
Frontiers in Applied Mathematics and Statistics 01 frontiersin.org

Modeling approaches for 
assessing device-based measures 
of energy expenditure in 
school-based studies of body 
weight status
Gilson D. Honvoh 1*, Roger S. Zoh 2, Anand Gupta 3, 
Mark E. Benden 4 and Carmen D. Tekwe 2

1 Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United 
States, 2 Department of Epidemiology and Biostatistics, Indiana University, Bloomington, IN, United 
States, 3 Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, 
TX, United States, 4 Department of Environmental and Occupational Health, Texas A&M University, 
College Station, TX, United States

Background: Obesity has become an important threat to children’s health, 
with physical and psychological impacts that extend into adulthood. Limited 
physical activity and sedentary behavior are associated with increased obesity 
risk. Because children spend approximately 6  h each day in school, researchers 
increasingly study how obesity is influenced by school-day physical activity 
and energy expenditure (EE) patterns among school-aged children by 
using wearable devices that collect data at frequent intervals and generate 
complex, high-dimensional data. Although clinicians typically define obesity 
in children as having an age-and sex-adjusted body mass index (BMI) value in 
the high percentiles, the relationships between school-based physical activity 
interventions and BMI are analyzed using traditional linear regression models, 
which are designed to assess the effects of interventions among children with 
average BMI, limiting insight regarding the effects of interventions among 
children categorized as overweight or obese.

Methods: We investigate the association between wearable device–based 
EE measures and age-and sex-adjusted BMI values in data from a cluster-
randomized, school-based study. We  express and analyze EE levels as both 
a scalar-valued variable and as a continuous, high-dimensional, functional 
predictor variable. We investigate the relationship between school-day EE (SDEE) 
and BMI using four models: a linear mixed-effects model (LMEM), a quantile 
mixed-effects model (QMEM), a functional mixed-effects model (FMEM), and 
a functional quantile mixed-effects model (FQMEM). The LMEM and QMEM 
include SDEE as a summary measure, whereas the FMEM and FQMEM allow for 
the modeling of SDEE as a high-dimensional covariate. The FMEM and FQMEM 
allow the influence of the time of day at which physical activity is performed to 
be assessed, which is not possible using the LMEM or the QMEM. The FMEM 
assesses how frequently collected SDEE data influences mean BMI, whereas the 
FQMEM assesses the effects on quantile levels of BMI.

Results: The LMEM and QMEM detected a statistically significant effect of 
overall mean SDEE on log (BMI) (the natural logarithm of BMI) after adjusting for 
intervention, age, race, and sex. The FMEM and FQMEM provided evidence for 
statistically significant associations between SDEE and log (BMI) for only a short 
time interval. Being a boy or being assigned a stand-biased desk is associated 
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with a lower log (BMI) than being a girl or being assigned a traditional desk. 
Across our models, age was not a statistically significant covariate, and white 
students had significantly lower log (BMI) than non-white students in quantile 
models, but this significant effect was observed for only the 10th and 50th 
quantile levels of BMI. The functional regression models allow for additional 
interpretations of the influence of EE patterns on age-and sex-adjusted BMI, 
whereas the quantile regression models enable the influence of EE patterns to 
be assessed across the entire BMI distribution.

Conclusion: The FQMEM is recommended when interest lies in assessing how 
device-monitored SDEE patterns affect children of all body types, as this model 
is robust and able to assess intervention effects across the full BMI distribution. 
However, the sample size must be  sufficiently large to adequately power 
determinations of covariate effects across the entire BMI distribution, including 
the tails.

KEYWORDS

B-splines, behavioral intervention, cluster-randomized trial, functional data analysis, 
physical activity, quantile regression

1 Introduction

Approximately 90% of children diagnosed with type 2 diabetes are 
classified as either overweight or obese (1). Obesity has been linked to 
various factors, including a chronic imbalance between energy 
expenditure (EE) and energy intake, environmental exposures, and 
genetic predispositions. However, the exact contributions of EE to 
obesity development remain unclear (2). To combat the growing 
obesity epidemic among children, behavioral researchers increasingly 
employ targeted, school-based interventions designed to reduce 
school-day sedentary behaviors among children (3–5). The effects of 
these interventions on physical activity (PA) are often monitored 
using wearable devices, such as accelerometers, which collect frequent 
measures of estimated calorie expenditures or the number of steps 
taken (6, 7). Wearable devices typically record data at either the 
second or minute level over multiple days to monitor PA intensity. 
Often, these measures are used to estimate the metabolic equivalent 
of tasks, which can be  used to derive the amount of time spent 
performing sedentary, light, moderate, or vigorous PA (8). 
Alternatively, the data collected over time by wearable devices can 
be represented by scalar-valued summary numbers such as mean EE 
or total EE, or by curves (9–12). When data are presented as curves, 
functional data analysis, which treats curves as the unit of statistical 
analysis, is a modeling strategy (13–15). Functional data analysis 
applies data reductions techniques to the curves and subsequently 
uses regression approaches for statistical modeling. The data 
reductions can simply consist in summarizing the data from minute-
level observations into hourly mean EE values (11). Furthermore, 
more complex statistical data reduction techniques, such as functional 
principal components analyses or polynomial basis expansions, have 
also been used to for approximating the mean of the curves data have 
also been used (9, 10, 13, 16–19). Polynomial basis expansions 
approximate curves by describing their shapes using a few key 
features, summarizing the information contained within curves into 
basis functions that adequately capture patterns. Unlike summary 
statistics, such as the mean, which account for only one source of 

variation in the data, each basis function accounts for a different 
source of variation (10). Parametric regression approaches, such as 
nonlinear or polynomial mixed-effects models, have been considered 
in functional data settings to parametrically model the effects of 
curves on an outcome (20–22); however, these approaches are limited 
by the requirement for strong assumptions regarding the shape of the 
curve. Thus, semiparametric and nonparametric approaches, which 
provide more flexibility for fitting curves to data by not requiring a 
specific parametric form, are standard approaches for analyzing 
functional data (23–25). Additionally, the ability of these approaches 
to easily accommodate the high dimensionality of functional data is 
desirable (13, 14).

