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The seasonal model of chili price
movement with the e�ect of long
memory and exogenous variables
for improving time series model
accuracy

Dodi Devianto*, Elsa Wahyuni, Maiyastri Maiyastri and

Mutia Yollanda

Department of Mathematics and Data Science, Faculty of Mathematics and Natural Sciences,

Universitas Andalas, Padang, Indonesia

This study aimed to explore big-time series data on agricultural commodities

with an autocorrelationmodel comprising long-term processes, seasonality, and

the impact of exogenous variables. Among the agricultural commodities with

a large amount of data, chili prices exemplified criteria for long-term memory,

seasonality, and the impact of various factors on production as an exogenous

variable. These factors included the month preceding the new year and the

week before the Eid al-Fitr celebration in Indonesia. To address the factors

a�ecting price fluctuations, the Seasonal Autoregressive Fractionally Integrated

Moving Average (SARFIMA) model was used to manage seasonality and long-

term memory e�ects in the big data analysis. It improved with the addition

of exogenous variables called SARFIMAX (SARFIMA with exogenous variables

is known as SARFIMAX). After comparing the accuracy of both models, it was

discovered that the SARFIMAX performed better, indicating the influence of

seasonality and previous chili prices for an extended period in conjunction

with exogenous variables. The SARFIMAX model gives an improvement in

model accuracy by adding the e�ect of exogenous variables. Consequently,

this observation concerning price dynamics established the cornerstone for

maintaining the sustainability of chili supply even with the big data case.
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1 Introduction

Indonesia is primarily an agricultural nation with the majority of its workforce engaged

in the agricultural sector. According to data from the official website of the Indonesian

Statistical Bureau agency in February 2023, www.bps.go.id, 40.69 million Indonesians, or

29.36% of the total workforce, were employed in agriculture, forestry, and fisheries. In other

words, agriculture is an essential sector in Indonesia because it provides food supply as a

tool for poverty reduction, employment, and community income. It also plays a crucial role

in the development of the national economy as well as the regional economy.

Chili, the most popular commodity in the agricultural sector, is in high demand

each year, requiring a growth in chili productivity. From the perspective of a producer,

chili farming faces significant challenges in terms of cultivation. These issues have led

to a decline in productivity due to various factors, including weather conditions, soil
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fertility decreases, and the approaching Eid al-Fitr celebration.

Consequently, chili prices have become unstable. To address this

problem, it is essential to develop a model for predicting prices.

One approach is time series analysis, which incorporates various

univariate methods. Time series data refers to observations of a

variable collected over time at regular intervals, such as daily,

weekly, monthly, uarterly, or annually, so that the number of

observations can be categorized as big data [1].

The time series model is constructed by optimizing the

standard model’s parameters. The optimization method is

commonly utilized in certain applications. The first predicts

expectations for the future based on previous data. Time

series models can predict traffic conditions [2], wind speed

[3], decomposition ensemble for dynamic dispatching [4],

dissolved oxygen level [5], profit-driven customer churn [6],

renewable energy to reduce carbon emissions [7], and reliable

photovoltaic and wind power generation [8]. The second

one indicates long-term memory characteristics. The long-

term memory patterns are discernible through the slow or

hyperbolic decline of autocorrelation values in the autocorrelation

function (ACF) plot [9]. In this context, the differencing

parameter on long memory data may be a non-integer,

which can be addressed using the autoregressive fractionally

integrated moving average (ARFIMA) model [10, 11]. The

Geweke and Porter-Hudak (GPH) method is one approach

for estimating the differencing parameter directly without

needing to determine the order of autoregressive and moving

averages [12].

In supporting how to build a time series model of chili price,

specific factors can be included in chili price modeling based

on the problem concerning chili productivity and prices, such

as long-memory pattern data, weather conditions, and Eid al-

Fitr celebration. The first one is long-term memory pattern data.

