
i + β j+1

i+1

)

,

ξ
j
0 = −

(

B−i + Bci + B+i
)

+ h
(

β
j
i−1 + β

j
i + β

j
i+1

)

,

ξ
j+1
1 = h

(

A+
i − A−

i

)

− hµ
(

a
j+1
i−1 + a

j+1
i + a

j+1
i+1

)

−

h2
(

β
j+1
i−1 − β

j+1
i+1

)

,

ξ
j
1 = h

(

B−i − B+i
)

− hµ
(

a
j
i−1 + a

j
i + a

j
i+1

)

+

h2
(

β
j
i+1 − β

j
i−1

)

,

ξ
j+1
2 = h2

2

(

A−
i + A+

i

)

− 3hε+
h2µ

(

a
j+1
i−1 − a

j+1
i+1

)

+ h3

2

(

β
j+1
i−1 + β

j+1
i+1

)

,

ξ
j
2 = − h2

2

(

A+
i + A−

i

)

− 3hε+
h2µ

(

a
j
i−1 − a

j
i+1

)

+ h3

2

(

β
j
i−1 + β

j
i+1

)

,

ξ
j+1
3 = h3

6

(

A+
i − A−

i

)

−
h3

2 µ
(

a
j+1
i−1 + a

j+1
i+1

)

−
h4

6

(

β
j+1
i−1 − β

j+1
i+1

)

,

ξ
j
3 =

h3

6

(

B−i − B+i
)

−
h3

2 µ
(

a
j
i−1 + a

j
i+1

)

− h4

6

(

β
j
i+1 − β

j
i−1

)

.

Substituting and simplifying the values of

A−
i ,A

c
i ,A

+
i ,B

−
i ,B

c
i ,B

+
i and restricting the expansion of the

coefficients to the first term gives ξ
j+1
0 = ξ

j
0 = ξ

j+1
1 = ξ

j
1 = 0 and











ξ
j+1
2 = h2σ (ρ)

ρ
− 3hε −

h3

6

(

11
(

a′
)j+1

i
+ 5β

j+1
i

)

+ O(h3),

ξ
j
2 =

h2σ (ρ)
ρ

− 3hε −
h3

6

(

11
(

a′
)j

i
+ 5β ij

)

+ O(h3).

(34)

TABLE 6 Computed E
N,M
ε,µ ,EN,M, and R

N,M
for example (5.2) at µ = 10−9 after extrapolation.

ε N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

↓ M = 8 M = 16 M = 32 M = 64 M = 128 M = 256

10−2 2.9513e− 04 6.9354e− 05 1.6731e− 05 4.1042e− 06 1.0161e− 06 2.5276e− 07

2.0893 2.0515 2.0274 2.0141 2.0072 −

10−4 3.0339e− 04 7.1229e− 05 1.7184e− 05 4.2151e− 06 1.0435e− 06 2.5959e− 07

2.0906 2.0514 2.0274 2.0141 2.0071 −

10−6 3.0347e− 04 7.1245e− 05 1.7188e− 05 4.2161e− 06 1.0718e− 06 2.5965e− 07

2.0907 2.0514 2.0274 1.9759 2.0454 −

10−8 3.0347e− 04 7.1246e− 05 1.7188e− 05 4.2161e− 06 1.0438e− 06 2.5965e− 07

2.0907 2.0514 2.0274 2.0141 2.0072 −

10−10 3.0347e− 04 7.1246e− 05 1.7188e− 05 4.2161e− 06 1.0438e− 06 2.5965e− 07

2.0907 2.0514 2.0274 2.0141 2.0072 −

10−12 3.0347e− 04 7.1246e− 05 1.7188e− 05 4.2161e− 06 1.0438e− 06 2.5965e− 07

2.0907 2.0514 2.0274 2.0141 2.0072 −

E2N,2M 3.0347e− 04 7.1246e− 05 1.7188e− 05 4.2161e− 06 1.0438e− 06 2.5965e− 07

R
2N,2M

2.0907 2.0514 2.0274 2.0141 2.0072 −
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Thus, by utilizing boundedness of the coefficient functions, we

obtain

∣

∣Ti(h)
∣

∣ ≤ ξ
j+1
2 (Wxx)

j+1
i + ξ j2 (Wxx)

j
i ≤ hε(σ − 3) (Wxx)

j+1
i ,

since ρ =
h

ε
. (35)

From the power series expansion of coth(ψ), we derive the

following inequality:

coth(ψ) =
1

ψ
+
ψ

3
−
ψ3

45
+O(ψ5) ⇒ ψ coth(ψ) = 1+

ψ2

3
+O(ψ4),

TABLE 7 Maximum point-wise error, convergence rate, and CPU time (in seconds) for example (5.3) with ε = 2−10 and varying µ values.