In children, overweight and obesity are defined according to 
age-and sex-adjusted body mass index (BMI) values in the upper 
ranges (26, 27). However, most studies assessing the impacts of 
behavioral interventions on BMI rely on traditional linear regression 
models, which are designed to assess the effects of intervention among 
children within the normal BMI range and have limited ability to 
assess the effects of interventions among children classified as 
overweight or obese. Thus, statistical approaches that permit the 
evaluation of covariate effects across the entire BMI distribution are 
preferable when assessing the effects of interventions among children 
classified as overweight or obese (28). Quantile regression is a 
statistical technique used to estimate the effects of predictors on 
quantile functions of a response variable (28–33), such as the median 
(50th), 85th, or 95th quantiles. Quantile regression is advantageous 
compared with linear regression because quantile regression does not 
require the regression residuals to be  normally distributed. Using 
classical mean regression models, such as linear regression, to model 
BMI as an outcome can provide incomplete information regarding 
BMI values that lie beyond the mean value, such as values within the 
distribution tails. Additionally, covariates such as PA and age may have 
differential impacts on different quantile levels. Therefore, statistical 
approaches that allow covariate effects to be assessed across the full 
spectrum of quantile functions are preferable when using BMI as an 
outcome in obesity studies (28, 29).
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Different approaches have been used for assessing the relationship 
between device-based measures of PA patterns and BMI. Wendel et al. 
(34) recently used classical linear regression to analyze the effects of 
introducing stand-biased desks in school on the average change in 
BMI. Their results indicated that compared with using conventional 
desks, using stand-biased desks significantly reduced the average 
change in BMI (p = 0.04). However, analyzing the average change in 
BMI does not allow for the assessment of how standing desk use 
affects values above or below the average BMI change. Benden et al. 
(3) reported that children who used stand-biased desks had a 
significantly higher mean EE (estimate [Est.] = 0.16, standard error 
[SE] = 0.04, p < 0.001) than students who used traditional desks. 
Benden et  al. used a hierarchical LMEM to assess the impacts of 
standing desk use on average SDEE (as a measure of PA); however, this 
approach is limited to assessing the impacts of standing desk use for 
those children with “average” SDEE values and cannot assess impacts 
for those children with SDEE values above or below the average. 
Additionally, the hierarchical LMEM employed did not model SDEE 
data as curves.

Trinh et al. (35) studied the effects of PA patterns at baseline on 
the 3-year change in BMI among elementary school–aged children in 
Australia and found little evidence to indicate that baseline PA 
patterns were predictive of future obesity risk when applying classical 
regression methods that treated objective measures of PA as a 
summary statistic (average step count per minute) (35). However, 
using summary statistics to describe PA intensity does not account for 
potential diurnal PA patterns (9, 11, 12, 36, 37). Approaches that allow 
assessments of diurnal patterns in PA have also been considered in the 
literature. For example, Tekwe et  al. (9) used functional principal 
components methods and scalar-on-function regression to analyze EE 
data (38). These approaches allowed the impacts of diurnal PA 
patterns on obesity-related outcomes to be assessed. Augustin et al. 
(12) also considered semiparametric approaches to describe PA 
patterns and used a histogram of the PA distribution as a predictor in 
their regression model. Using data from the Avon Longitudinal Study 
of Parents and Children, Augustin et al. established that their approach 
provided better fits than summary statistics–based methods.

Our current work was motivated by the stand-biased desk study 
in which a school-based PA intervention study was assessed (3). The 
cluster-randomized study was conducted from 2011 to 2013 in three 
elementary schools within the College Station Independent School 
District (CSISD) (3). The study is described in detail elsewhere (3); 
briefly, at the beginning of the 2011–2012 academic year, 24 teachers 
from three elementary schools were recruited and randomly 
assigned to the use of either stand-biased desks with stools 
[Stand2learn LLC College Station, TX, USA, stand-biased desk 
(model S2LK04) and stool (model S2LS04)] or traditional desks 
(model 2200 FBBK Series by Scholar Craft Products, Birmingham, 
AL) with chairs (9000 Classic Series, by Virco Inc., Torrance, CA, 
USA) for in-class activities (3). A total of 374 students in second 
through fourth grades were included in the study at baseline. To 
calculate BMI, each student’s height and weight were measured at the 
start of each semester by trained research assistants. Study 
participants were required to wear calibrated BodyMedia 
SenseWear® armband devices (BodyMedia, Pittsburgh, PA) during 
school hours for 1 school week in each semester from Fall 2011 to 
Spring 2013. The devices recorded subject-specific step counts and 
caloric EE per minute while worn. All study participants consented 

or assented to participate in the study, and consent to participate was 
obtained from the parents or legal guardians of all participants. The 
study protocol was approved by the Institutional Review Board, 
Human Subjects Program at Texas A&M and the CSISD 
Review Board.