Chili price movement data is a form of dataset that may be

represented using time series methods. ARFIMA is effective for

time series data with a long memory effect pattern [13]. The

second one is weather conditions, which demonstrate a seasonal

trend. Seasonal Autoregressive Fractionally Integrated Moving

Average (SARFIMA) is more suitable for data with repeating

seasonal patterns [1]. Prior studies have already explored time series

modeling with SARIMA and SARFIMA [14–19] and volatility time

series forecasting models [20, 21]. The third one is the Eid al-

Fitr celebration, which indicates an exogenous variable. Numerous

factors influence chili prices, such as the month, preceding the

new year and the Eid al-Fitr celebration. These occasions trigger

spikes in chili prices due to high demand. However, the timing of

the Eid al-Fitr celebration shifts each year as it follows the Hijri

calendar. This implies that chili price data have seasonal patterns

that can be effectively addressed using SARFIMA with exogenous

variables (SARFIMAX).

While many investigations aim to understand fractionally

integrated processes in time series modeling, capturing

the influence of exogenous variables within the model

remains a challenge [22]. Therefore, this study aims to

discuss the innovative use of SARFIMAX for modeling chili

price data, which enables the incorporation of seasonality,

long memory effects, and exogenous variables using big

data analysis.

2 Materials and methods

The data used in this study consisted of records detailing chili

price movements that are traded in the Jakarta modern market

on a monthly basis. Furthermore, the data trading was sourced

from the official Indonesian Bank website (https://www.bi.go.

id/hargapangan), spanning from April 2017 to April 2023.

Furthermore, this study gives a literature review of the modeling

concept of time series for capturing chili price movement. This

section introduced a review of SARFIMA and SARFIMAX, and it

also outlined the study methods.

2.1 Seasonal Autoregressive Fractionally
Integrated Moving Average (SARFIMA)

SARFIMA was developed by using the seasonal aspect of

ARFIMA. In general, the model was adapted for extended memory

or time series data due to its strong association with an extended

observation period. This characteristic became evident through the

autocorrelation function, where the lag decreased gradually with

time. Granger and Joyeux introduced ARFIMA (p,d,q) models with

fractional differences represented as values within the real number

interval 0 < d < 0.5 [17]. The general formula is depicted in the

expression below:

φp(B)(1− B)dXt = θq(B)εt

with B is the backward shift operator, order d indicates the

difference fractional, recurring model of (1 − B)d refers to a

stationary time series at the differencing, θi denotes the i-th moving

average parameter for i = 1, 2, · · · , q, the symbol φi is the

autoregressive parameter for i = 1, 2, · · · , p, and εt signifies the

residual at time t with εt ∼ WN(0, σ 2).

Time series data Xt is called a long memory process if there

exists a stationary stochastic process with function fx(.) for the real

numbers b ∈ (0, 1), cf > 0, and G ∈ (0,π) such that

fx(ω) ∼ cf |ω − G|−b,ω→ G

Suppose Xt is considered to be SARFIMA(p, d, q)(P,D,Q)S of

the equation

φ(B)ψ(BS)(1− B)d(1− BS)DXt = θ(B)ν(BS)εt

where εt is a white noise process. Using the backward shift operator,

the seasonal difference operator is denoted as ∇D
S = (1 − BS)D,

with θ representing the nonseasonal moving average parameter, ψ

signifies the nonseasonal autoregressive parameter, φ indicates the

seasonal autoregressive parameter, and ν is the seasonal moving

average parameter. Then Xt is considered seasonal ARFIMA,

where d represents the differencing order, and D is the seasonal

differencing order [16].

The steps for analyzing the SARFIMA model are as follows:

a. Using the Box-Cox transformation to determine the variance

stationarity. When time series data has constant variance

throughout time, it is said to be stationary in terms of variance.

For example, if Var(Xt) = Var(Xt+k) = σ 2 for k = 1, 2, · · ·
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where the variance value does not depend on t, then Xt time

series data at time t is considered stationary to the variance.

When the criterion is met, the Box-Cox transformation is

applied.

b. Checking for mean stationarity with the augmented Dicky

Fuller (ADF) test [23]. In case the data is not stationary, the

differencing process is implemented. The ADF test aims to

predict correlation using the following equation

∇Xt = µ+ δXt−1 +

k
∑

i=1

φi∇Xt−i + et

for ∇Xt = Xt − Xt−1, k is the number of lags, δ is the

slope coefficient, µ is a drift parameter, φi is a parameter of

random walk equation, and et is the white noise error term. The

hypothesis in the ADF test is as follows:

H0 : δ = 0 (The data is not stationary at the mean).