µ (N,M) = 16 (N,M) = 32 (N,M) = 64 (N,M) = 128 (N,M) = 256

↓

Present method

2−10 2.7430e− 03 6.7362e− 04 3.5820e− 04 1.8625e− 04 9.5499e− 05

2.0257 0.91117 0.94352 0.96368

2−14 2.7265e− 03 6.6712e− 04 3.5677e− 04 1.8479e− 04 9.4023e− 05

2.031 0.90295 0.94911 0.97480

2−18 2.7255e− 03 6.6673e− 04 3.5668e− 04 1.8470e− 04 9.3930e− 05

2.0313 0.90247 0.94945 0.97553

2−22 2.7254e− 03 6.6671e− 04 3.5668e− 04 1.8469e− 04 9.3924e− 05

2.0313 0.90243 0.94952 0.97554

2−26 2.7254e− 03 6.6670e− 04 3.5667e− 04 1.8469e− 04 9.3924e− 05

2.0314 0.90245 0.94948 0.97554

2−30 2.7254e− 03 6.6670e− 04 3.5667e− 04 1.8469e− 04 9.3924e− 05

2.0314 0.90245 0.94948 0.97554

CPU(s) 0.21 0.40 1.41 9.01 104.61

Result in Singh et al. [7] (Crank-Nicolson+Cubic B-Spline on S- mesh)

EN,M
ε,µ 8.0066e− 03 3.8811e− 03 1.4850e− 03 4.7138e− 04 1.3316e− 04

RN,M
ε,µ 1.04471 1.3860 1.6524 1.8268

TABLE 8 Computed E
N,M
ε,µ ,EN,M, and R

N,M
for example (5.3) at ε = 10−10 after extrapolation.

µ (N,M) = 16 (N,M) = 32 (N,M) = 64 (N,M) = 128 (N,M) = 256

↓
2−10 1.5314e− 03 3.4039e− 04 7.7411e− 05 1.9129e− 05 4.9227e− 06

2.1696 2.1366 2.0168 1.9582

2−14 1.5177e− 03 3.3676e− 04 7.6716e− 05 1.8849e− 05 4.7074e− 06

2.1721 2.1341 2.0250 2.0015

2−18 1.5168e− 03 3.3654e− 04 7.6674e− 05 1.8832e− 05 4.6949e− 06

2.1722 2.1340 2.0256 2.0040

2−22 1.5168e− 03 3.3652e− 04 7.6671e− 05 1.8831e− 05 4.6941e− 06

2.1723 2.1339 2.0256 2.0042

2−26 1.5168e− 03 3.3652e− 04 7.6671e− 05 1.8831e− 05 4.6940e− 06

2.1723 2.1339 2.0256 2.0042

2−30 1.5168e− 03 3.3652e− 04 7.6671e− 05 1.8831e− 05 4.6940e− 06

2.1723 2.1339 2.0256 2.0042

EN,M 1.5314e− 03 3.4039e− 04 7.7411e− 05 1.9129e− 05 4.9227e− 06

R
N.M

2.1696 2.1366 2.0168 1.9582
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where ψ =
ρµaj+1(xi)

2
. Now |σ − 3| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1+

(

ρµaj+1(xi)

2

)2

3
− 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ Cρ2µ2. From this, Equations (34,

35) are reduced to

∣

∣Ti(h)
∣

∣ ≤ hε
(

Cρ2µ2
)

(Wxx)
j+1
i = Ch3

µ2

ε
(Wxx)

j+1
i . (36)

Thus, by applying Equation (14) given in Lemma (3.4) and

considering the µ2/ε, Equation (36) reduced to:

∣

∣Ti(h)
∣

∣ ≤











Ch3
µ

ε
when µ2 ≤ ε,

Ch3
µ2

ε
when ε ≤ µ2.

(37)

Lemma 4.3. Let the solutions to Equations (1, 25) bew(xi, tj+1) and

L
N,M
ε,µ W

j+1
i , respectively. Next, in the spatial direction, the proposed

scheme satisfies the estimation [6]:

∣

∣

∣
L
N,M
ε,µ W

j+1
i − w(xi, tj+1)

∣

∣

∣
≤

{

Ch2 when µ2 ≤ ε,

Ch when ε ≤ µ2.
(38)

Proof. For i = 1(1)N, let us construct a barrier function as follows:

Θ±(xi, tj+1) = Ti(h)±
(

L
N,M
ε,µ W

j+1
i − w(xi, tj+1)

)

.