Using a hierarchical linear mixed effects model, Benden et al. (3) 
showed that children in stand-biased desk classrooms had significantly 
higher EE than children in traditional desk classrooms (estimate 
[Est.] = 0.16, standard error [SE] = 0.04, p < 0.001) in the Fall semester, 
after adjusting for grade, race and gender. However, using a summary 
value in the hierarchical linear mixed model does not take advantage 
of the high dimensionality of EE. Figure  1 illustrates such high 
dimensionality by showing EE data gathered every minute over 5 
school days for a randomly selected student participant in our 
motivating stand-biased desk study. Nonparametric smoothing was 
used to approximate the average EE recorded over the five school days 
for a randomly selected student. By smoothing the mean, we uncover 
underlying patterns in the data while retaining important features (20, 
39). The hierarchical linear mixed model does not provide the ability 
to assess the impact of these underlying patterns on childhood obesity, 
thus limiting interpretability.

In this manuscript, we  use different modeling approaches to 
examine the relationship between PA and body weight status, as 
indicated by measures of BMI. We describe the use of a linear mixed-
effects model (LMEM), a quantile mixed-effects model (QMEM), a 
functional mixed-effects model (FMEM), and a functional quantile 
mixed-effects model (FQMEM) to study the relationship between 
school-day EE (SDEE) and BMI. We include random effects in all 
models to account for clustering and treat SDEE as both a scalar-
valued summary and a function-valued predictor variable. We discuss 
the advantages and disadvantages of each modeling approach. The 
manuscript is organized as follows. In Section 2, we  describe the 
statistical models employed in our applications. The results from our 
analyses are provided in Section 3, and we offer some concluding 
remarks in Sections 4 and 5.

2 Model specifications

In this manuscript, we analyzed data collected at baseline (Fall 
2011). Our analytic sample of 256 participants excluded those with 
large proportions of missing or incomplete accelerometer data. Mean 
hourly SDEE values were obtained by calculating hourly averages of 
minute-level device-measured observations across the 5 days of a 
school week during which the devices were worn. In our analytic 
sample, all students had exactly 30 mean hourly SDEE values. For all 
models, we  used log (BMI), the natural logarithm of BMI as the 
response variable and we adjusted for the following covariates: age, sex 
(boys vs. girls), and intervention (stand-biased desks vs. traditional 
desks). Given the cluster-randomized design, we attempted to account 
for the clustering effects of teachers within schools. However, due to 
computational and convergence issues, we only included a random 
intercept for schools in all models. We implemented linear regression 
and quantile regression models with the R software packages lme4 (40) 
and lqmm (41, 42), respectively. Below, we provide descriptions of the 
different models considered.

In the remaining of this section, we provide descriptions of the 
models considered.
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2.1 Linear mixed-effects model

Mixed effects models are used to account for clustering in 
regression models (43). The following model was specified for the 
LMEM used for students clustered within schools.

 
Y X b iij

k
k ijk j ij= + + + = …

=
∑β β ε0

1

5

1 1 256, , ,

In this model, Y BMIij ij= ( )log  represents the response for the 
ith subject within the jth (j = 1, 2, 3) school, β0 is a scalar-valued 
intercept, and β1k  represents the coefficient on the kth covariate 
(overall mean SDEE, age, sex, race, and intervention). For SDEE, 
we  obtained the overall mean of the high-dimensional data 
recorded for each student. We included the random intercept bj to 
account for clustering within schools, and εij represented the 
model error associated with Yij. We assume that b Nj j~ 0

2
,σ( ) and 

ε σij N~ 0
2

,( ) . Random effects and errors terms are 
commonly assumed to be  normally distributed based on large 
sample theory, and also for mathematical and computational  
convenience.

2.2 Quantile mixed-effects model

The quantile mixed effects model accounts for clustering with 
random effects in the linear conditional quantile functions (42). 
We applied the QMEM at the 10th, 25th, 50th, 85th, 95th, and 99th 
percentiles of the outcome variable, Y BMIij ij= ( )log . Quantile 
regression models are used to estimate the effects of independent 
variables on specific quantile levels for a given outcome. We specified 
the model as follows:

 
Q Y X b iij

k
k ijk jτ β τ β τ τ( ) = ( ) + ( ) + ( ) = …

=
∑0

1

5

1 1 256, , ,

In this model, Q Yijτ ( ) represents the τth quantile of the outcome 
for the ith subject within the jth (j = 1, 2, 3) school and is the observed 
value of the cumulative distribution function of the outcome Y 
conditional on the covariates. We also define β0(τ) as a scalar-valued 
intercept for the τth quantile and β1k(τ) as the coefficient on the kth 
covariate (overall SDEE, age, sex, race, and intervention) for the τth 
quantile. bj τ( ) accounts for clustering within schools at the τth 
quantile. SDEE values were obtained by averaging device-based SDEE 
measures across wear times for each student.