H1 : δ 6= 0 (The data is stationary concerning the mean).

The ADF test statistics used is

ADF =
δ̂

SE(δ̂)

when the value of the ADF t-table, the ADF test statistic, or

the p-value is less than 0.05, then H0 is rejected. Otherwise, it

is considered that the data is stationary.

c. Estimating the differencing value using the GPH method as

indicated in the following equation:

d̂ =

∑m
j=1(xj − x̄)(yj − ȳ)
∑m

j=1(xj − x̄)2
, for yj = ln I(γj)

and xj = − ln
(

2 sin
(γj

2

))2

d. Performing data differencing with the value of d̂

e. Identifying SARFIMA by observing the order of q, p, Q, and P

based on ACF and PACF plots.

f. Estimation of each parameter and significance of the SARFIMA

model by observing the probability value of each parameter less

than the significance value of 0.05.

g. The best model is the one with a smaller AIC and BIC

h. Performing residual tests on the best model:

i. A non-autocorrelation test is performed through theQLjung-

Box with the equation:

QLB = n(n+ 2)

k
∑

i=1

ρ2i

n− i

The number of lags is k, n represents the number of data,

and ρ indicates the autocorrelation residual. When QLB <

χ2
α(k − p − q), this means that the residuals in the model do

not contain autocorrelation.

ii. Heteroscedasticity Test. The heteroscedasticity test was

carried out using the white test to check the presence of

heteroscedasticity in the model [24]. Specifically, the White

test was conducted by regressing the squared residual with

the independent variable, the squared independent variable,

and the multiplication of the independent variable. The

White test can be calculated using the formula below:

W = nR2

where R2 is the coefficient of determination. In case the white

test value is smaller than the Chi-square table value, then H0

is not rejected. This means that there is no heteroscedasticity

in the model residuals.

(a) Normality test. The normality test was conducted with the

Jarque-Bera test with the equation:

JB =
n

6

(

S2 +
(K − 3)2

4

)

The parameters of S and K were expressed as follows:

S =
(1/n)(εi − ε̄)

3

(

(1/n)
∑n

i=1(εi − ε̄)
2
)3/2

,

K =
(1/n)(εi − ε̄)

4

(

(1/n)
∑n

i=1(εi − ε̄)
2
)2
,

and ε̄ =

∑n
i=1 εi

n

If JB < χ2
α(2) then the model residuals are normally

distributed.

2.2 The SARFIMA with exogenous variables
(SARFIMAX)

The SARFIMAX model is a SARFIMA model with exogenous

variables denoted by SARFIMAX(p, d, q)(P,D,Q)S(Y). Exogenous

variables can be modeled with multiple linear regression equations

as follows [1]:

Xt = α0 + α1Y1,t + · · · + αkYk,t + εt

where Y1,t ,Y2,t , · · · ,Yk,t is the exogenous variable corresponding

to Xt . Moreover, α0,α1, · · ·αk denotes the regression coefficient

of the exogenous variable, and εt indicates the residual of

the regression model that follows the SARFIMA model. The

SARFIMAX(p, d, q)(P,D,Q)S(Y) model is written as follows:

φ(B)ψ(BS)(1− B)d(1− BS)DXt =

k
∑

i=0

αiYi,t + θ(B)ν(B
S)εt

The steps for analyzing the SARFIMAXmodel are as follows:

a. Defining a dummy regression variable. The dummy variables

used are the beginning of the new year (January) and the month

of Eid starting in April 2017, which is given a value of 1 and a

value of 0 otherwise.

b. Estimation of parameters in the dummy variable model.

c. Testing the significance of dummy variable parameters.

d. Performing data differencing with the value of d̂.

e. Verification of the standardization of the dummy variable model

through diagnostic tests. When the residuals meet the white
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noise assumption, the process proceeds to step f. However, if

the residuals do not meet this assumption, it proceeds with the

estimation of SARFIMA.

f. Identifying SARFIMA by examining the orders q, p, Q, and P

based on ACF and PACF plots.

g. Estimating each parameter and significance of the ARFIMA

model by ensuring that the probability value of each parameter

is less than the significance value of 0.05.

h. Combining the dummy regression and SARFIMA to form

SARFIMAX.

i. Selecting the best model from a range of essential models based

on comparisons of AIC and BIC values.

j. Performing residual tests on the best model, including the

non-autocorrelation test, the heteroscedasticity test, and the

normality test.