Now from boundary conditions, Θ±(x0, tj+1) ≥
0,Θ±(xN , tj+1) ≥ 0 and L

N,M
ε,µ Θ

±(xi, tj+1) ≤ 0 for i = 1(1)N − 1.

Hence, by applying Lemma (4.1) and Equations (5, 37), the

required estimate can be achieved.

As of now, the above-mentioned bound yields the main result

stated in the following theorem.

Theorem 4.4. Let w(xi, tj+1) and W
j+1
i be solutions of the

continuous problem Equation (1) and the discrete problem

Equation (25), respectively. Then, the error estimate for the fully

discrete scheme is as follows:

max
0≤i≤N,0≤j≤M

∥

∥

∥
w(xi, tj+1)−W

j+1
i

∥

∥

∥
≤

{

C
(

h2 + k2
)

when µ2 ≤ ε,

C
(

h+ k2
)

when ε ≤ µ2,

(39)

where C is a constant unaffected by any perturbation parameter.

Proof. The proof of this theorem begins by considering the left side

of Equation (39). By applying the triangular inequality using semi-

discrete solution Wj+1(xi) and utilizing the error bounds from

Lemma (4.3) and Lemma (3.3), we arrive at the result [33].

Therefore, the suggested approach reaches a second-order rate

of convergence for µ2/ε ≤ 1 and shows convergence, which

is independent of the perturbation parameters. Additionally, the

method shows first-order convergence for ε/µ2 << 1, which

occurs when the spatial convergence rate takes precedence over the

temporal direction as shown in Equation (38).

5 Numerical examples and results

In this section, the proposed method is implemented on three

test problems, and we have demonstrated its effectiveness by

comparing the outcomes with the previous finding reported in the

studies by Sumit et al. [18], Negero [4], Govindarao et al. [20],

and Singh et al. [7]. To support the theoretical analysis, we have

provided the tabular results for errors and order of convergence. As

the considered examples have no exact solution, we calculate the

maximum point-wise error EN,M
ε,µ and rate of convergence R

N,M
ε,µ of

the scheme using the double mesh principle given in the study by

Doolan et al. [39] as follows:

EN,M
ε,µ = max

0≤i≤N,0≤j≤M

∣

∣

∣
WN,M

i,j −W2N,2M
i,j

∣

∣

∣
,R

N,M
ε,µ =

log
(

EN,M
ε,µ

)

− log
(

E2N,2M
ε,µ

)

log(2)
,

whereWN,M
i,j andW2N,2M

i,j are numerical solutions computed on the

mesh N×M and 2N× 2M, respectively. Additionally, the uniform

rate of convergence R
N,M

and uniform maximum point-wise error

EN,M are given in the study by Duressa and Mekonnen [17] by the

following formula:

EN,M = max
ε,µ

EN,M
ε,µ , R

N,M =
log

(

EN,M
)

− log
(

E2N,2M
)

log(2)
.

Despite the fact that the method was intended to handle both

small and large time delay(γ ), due to source and time constraints,

we only offer examples for large delay. However, you could use

either one [40]. The time delay in the examples under consideration

is γ = 1.

Example 5.1. Consider the problems in the study by Negero [4]

and Singh et al. [7]



























ε
∂2w

∂x2
+ µ(1+ x)

∂w

∂x
− w(x, t)−

∂w

∂t
=

−w(x, t − γ )+ 16x2 (1− x)2 , (x, t) ∈ (0, 1)× (0, 2],

w(0, t) = 0, w(1, t) = 0, t ∈ (0, 2],

w(x, t) = 0, (x, t) ∈ [0, 1]× [−γ , 0].

Example 5.2. Consider the problems in the study by Negero [4]

and Singh et al. [7]



























ε
∂2w

∂x2
+ µ(1+ x− x2 + t2)

∂w

∂x
− (1+ 5xt)w(x, t)−

∂w

∂t
=

−w(x, t − γ )+ (x− x2)(et − 1), (x, t) ∈ (0, 1)× (0, 2],

w(0, t) = 0, w(1, t) = 0, t ∈ (0, 2],

w(x, t) = 0, (x, t) ∈ [0, 1]× [−γ , 0].

Example 5.3. Consider two-parameter SPPDE with delay (γ = 1)

on (0, 2]× [0, 1] [7]































ε
∂2w

∂x2
+ µ(1+ x2)

∂w

∂x
− (1+ 5xt)w(x, t)−

∂w

∂t
= −w(x, t − γ )+ 16x2(1− x)2,

w(0, t) = 0, w(1, t) = 0, t ∈ (0, 2],

w(x, t) = 0, (x, t) ∈ [0, 1]× [−γ , 0].
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FIGURE 1

The numerical solution profile: (A) for N = M = 64, ε = 10−8,µ = 1, and (B) for N = M = 128, ε = 10−12, and µ = 10−10 for example (5.1).