2.3 Functional mixed-effects model

The FMEM models fixed and random effects with nonparametric 
curves (21, 44). In the FMEM, the outcome was Y BMIij ij= ( )log  for 
the ith subject within the jth school. However, SDEE was treated as a 
function-valued covariate and modeled as a curve. In general, for the 
model to be considered an FMEM, the outcome, a predictor, or both 
must be function-valued. In our application, we employed the model 
with a scalar-valued outcome and a function-valued covariate. Let 
Z Yij ij,( )  be a pair of variables, where Yij is a scalar-valued random 

variable and Zij is a random function defined on the unit interval 01,[ ] 
such that Z Z t tij ij= ( ) [ ]{ }, , 01 . The FMEM for the ith subject within 
the jth (j = 1, 2, 3) school at wear time t is specified as

 
Y t Z t dt X b iij ij

k
k ijk j ij= + ( ) ( ) + + + = …∫ ∑

=
β β β ε0

0

1

1

1

4

2 1 256, , ,

where β0 is a scalar-valued intercept, β1 t( ) is a functional 
coefficient, and Z tij ( ) is a function-valued predictor variable. Note 

FIGURE 1

Plot of school-day energy expenditure and mean energy expenditure over 5  days for a randomly selected participant from the stand-biased desk study. 
The red line represents the smoothed version of the overall mean energy expenditure. The plot illustrates the high-dimensionality of the EE data 
collected over 5  days.
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that in our application, the wear time t is re-parameterized to the unit 
interval. The parameter β2k  represents the coefficient on the kth 
covariate (age, sex, race, and intervention). The random intercept bj 
accounts for the clustering within schools, and we  assume that 
b Nj j~ 0

2
,σ( ) and ε σij N~ 0

2
,( ).

To implement the FMEM, we  first represent the functional 
component with polynomial splines. Then, β1 t( ) becomes 

β γ1
1

t c t
g

G
g g( ) ≈ ( )

=
∑ , where γ g  are unknown spline coefficients and 

c tg g
G( ){ } =1 are a set of known spline basis functions. The term G

indicates the number of basis functions used to approximate the curve 
associated with β1 t( ), and g  indexes the basis functions. The 
explanatory variable, Z tij ( ), can also be  expressed as 

Z Z t c t dtijg ij g= ( ) ( )∫
0

1

. The re-parameterized model becomes

 
Y Z X b iij

g

G
g ijg

k
k ik j ij≈ + + + + = …

= =
∑ ∑β γ β ε0

1 1

4

2 1 256, , ,

An advantage of using splines is their flexibility in capturing 
patterns associated with the functional coefficient, β1 t( ). This model 
can easily be fitted using both the lmer (40) and bs (45) functions in R 
(46). To assess the effects of SDEE on BMI using the FMEM, we first 

obtained ( ) ( )
1

ˆ ˆ
G

g g
g

t c tβ γ
=

≈ ∑ . Thus, the initial model containing a 

function-valued covariate is now re-parameterized to a multivariate 
linear regression model. However, we note that the new coefficients are 
not statistically independent. Therefore, although standard packages can 
be used to estimate the coefficients, estimations of their standard errors 
must account for correlations among coefficients. To account for these 
correlations, we employed 95% nonparametric, bootstrap, pointwise, 
confidence intervals for inferences. For the nonparametric bootstrap, 
we resampled the original data without replacement. We then estimated 
the regression coefficients ˆgγ , and derived the functional coefficient 
( )ˆ tβ  using the resampled data. We repeated the previous steps 1,000 

times to obtain 1,000 bootstrap samples with ( )ˆ , 1, ,1000b t bβ = … . 
Next, we computed the 95% pointwise bootstrap CIs as the 0.025 and 
0.975 percentiles of ( )ˆb tβ at each observed time point (t = 1, …, 30).

Bootstrap standard errors and p-values were also obtained for the 
coefficient estimate of each covariate using the function bootstrap 
from the lmeresampler package (47).

2.4 Functional quantile mixed-effects 
model

Functional quantile mixed-effects model combines quantile 
regression with functional data analysis by assuming that regression 
at different quantiles share some common patterns that can 
be summarized by a small number of features (48, 49). The FQMEM 
estimates the effects of predictor variables or interventions on quantile 
levels of a given outcome while adjusting for clustering. In our 
application, the model was applied with SDEE as a functional 
predictor at the 10th, 25th, 50th, 85th, 95th, and 99th percentiles of 
the outcome variable Y BMIij ij= ( )log . Following the expansion of the 

functional covariate using polynomial splines, as described in Section 
3.3, the reparametrized FQMEM is expressed as

 

Q Y Z X

b i

ij
g

G

g ijg
k

k ijk

j

τ

τ
β τ γ τ β τ

τ

( ) ≈ ( ) + ( ) + ( ) +

( ) =
=

( )

=
∑ ∑0

1 1

4

2

1, ,……,256

where Q Yijτ ( ) represents the τth quantile for the outcome for the 
ith subject within the jth (j = 1, 2, 3) school, and γ τg ( )  is the gth 
unknown spline coefficients associated with the τth quantile. We also 
include β0(τ) as a scalar-valued intercept for the τth quantile, β1k(τ) to 
represent the coefficient on the kth covariate (age, sex, race, and 
intervention) for the τth quantile, and bj τ( ) to account for clustering 
within schools at the τth quantile. The lqmm function in R (41, 42) was 
used to fit the model. Similar to the FMEM, we obtained ( )ˆ tτβ  from 
our estimated coefficients ( )ˆgγ τ  using the expression 

( ) ( ) ( )
1

ˆ ˆ
G

g g
g

t c tτβ γ τ
=

≈ ∑ . Our inferences were also based on 95% 

bootstrap, pointwise, confidence intervals. We  also computed 
bootstrap standard errors and p-values for each covariate’s coefficient 
estimate using the function boot from the lqmm package.