2.3 Accuracy model evaluation and
goodness-of-fit

The optimum modeling strategy is to utilize a modeling

technique with a low rate of error, where yt is data observation

and ŷt is data forecasting. The first accuracy model is the Mean

Absolute Error (MAE). MAE is used to measure modeling accuracy

by averaging the absolute value of the modeling error using the

following formula [25]:

MAE =
1

n

N
∑

t=1

|yt − ŷt| (1)

The second accuracy model is the Root Mean Square Error

(RMSE). RMSE is an alternative method to measure the level of

accuracy of the modeling results of a model, calculated as follows

[25]:

RMSE =

√

SSE

n
=

√

∑n
t=1(yt − ŷt)

2

n
(2)

The third accuracy model is the Mean Absolute Percentage

Error (MAPE). MAPE is defined as the average of the total

percentage error (difference) between observed and modeled data

[26]:

MAPE =
1

n

N
∑

t=1

|yt − ŷt|

yt
× 100% (3)

The last accuracy model is Mean Directional Accuracy (MDA).

MDA is an alternative method to measure how often the predicted

direction of a time series matches the actual direction of the time

series. The MDA value is between 0 and 1. If the MDA value is

closer to 1, then it can be indicated that the model has perfect

directional accuracy. The MDA is defined straightforwardly as the

mean of the DAt and can be calculated as follows [27]:

MDA =
1

N − 1

N
∑

t=2

DA (4)

where N is the number of observation data points and DAt is

directional accuracy that can be defined as follows:

DAt =

{

1 if DEt = True

0 if DEt = False

whereDEt is the directional error for h-step-ahead forecasts, can be

defined as follows:

Rt = I[(yt+h − yt) > 0]

Pt = I[( ˆyt+h − yt) > 0]

where I(•) is the indicator function, Rt is the realized direction, Pt
is the predicted direction, yt is the data observation at the time t,

ŷt+h is the data forecasting at the time t + h, and yt+h is the data

observation at the time t + h.

The Diebold–Mariano (DM) test is used to evaluate the

similarity among the models. Assuming there are two forecasts, ft ,

and gt , from a time series Xt , the better one could be determined.

Assigning the residuals for the two forecasts to be ei and si, then:

di = e2i − s2i

di is the loss differential. The DM test statistic for h > 1 is

DM =
d̄

√

γ0 +

∑h−1
k=1 γk

n

(5)

where the value of h = n1/3 + 1. If |DM| > Zcritical,

where Zcritical is the two-tailed threshold for the standard normal

distribution, or if the difference between the two forecasts is

insignificant.

In measuring the goodness-of-fit, the most popular coefficient

of determination R2, is necessary. This measure is obtained by

computing the ratio of the sums of squares of regression (SSR) to

the sums of squares total (SST). The coefficient of determination R2

has a proper range of 0 to 1, with the low values indicating poor fit

and the large values indicating well fit. Let ȳ be the mean of the data

set yi, i = 1, 2, · · · , n, so the R2 can be defined as follows:

R2 =

∑n
i=1(y

′
i − ȳ)2

∑n
i=1(yi − ȳ)2

(6)

The value of R2 is defined as the proportion of variance in the

response variable accounted for by knowledge of the predictor

variable(s). R2 is also simultaneously the squared correlation

between observed values on yi and predicted values on y′i based on

the data processing [28].

3 Result and discussion

This section discussed the process of modeling chili prices

using time series methods such as SARFIMA and SARFIMAX. This

section starts with data identification and follows the modeling

results and discussion.
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FIGURE 1

(A) Monthly data plot of chili price and (B) ACF plot of monthly data of chili price.

FIGURE 2

The plot of monthly transformed chili price data after di�erencing.

FIGURE 3

ACF and PACF Plots nonseasonal.
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FIGURE 4

ACF and PACF plots seasonal.