FIGURE 2

The numerical solution profile: (A) for N = M = 64, ε = 10−8, and µ = 1 and (B) for N = 256,M = 128, ε = 10−6, and µ = 10−10 for example (5.2).

FIGURE 3

Surface plots of the numerical solutions: (A) for N = M = 64, ε = 2−18, and µ = 1 and (B) for N = M = 128, ε = 2−10, and µ = 2−10 for example (5.3).
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The computed maximum point-wise error EN,M
ε,µ and rate of

convergence R
N,M
ε,µ for examples (5.1–5.3) are presented in Tables 1–

8 with different values of ε,µ,N, and M. Tables 1–5, 7 compare

numerical results with those given in the studies by Negero [4],

Singh et al. [7], Sumit et al. [18], and Govindarao et al. [20]

by fixing or varying ε or µ. This comparison indicates that,

once compared with studies found in the literature, the suggested

approach provides a more accurate solution. Consequently,

tabulated numerical results confirm that our theoretical estimates

in Lemma (3.3) and Theorem (4.4) can be achieved by the proposed

scheme, that is 1/3rd Simpson’s scheme. Tables 5, 7 display the

error for examples (5.2) and (5.3), respectively, for the case

ε/µ2 << 1 by taking a fixed value of µ and varying the values

of ǫ. According to the theoretical analysis, our method is expected

to be first-order convergent in space under these conditions and

provides a robust validation of the method’s performance. We

have conducted additional numerical experiments to verify this

behavior, ensuring that the spatial convergence rate dominates

over the temporal direction. As we double the number of mesh

points, presented in Tables 6, 8, errors become reduced, and as

we approach downward in each column, errors become constant.

These results confirm parameter uniformity and second-order

accuracy in the relevant cases. All tables show that convergence is

independent of perturbation parameters, and that the maximum

absolute error decreases as the number of mesh points increases.

The time taken by the CPU (in seconds) to deliver the outputs

(maximum point-wise error and convergence rate) is also provided,

which shows the efficiency of our proposed scheme. The numerical

solution surface plots for the discussed test problems (40–42)

are presented in Figures 1–3, respectively, with different values of

N,M, ε, andµ. The problem displays left and right boundary layers

based on the size of ε or µ, as a result of the small parameters.

In addition, Figures 4–6 show the log–log plot of the maximum

point-wise errors for examples (5.1), (5.2), and (5.3), respectively.

A B

FIGURE 4

Log–log plot for example (5.1): (A) for Table 1 and (B) comparison of log–log plot with the existing literature.

A B

FIGURE 5

Log–log plot for example (5.2): (A) for Tables 5, 6 and (B) comparison of log–log plot with the existing literature.
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A B

FIGURE 6

Log–log plot for example (5.3): (A) for Tables 7, 8 and (B) comparison of log–log plot with the existing literature.

Figure 4A depict the log–log plot of maximum point-wise errors

for example (5.1), taking the values in Table 1. A comparison of

error between the study by Negero [4] and Sumit et al. [18] and

the current method using a log–log plot is shown in Figure 4B, and

it can be noticed that the proposed method yields better accuracy.

For µ = 1, the considered problem belongs to the class of one-

parameter time-delayed convection–diffusion parabolic problems,

and a boundary layer of width O(ε) arises in the vicinity of x = 0,

as shown in Figures 1A, 2A, 3A.

6 Conclusion

A two-parameter singularly perturbed time-delayed parabolic

convection–diffusion problem is considered by the Crank–

Nicolson method for the discretization of the time derivative,

whereas in the discretization of the spatial variable, a numerical

integration (1/3 rd Simpson’s) formula is used by introducing

an appropriate fitting factor. The method’s novelty resides in

its independence from delay terms, asymptotic expansions, and

fitted meshes. The presence of two small parameters causes the

problem to exhibit left and right boundary layers depending on

the size of ε or µ. The method is demonstrated to have parameter

uniform second-order convergence in both time and space. The

performance of the proposed scheme is investigated by comparing

the results, and it is discovered that the accuracy of the numerical

results is comparable to or better than that of the existing difference

schemes [4, 7, 18, 20], as verified both theoretically and numerically.

To further demonstrate the versatility and applicability of the

proposed approach, we highlight that the analysis method used

in this study can be extended to high-order singularly perturbed

time-delayed parabolic problems with Robin boundary conditions.
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