The number of basis functions, G  and G τ( ), associated with the 
functional models control the smoothness of the functional covariate 
(21). Thus, selecting the number of basis functions is a critical step 
when considering nonparametric approaches for fitting curves. In our 
applications, we considered 4–7 basis functions for each model. The 
Akaike information criteria (AIC) were used to select the best-fitting 
number of basis functions (between 4 and 7) for each FQMEM (50).

3 Results

3.1 Descriptive statistics

Table 1 provides the descriptive statistics for our analytic sample. 
The mean BMI was 17.40 kg/m2 (standard deviation [sd] = 2.98 kg/m2). 
The study sample included 123 girls (48%) and 176 white students 
(69%), and the average age at baseline was 7.73 years (sd = 0.74 years). 

TABLE 1 Descriptive statistics of the analytic sample (n  =  256).

Mean (SD)/N (%)

BMI (kg/m2) 17.40 (2.98)

Average SDEE (cal/min) 1.32 (0.32)

Age (years) 7.86 (0.80)

Stand-biased desks 150 (58.59%)

Traditional desks 106 (41.41%)

White 176 (68.8%)

Non-white 80 (31.2%)

Boys 133 (51.95%)

Girls 123 (48.05%)

BMI, body max index; SD, standard deviation of the mean; SDEE, school-day energy 
expenditure.
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A total of 150 students (59%) were assigned to stand-biased desks, 
whereas 106 students (41%) were assigned to traditional desks.

3.2 Results from the LMEM

We summarized the frequently obtained device-based SDEE 
measures for each subject into a scalar-valued measure to obtain the 
overall average SDEE for use in the LMEM. We observed a positive 
association between the overall mean SDEE and the mean of log (BMI) 
after adjusting for intervention, race, age, and sex (estimate [Est.] = 0.366, 
standard error [SE] = 0.023, p < 0.001). On average, boys had a lower log 
(BMI) than girls (Est. = −0.045, SE = 0.014, p < 0.001), and students 
assigned to stand-biased desks had a lower log (BMI) than those 
assigned to traditional desks (Est. = −0.049, SE = 0.014, p < 0.001). Age 
did not have a statistically significant effect on log (BMI) (Est. = −0.002, 
SE = 0.010, p = 0.819), and white students tended to have a slightly lower 
log (BMI) than non-white students (Est. = −0.017, SE = 0.015, p = 0.259). 
However, these interpretations apply primarily to students whose BMI 
values are near the mean BMI value for the entire analyzed sample 
distribution. Table 2 provides a summary of the LMEM results.

3.3 Results from the QMEM

Applying a QMEM provides additional details by allowing 
interpretations to be  made for various quantile levels of a given 
outcome variable. We performed analyses at the 10th, 25th, 50th, 85th, 
95th, and 99th quantile levels of log (BMI). Table 3 shows the results 
obtained at each quantile level. Across all quantiles, we observed that 
an increase in overall SDEE was associated with an increase in log 
(BMI) at each quantile after adjusting for intervention, age, race, and 
sex (p < 0.001 at all quantiles). The use of the QMEM allows for 
quantile-specific interpretations at each quantile level of the BMI 
distribution. At the 10th, 25th, 50th, and 99th quantiles, boys had 
significantly lower log (BMI) values than girls (p < 0.001 at the 10th, 
25th, and 50th quantiles; p = 0.010 at the 99th quantile). Being assigned 
to stand-biased desks was associated with a significantly lower log 
(BMI) than being assigned to traditional desks for all quantiles except 
the 99th quantile (p < 0.001 at the 10th, 25th, 50th, and 85th quantiles; 

p = 0.017 at the 95th quantile). Our models suggest that white students 
had lower log (BMI) values than non-white students, but this 
statistically significant difference between white and non-white 
students was only observed at the lower quantile levels (p < 0.001 at the 
10th quantile; p = 0.004 at the 25th quantile; p = 0.002 at the 50th 
quantile). We observed that an increase in age is associated with a 
slight decrease in log (BMI) for all quantiles except the 95th quantile; 
however, this association was statistically significant only at the 25th 
(p = 0.037) and 99th quantiles (p = 0.026).

3.4 Results from the FMEM

Whereas the previous models summarized SDEE into a single 
scalar value, using splines in functional regression models allows for 
flexibility by modeling SDEE as a function of time during the school 
day. We selected the number of basis functions needed for FMEM 
analyses by fitting several models with varying numbers of basis 
functions. The obtained AIC values ranged between −365.7 
and − 362.4, with the lowest value, −365.7, achieved with seven basis 
functions. The basis functions were subsequently used as explanatory 
variables for SDEE when fitting the FMEM.

Figure 2 shows the estimated functional coefficient, ( )ˆ tβ . The 
functional coefficient was estimated from a linear combination of the 
estimated spline coefficients ˆgγ  and the basis functions c tg ( ) using: 

( ) ( )
7

1

ˆ ˆg g
g

t c tβ γ
=

≈ ∑ . We  obtained 95% bootstrap, pointwise 

confidence intervals.
The estimated functional coefficient illustrates the curvilinear 

SDEE patterns across periods of device wear time, indicating that PA 
patterns are not constant across time. Thus, the FMEM provides 
additional interpretability compared with the LMEM, which uses a 
scalar-valued SDEE summary as the predictor. In Figure 2, we observe 
that the horizontal zero line is within the 95% confidence interval 
bounds. Thus, our results suggest that the FMEM provides insufficient 
evidence to support a statistically significant effect of SDEE on log 
(BMI). However, between approximately the 3rd and the 9th hours of 
wear (t = 0.1 to t = 0.3), both the upper and lower bounds of the 
bootstrap confidence intervals are above the zero line, suggesting 

TABLE 2 Results from the linear mixed-effects model.