3.1 Chili price data identification

The first stage was to plot the data to observe whether there

were any underlying patterns. The following chart shows a monthly

traded plot of curly chili prices in the Jakarta modern market.

According to Figure 1A, the monthly plot showed both

ascending and descending trends during different periods. The

data maintained a consistent variance with slightly substantial

fluctuations around the mean value all through the observation

period. Consequently, it appeared that the monthly chili price

data was non-stationary concerning both the mean and variance.

To address this non-stationarity, the Box-Cox transformation was

commonly used. In this case, a logarithmic transformation was

applied, as the Box-Cox parameter yielded a value of less than 0.001.

Figure 1B shows the data following this transformation, signifying

a gradual and hyperbolic descent, indicative of a long memory

process. The ADF test produced a p-value of 0.100, surpassing

the significance level of 0.05. This result suggested that the data

remained non-stationary concerning the mean. To assess the data’s

stationarity with respect to the mean, a comparison was made to

the estimated d value derived using the Geweke and Porter Hudak

method withwith R-studio. The result shows that d value is 0.23.

After differencing, the stationary data was shown in Figure 2.

Figure 2 shows that the data demonstrated stationarity

concerning both the mean and variance. This was evident as the

data revealed variations around the mean value while maintaining

a constant variance.

3.2 The SARFIMA modeling of chili price

The study proceeded to identify the order of autoregressive

and moving averages for non-seasonal nonseasonal and seasonal

orders before determining the SARFIMA(p, d, q)(P,D,Q)S model.

Initially, the nonseasonal order (p, d, q) was determined by

examining the results of ACF and PACF plots [29]. The p and

q orders could be seen in the PACF and ACF plots, respectively,

while d signified the fractional differencing produced using the

GPH approach [30]. The following graphic shows the results of the

nonseasonal ACF and PACF plots:

Based on Figure 3, the ACF plot was significant at the third lag,

indicating that the order was q = 3. Additionally, the PACF plot

was also significant at the second lag, indicating that the order was

TABLE 1 AIC and BIC value.

Model (d = 0.23) AIC BIC

SARFIMA(0, d, 1)(0, 0, 1)12 1,456.205 1,469.942

SARFIMA(0, d, 2)(0, 0, 1)12 1,450.502 1,466.535

SARFIMA(1, d, 2)(0, 0, 1)12 1,447.919 1,466.231

SARFIMA(2, d, 2)(0, 0, 1)12 1,448.951 1,469.577

SARFIMA(0, d, 1)(1, 0, 0)12 1,448.956 1,469.978

SARFIMA(0, d, 2)(1, 0, 1)12 1,452.483 1,474.184

p = 2. The procedure of differencing yielded a value of d = 0.230.

Subsequently, the seasonalities of orders P and Q were determined.

Figure 1A showed a seasonal effect on the chili price data, implying

that a difference on the 12th lag was necessary. The ACF and PACF

charts obtained after differencing are shown below:

The ACF plot signified significance at the fourth lag, as

illustrated in Figure 4, denoting an order of Q = 4 for the seasonal

moving average. Moreover, the PACF plot showed significance

at the first lag, indicating an order of P = 1 for seasonal

autoregressive, along with an order of D=0. In the next step,

parameter estimation was carried out for each model. There are six

significant SARFIMA models, namely SARFIMA(0, d, 1)(0, 0, 1)12,

SARFIMA(0, d, 2)(0, 0, 1)12, SARFIMA(1, d, 2)(0, 0, 1)12,

SARFIMA(2, d, 2)(0, 0, 1)12, SARFIMA(0, d, 1)(1, 0, 0)12, and

SARFIMA(0, d, 2)(1, 0, 1)12 where the value of d = 0.228. The

optimal model was found by comparing the least AIC and BIC

values in the table below:

Based on Table 1, SARFIMA(1, 0.228, 2)(0, 0, 1)12 has

the smallest value of AIC or BIC that indicates that

SARFIMA(1, 0.228, 2)(0, 0, 1)12 is the best model of SARFIMA.