Fixed effects Coef. Est. SE P-value

Intercept 2.391 0.080 <0.001

Average SDEE 0.366 0.023 <0.001

Age −0.002 0.010 0.819

Boys vs. Girls −0.045 0.014 <0.001

White vs. Non-white −0.017 0.015 0.259

Stand-biased vs. Traditional desks −0.049 0.014 <0.001

Random effects Var. Est. SD

School (Intercept) 0.001 0.034

Residual 0.012 0.108

For each student, SDEE is summarized into an averaged scalar value to model the mean of log (BMI). The mixed-effects model includes a random intercept to adjust for the clustering of 
students within schools.
Coef. Est., coefficient Estimate; SD, standard deviation; SDEE, school-day energy expenditure; SE, standard error; Var. Est., variance estimate.
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TABLE 3 Results from the quantile mixed-effects models.

τ Fixed effects Coef. Est. SE p-value

0.1

Intercept 2.474 0.070 <0.001

Average SDEE 0.357 0.022 <0.001

Age −0.027 0.014 0.066

Boys vs. Girls −0.045 0.010 <0.001

White vs. Non-white −0.030 0.008 <0.001

Stand-biased vs. Control −0.050 0.006 <0.001

Random effects Var. Est. SD

School (Intercept) 1.000

Residual 0.016 0.160

τ Fixed effects Coef. Est. SE p-value

0.25

Intercept 2.475 0.069 <0.001

Average SDEE 0.357 0.022 <0.001

Age −0.020 0.009 0.037

Boys vs. Girls −0.044 0.008 <0.001

White vs. Non-white −0.028 0.009 0.004

Stand-biased vs. Control −0.052 0.005 <0.001

Random effects Var. Est. SD

School (Intercept) 1.000

Residual 0.031 0.129

τ Fixed effects Coef. Est. SE p-value

0.5

Intercept 2.476 0.069 <0.001

Average SDEE 0.361 0.021 <0.001

Age −0.013 0.009 0.134

Boys vs. Girls −0.043 0.009 <0.001

White vs. Non-white −0.030 0.009 0.002

Stand-biased vs. Control −0.051 0.005 <0.001

Random effects Var. Est. SD

School (Intercept) 1.000

Residual 0.042 0.119

τ Fixed effects Coef. Est. SE p-value

0.85

Intercept 2.522 0.073 <0.001

Average SDEE 0.393 0.024 <0.001

Age 0.136 0.070 0.057

Boys vs. Girls −0.022 0.013 0.099

White vs. Non-white −0.002 0.013 0.849

Stand-biased vs. Control −0.063 0.008 <0.001

Random effects Var. Est. SD.

School (Intercept) 0.940

Residual 0.039 0.261

τ Fixed effects Coef. Est. SE p-value

0.95

Intercept 2.511 0.075 <0.001

Average SDEE 0.371 0.032 <0.001

Age 0.002 0.136 0.987

Boys vs. Girls 0.009 0.016 0.583

(Continued)
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some effect of SDEE on log (BMI) during this time interval. We also 
observed that the association between SDEE and log (BMI) depends 
on the wear time. The results obtained for covariates included in the 
FMEM were similar to the results obtained for covariates in the 
LMEM (see Table 4). Boys had lower log (BMI) values than girls, and 
students assigned to stand-biased desks had lower log (BMI) values 
than those assigned to traditional desks (p < 0.05). No statistically 
significant association was observed between age and log (BMI) 
(p = 0.476), and white students tended to have slightly lower log (BMI) 
values than non-white students (p = 0.053).

3.5 Results from the FQMEM

The flexibility allowed by using splines to study curvilinear SDEE 
patterns can be  further applied to different quantile levels of log 
(BMI), allowing for interpretations among students with BMI values 
beyond the mean. At each quantile level, SDEE values were reduced 
to linear combinations of splines and basis functions. As described for 
the FMEM, the numbers of basis functions were selected for the 
FQMEM by comparing the AIC values computed when using 4–7 
basis functions at each quantile. The AIC comparisons led to the 

FIGURE 2

Plot of  ( )β̂ t  and its 95% bootstrap pointwise confidence interval. The solid black line indicates the estimated functional coefficient on school-day 
energy expenditure, and the shaded area represents the confidence interval. The curve illustrates that the effect of SDEE on log (BMI) vary across the 
armband device wear times. The portion of the curve where the zero line is outside the shaded area suggests a statistically significant effect of SDEE on 
log (BMI) at the corresponding device wear period of time.

TABLE 3 (Continued)

τ Fixed effects Coef. Est. SE p-value

White vs. Non-white 0.040 0.029 0.164

Stand-biased vs. Control −0.059 0.024 0.017

Random effects Var. Est. SD

School (Intercept) 0.974

Residual 0.015 0.296

0.99

Fixed effects Coef. Est. SE p-value

Intercept 2.433 0.065 <0.001

Average SDEE 0.304 0.026 <0.001

Age −0.344 0.150 0.026

Boys vs. Girls −0.065 0.024 0.010

White vs. Non-white −0.063 0.030 0.041

Stand-biased vs. Control −0.034 0.023 0.150

Random effects Var. Est. SD

School (Intercept) 0.889

Residual 0.008 0.798

For each student, SDEE is summarized as an averaged scalar value to model specific quantiles of log (BMI). The mixed-effects model includes a random intercept to adjust for the clustering of 
students within schools. This model allows assessing the effects of SDEE on students with extreme log (BMI) values. τ = 0.1, 0.25, 0.5, 0.85, 0.95 and 0.99 are the quantiles.
Coef. Est., coefficient estimate; SD, standard deviation; SDEE, school-day energy expenditure; SE, standard error; Var. Est., variance estimate.
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selection of 6 basis functions at the 10th quantile, 7 basis functions at 
the 25th and 95th quantiles, 5 basis functions at the 50th and 85th 
quantiles, and 4 basis functions at the 99th quantile.