The Q-Ljung Box test, which assessed autocorrelation, achieved a

p-value of 0.692, exceeding the significance level of 0.05. Similarly,

the test for heteroscedasticity produced a p-value of 0.212,

which also surpassed the 0.05 significance threshold. In order

to test for normality, Jarque-Bera was utilized and it produced a

p-value of 0.034, falling below the critical value of 0.05. The result

suggested that the data was not normally distributed. However,

such deviations were expected in financial data due to price

fluctuations. The conclusion was that there was no autocorrelation

or heteroscedasticity in the model’s residuals, rendering it suitable
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FIGURE 5

Comparison plot for monthly data of chili price with the SARFIMA model.

TABLE 2 Significance test of parameter dummy regression.

Parameter Estimate p-value Description

β1 76567 0.030 Significant

β2 97686 0.003 Significant

for use, as depicted in the comparison chart below with the actual

data shown in Figure 5.

In Figure 5, SARFIMA data was in line with the observed data,

although discrepancies arose during certain periods, particularly

in instances of data increase and decrease. Consequently, the

incorporation of exogenous variables into the model became

necessary.

3.3 The SARFIMAX modeling of chili price

The initial step in SARFIMAX modeling consisted of creating

a dummy variable for the regression model. This dummy variable

comprised Y1,t and Y2,t where Y1,t represented the dummy month

of the beginning of the year (January) and Y2,t signified the dummy

month of Eid al-Fitr. The dummy variable was selected based on

the influence of the increase in chili demand ahead of the Eid al-

Fitr holiday. The parameters of the dummy regression model can

be calculated as follows:

Xt = 76567Y1,t + 97686Y2,t + εt

The significance test for the parameters of the dummy

regression model is shown in Table 2.

In Table 2, each parameter showed significance, indicating that

a diagnostic test was conducted on the model’s residual data. The

test confirmed that the model residuals conformed to the white

noise assumption. As a result, the modeling process advanced

to SARFIMAX, a fusion of SARFIMA and exogenous variables.

The next steps incorporated modeling SARFIMAX, estimating

parameters, and identifying the best model. The best model,

SARFIMAX(1, d, 2)(0, 0, 1)12 was selected based on the lowest

AIC and BIC values. Subsequently, the residual assumptions for

the best model included non-autocorrelation, heteroscedasticity,

and normality tests, with consecutive p-values of 0.758, 0.054,

and 0.126, respectively, which surpassed the significance level of

0.05. The results showed that SARFIMAX(1, d, 2)(0, 0, 1)12 met the

assumptions of the residual test and was suitable for use. The

comparison chart in Figure 6 shows the model’s consistency with

actual data.

Figure 6 shows that SARFIMAX was in line with the chili

price data, due to the incorporation of exogenous variables. This

addition significantly minimized modeling errors, indicating that

the exogenous variables’ substantial influence on chili price sales

data fluctuations.

In capturing the error of both the SARFIMA and SARFIMAX

models, the following Figure 7 presents the pattern error of both

the SARFIMA and SARFIMAX models.

Figure 7 shows the error for both the SARFIMA and

SARFIMAXmodels. The errors of both SARFIMA and SARFIMAX

models are distributed around zero and do not have a pattern

of function. It indicates that the errors for both SARFIMA and

SARFIMAX models are random, so the errors for both SARFIMA

and SARFIMAXmodels are distributed in white noise with a mean

of zero and constant variance.

3.4 Accuracy model, DM test, and
goodness-of-fit

In order to improvemodeling accuracy, somemetrics including

MAE, RMSE, and MAPE were applied by using Equation (1),

Equation (2), and Equation (3). There are also test statistics of

Diebold-Marino (DM), Mean Directional Accuracy (MDA), and

coefficient of determination (R2) that are calculated by using
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FIGURE 6

Comparison plot of monthly data of chili price with SARFIMAX model data.

FIGURE 7

Error distribution of SARFIMA and SARFIMAX models.

TABLE 3 The accuracy model evaluation, Diebold-Mariano (DM), and goodness-of-fit (R2).

Model MAE RMSE MAPE DM MDA R2

SARFIMA(1, d, 2)(1, 0, 4)12 10278.1762 14804.3987 11.4968%
1.066

0.5556 0.8214

SARFIMAX(1, d, 2)(1, 0, 4)12 10038.3945 14380.0932 11.2892% 0.5694 0.8878

Equation (4), Equation (5), and Equation (6), respectively. Table 3

showed the results of chili price data modeling.