Figure  3 provides plots of the estimated effects on functional 
coefficients on SDEE and their corresponding 95% pointwise 
confidence intervals. The plots also illustrate SDEE patterns across 
wear time for each quantile regression. The plots illustrate some 
statistically significant associations between SDEE and quantile levels 
of SDEE at certain wear times for the different quantile levels. 
Specifically, based on the 95% pointwise confidence intervals, a 
significant effect of SDEE on log (BMI) can be observed for short wear 
time intervals across all quantiles. These time intervals vary; a 
significant effect was observed between approximately the 3rd and 7th 
hours of wear for the 10th quantile and 25th quantiles, the 3rd and 
12th hours of wear for the 50th and 85th quantiles, the 3rd and 9th 
hours of wear for the 95th quantile, and the 3rd and 18th hours of 
wear for the 99th quantile of log (BMI). In addition, boys had 
significantly lower log (BMI) values than girls in all assessed quantiles 
except for the 95th quantile, and students assigned to stand-biased 
desks had lower log (BMI) values than those assigned to traditional 
desks across all quantiles (p < 0.05, see Table 5). Age did not have a 
statistically significant effect on log (BMI) (p > 0.05 across all 
quantiles), and white students had significantly lower log (BMI) values 
than non-white students in the 10th and 50th quantiles only 
(p < 0.001).

4 Discussion

We demonstrated and compared mean regression and quantile 
regression methods for examining the effects of device-based EE 

measures on BMI. Our analyses indicate that the association 
between EE and BMI varies depending on how high-dimensional. 
Device-based EE measures are summarized. When EE measures 
were summarized into an overall averaged scalar value, we obtained 
a statistically significant effect of overall mean SDEE on log (BMI). 
However, when SDEE was considered to be a functional variable, 
a statistically significant effect of SDEE on log (BMI) was observed 
for only specific intervals during the device wear time. Thus, 
spline-based approaches may uncover patterns and allow 
additional interpretations that are not possible when using 
approaches that require device-based EE data to be summarized 
into scalar values. Our results illustrate the complexity of analyzing 
data collected by devices intended to monitor PA in school-based 
studies of obesity and body weight status. Despite the existence of 
much literature describing the obesity-reducing impacts of 
increasing EE or PA during the school day, we observed that the 
choice of statistical model is important for accurately assessing the 
extent of any such relationship.

Across all our models, boys tended to have lower log (BMI) values 
than girls, and students assigned to stand-biased desks had lower log 
(BMI) values than those assigned to traditional desks. Age did not 
have a statistically significant effect on log (BMI), and white students 
had significantly lower log (BMI) values than non-white students in 
quantile models at the 10th and 50th quantile levels of log (BMI) only. 
Based on the 95% pointwise confidence intervals obtained for the 
FMEM and FQMEM, we  observe that the pointwise confidence 
intervals excluded zero within short time intervals only across the 
entirety of device wear times, suggesting a significant effect of EE on 
BMI during these time intervals only and indicated that EE patterns 
were not independent of time in this study sample. Thus, treating 
device-measured EE as a function-valued predictor rather than a 

TABLE 4 Results from the functional mixed-effects model.

Fixed effects Coef. Est. SE p-value

Intercept 2.407 0.031 0.001

1̂γ −0.001 0.335 0.996

ˆ2γ 2.112 0.470 0.120

ˆ3γ 0.254 0.147 0.261

ˆ4γ −0.288 0.192 0.329

ˆ5γ 0.514 0.355 0.266

ˆ6γ 0.411 0.632 0.622

ˆ7γ 0.031 0.247 0.912

Age −0.006 0.005 0.476

Boys vs. Girls −0.049 0.012 0.041

White vs. Non-white −0.022 0.002 0.053

Stand-biased vs. Traditional desks −0.050 0.007 0.003

Random effects Var. Est.

School (Intercept) 0.001

Residual 0.011

SDEE is considered as a curve to model the mean of log (BMI). The model includes a random intercept, which adjusts for the clustering of students within schools. Using SDEE as a curve 
unmasks some patterns and allow additional interpretation on EE. ˆ ˆ, ,γ γ…1 7  are estimates for the spline coefficients of SDEE.
Coef. Est., coefficient estimate; SDEE, school-day energy expenditure; SE, bootstrap standard error; Var. Est., variance estimate.
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scalar-valued one may allow for more thorough interpretations of 
intervention data.

Based on our analyses, no statistical associations between EE 
and BMI were detected in any of the fitted models. Ad hoc 
comparisons of AICs tended to favor models using a function-
valued predictor. For example, the random intercept LMEM 
produced an AIC of −358.8, whereas the FMEM produced an AIC 
of −365.7. The small difference in AICs confirmed a slight advantage 
for models that treat EE as a function-valued predictor when 
analyzing our data. Similar comparisons were observed when 
comparing the same quantiles among quantile-based regression 
models. When comparing across quantiles, AIC values ranged from 
approximately −400 to 40, illustrating that EE may have differential 
effects on different BMI categories. Overall, and based on AIC 
comparisons, regressions at the 25th quantile appeared to provide 
the best model fit for our analyses.