In both the SARFIMA and SARFIMAX models, the

MAPE value remained under 20%, indicating the feasibility

of implementing these models. Significantly, SARFIMAX

outperformed SARFIMA, showcasing reduced MAE, RMSE,

and MAPE values. The addition of exogenous variables in the

SARFIMA model reduced errors, indicating the substantial impact

of these variables on chili price fluctuations.

In accordance with Table 3, SARFIMA and SARFIMAX have

mean directional accuracy (MDA) values of 0.5556 and 0.5694,

respectively. The SARFIMA and SARFIMAX models accurately

forecast direction changes approximately 55.56% and 56.94% of

the time, respectively. In other words, the SARFIMA model has
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a lower MDA value than the SARFIMAX model, indicating that

the SARFIMAX model is slightly better at predicting the direction

of change in chili price than the SARFIMA model. The MDA

values of SARFIMA and SARFIMAX suggest that the models

capture a component of these dynamics but are not highly accurate.

This could be due to several factors, including high volatility,

supply shocks (natural disasters), variations in demand, political

instability, or seasonal production cycles. It may be enabled

to enhance its directional accuracy and generate more accurate

estimations by including more important features, employing

advanced modeling approaches, and significantly adjusting it.

The evaluation of residuals in both SARFIMA and SARFIMAX

models was conducted through the Diebold–Mariano (DM) test.

Using the significance level of α = 5%, calculations yielded a

DM value based on Table 3 is 1.066 which is greater than Zα of

0.832. Moreover, the p-value registered at 0.2900, exceeding the

significance level of α = 0.05. This implied that there was no

significant difference between these models, as both demonstrated

strong goodness-of-fit in tracking chili price movements.

Despite the accuracy model and DM test, there is a goodness-

of-fit or determination coefficient (R2) to determine which model

is better and closer to 1. Based on Table 3, the goodness-of-fit

(R2) of the SARFIMAX model is greater than the SARFIMA

model and closer to 1. This means that the SARFIMAX model

has better performance in building the chili price model than the

SARFIMA model. The determinant coefficients of both SARFIMA

and SARFIMAX that are closer to 1 also show that both models

have great accuracy. Therefore, the previous data on chili prices can

forecast the next period of chili prices precisely.

An examination of the data showed the significant influence of

previous data on chili prices, which eventually affected Indonesian

inflation. Effective chili price management became very important,

given its direct impact on inflation. To achieve this result, the

government and stakeholders needed to collaborate in order to

improve production. Moreover, the expansion of planting areas

and the establishment of appropriate planting schedules ensured

consistent chili production.

Exogenous variables, particularly the commencement of the

new year and the month preceding the Eid al-Fitr celebration,

influenced chili prices. Consequently, chili production planning

incorporated these events, considering the high demand for chili

driven by various factors, including gastronomic. The seasonal time

series model, accounting for longmemory and exogenous variables,

formed the basis for sustaining chili supply and preserving price

stability.

The accuracy model and goodness-of-fit based on Table 3

suggest that the SARFIMA model can be used to demonstrate

how the seasonal pattern in the Autoregressive Integrated Moving

Average (ARIMA) model evolves with the model’s fractional

order. The fractional integrated order is frequently applied to

demonstrate how long memory pattern data is. It means that

data with a significant correlation to previous data is more

accurate than integer-order data. Furthermore, the SARFIMA

model that is merged with an exogenous variable, also known

as SARFIMAX, is a combined model that approaches the actual

value more accurately than the original model. It is also used

in renewable energy management in sustainable supply chains,

where it combines a combination method for choosing appropriate

hyperparameters for sub-models and an improved intelligent

optimization algorithm [7]. Furthermore, reliable photovoltaics,

including wind power generation, implement a combined

forecasting system that includes a data preprocessing approach, a

sub-predictor selection mechanism, and an optimization strategy

with multiple objectives to integrate several forecasting models.

The suggested system efficiently combines the benefits of all the

algorithms involved, resulting in higher prediction precision and

stability. Experiments demonstrated that the suggested system

outperforms the comparative systems in terms of point and

interval forecasting quality [8].

Extensive studies have been conducted in the fields of time

series models, long memory processes, and hybrid time series

models. For example, studies have focused on long-term seasonal

high-frequency forecasting, using SARFIMA to predict periodic

long memory series. Stochastic volatility models, realized using

the Gegenbauer long-term memory, have been investigated with

the Whittle likelihood estimator to measure realized stochastic

volatility [18]. In addition, studies have explored the combination

of various time series models, such as the SARFIMA-GARCH,

which incorporates seasonal interference to estimate parameters

for seasonal level shift SARFIMA (SLS-SARFIMA) and seasonal

level shift generalized autoregressive conditional heteroscedasticity

(SLS-GARCH) [19]. Other areas of exploration include hybrid long

memory modeling and fuzzy time series Markov chains [10] and

the hybrid autoregressive integrated moving average model with

fuzzy time series Markov chain applied to long memory data [31].

4 Conclusion

The most common commodity for everyday necessities is chili.

The time series method is necessary to identify the pattern in

the data since historical data contains a lot of data. Seasonality

is a specific occurrence that can be attributed to the national

culture or the current season. Since the price of chilies is correlated

with its historical price, the best option for constructing the

pricing model is to use time series analysis, particularly with

respect to ARIMA. Given the robust correlation seen between

the current and historical prices, the price of chilies can be

categorized as a series data points of with a long memory pattern.

Furthermore, Indonesian seasonal variations may also play a

role in the production of this item. As a result, the SARFIMA

model can be created by modifying the traditional ARIMA model

with the influence of long-term memory pattern data and the

Indonesian season. In Indonesia, the production of chilies may not

be primarily influenced by the season. The production of chili may

be impacted by an exogenous variable; hence, the SARFIMAmodel

with its exogenous variable, known as SARFIMAX, is necessary to

determine the price of chili.

In conclusion, the ACF plot showed a long-term memory effect

in the monthly chili price data, with a gradual and hyperbolic

decrease. The results confirmed the presence of a long memory

effect in the chili price data, meeting the fractional model criteria.

This discovery was further substantiated by the autocorrelation

function, which indicated a slow lag decrease for an extended

period. Chili data, affected by seasonal factors and exogenous

variables, could be effectively modeled using SARFIMAX. The
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selection of the model was based on a comparison of the AIC

and BIC values of various candidates. This selection led to

the identification of SARFIMAX(1, d, 2)(0, 0, 1)12 as the optimum

model, signifying the enduring influence of previous prices on chili

price movements. Finally, the model adeptly captured seasonality,

long memory, and exogenous variables, providing a foundation for

sustaining chili supply and ensuring price stability. In addition,

the SARFIMAX model has maintained the improvement of the

accuracy model for better performance and fit.

In this study, the best model of SARFIMAX(1, d, 2)(0, 0, 1)12

is based on the term of season, fractionally integrated order, and

exogenous variable that is included in the ARIMA model, ensuring

that this proposed model provides the accuracy model precisely

and the error model getting smaller than its comparison model of

SARFIMA. The seasonal term has been employed to emphasize that

chili output is dependent on the season; the fractional integrated

order indicates the significance of two sequences of data; and

the exogenous variable demonstrates how the Eid al-Fitr event

influences chili prices. The accuracy model of the SARFIMAX

model has a major impact on reducing errors in the SARFIMA

model. The limitation of this study is that the exogenous variable

of the new year and the week leading up to Indonesia’s Eid al-

Fitr celebration can be determined by using A.D. and the Islamic

calendar. However, these proposed approaches have limitations if

the exogenous variable is an unexpected phenomenon, including

high volatility, supply shocks (natural disasters), variations in

demand, political instability, or seasonal production cycles. Because

of these unexpected behaviors, the commodity price of chili is not

always predictable precisely. A dynamic systemmethod is necessary

to overcome this chaos effect. In order to improve the accuracy of

themodel based on the problem of chili productivity, incorporating

the term into the SARFIMA model, such as soil fertility as the

exogenous variable, may be useful in reducing the model’s error

and adjusting the assumption error. It could enhance its directional

accuracy and generate accurate estimations by including more

important factors, employing advanced modeling techniques, and

performing significant adjustments.
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