5 Conclusion

We used different regression-based methods to investigate the 
impacts of EE on BMI among elementary school–aged children 
recruited from a Texas school district. Using the LMEM, we assessed 
the effect of overall mean EE on BMI; however, this approach does not 
account for potential diurnal EE patterns, and the analysis is focused 
on assessing the conditional BMI mean. Using B-splines in the FMEM 
uncovered EE patterns and provided more interpretability by 
modeling objective EE measures as curves. Compared with the spline 

methodology, methods using the overall mean to represent EE 
resulted in the loss of information. While both the LMEM and the 
FMEM enable assessment of covariate effects on the conditional BMI 
mean, the QMEM and the FQMEM enables assessments of covariate 
effects across the entire BMI distribution.

One limitation of using quantile regression is related to sample 
size. Smaller samples tend to limit the implementation of quantile 
regression models, especially when estimating quantiles of the 
outcome variable distribution tails or when a large number of 
covariates are included in the model. Thus, although functional 
quantile regression models are advantageous for assessing how EE 
patterns over time affect BMI and enable the effects of these patterns 
to be assessed across the entire BMI distribution, we recommend the 
use of functional quantile models for large sample sizes only. For 
small to moderate sample sizes, estimations around BMI distribution 
tails may be problematic. Overall, when interest lies in assessing how 
a function-valued predictor affects children of all body types, 
quantile regression–based methods are recommended. However, the 
analytic sample must be  sufficiently large to ensure adequate 
statistical power to assess the effects of PA across the entire 
BMI distribution.

In our analyses, we accounted for clustering by including random 
effects for schools using a mixed-effects framework. Failure to account 
for the cluster-randomized study design may lead to invalid statistical 
inference, especially for highly clustered data (51, 52). In our analytic 
sample, the intraclass correlation coefficient was approximately 10%, 
which highlights the importance of accounting for the clustered effect 
in our analyses.

FIGURE 3

Plot showing the estimated functional coefficients and their corresponding 95% pointwise bootstrap confidence intervals at the 10th, 25th, 50th, 85th, 
95th, and 99th quantiles. In each plot, the solid black line indicates the estimated quantile-specific functional coefficient, and the shaded area 
represents the confidence intervals. The varying patterns across the specified quantiles illustrate that the effect of SDEE differs by the students’ BMI 
levels. For each curve, the zero line outside the shaded area suggests a significant effect of SDEE on the corresponding log (BMI) quantile, and during a 
device wear period of time.
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TABLE 5 Results from the functional quantile mixed-effects models.

τ Fixed effects Coef. Est. SE p-value

0.1

Intercept 2.480 0.091 <0.001

1̂γ −0.046 0.465 0.921

ˆ2γ 2.136 0.595 <0.001

ˆ3γ −0.333 0.494 0.500

ˆ4γ −0.024 0.733 0.974

ˆ5γ 0.692 0.757 0.361

ˆ6γ 0.001 0.358 0.998

Age −0.027 0.017 0.118

Boys vs. Girls −0.055 0.012 <0.001

White vs. Non-white −0.033 0.008 <0.001

Stand-biased vs. Control −0.052 0.013 <0.001

Random effects Var. Est.

School (Intercept) 1.000

Residual 0.016

τ Fixed effects Coef. Est. SE p-value

0.25

Intercept 2.464 0.082 <0.001

1̂γ −0.008 0.505 0.987

ˆ2γ 1.566 0.865 0.070

ˆ3γ 0.954 0.643 0.138

ˆ4γ −0.684 0.401 0.089

ˆ5γ 0.667 0.475 0.161

ˆ6γ 0.329 0.597 0.583

ˆ7γ 0.052 0.346 0.880

Age −0.019 0.011 0.087

Boys vs. Girls −0.054 0.011 <0.001

White vs. Non-white −0.012 0.007 0.106

Stand-biased vs. Control −0.051 0.034 <0.001

Random effects Var. Est.

School (Intercept) 1.000

Residual 0.030

τ Fixed effects Coef. Est. SE p-value

0.5

Intercept 2.488 0.096 <0.001

1̂γ 0.161 0.477 0.735

ˆ2γ 2.230 0.982 0.023

ˆ3γ −2.090 1.148 0.069

ˆ4γ 1.326 0.666 0.047

ˆ5γ −0.080 0.262 0.760

Age −0.016 0.012 0.186

Boys vs. Girls −0.046 0.010 <0.001

White vs. Non-white −0.034 0.008 <0.001

Stand-biased vs. Control −0.054 0.011 <0.001

Random effects Var. Est.

School (Intercept) 1.000

Residual 0.041

(Continued)
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TABLE 5 (Continued)

τ Fixed effects Coef. Est. SE p-value

0.85

Intercept 2.490 0.083 <0.001

1̂γ 0.162 0.427 0.705

ˆ2γ 2.231 0.894 0.013

ˆ3γ −2.089 1.111 0.060

ˆ4γ 1.327 0.676 0.050

ˆ5γ −0.080 0.253 0.753

Age −0.001 0.066 0.993

Boys vs. Girls −0.044 0.012 <0.001

White vs. Non-white −0.033 0.018 0.072

Stand-biased vs. Control −0.055 0.012 <0.001

Random effects Var. Est.

School (Intercept) 1.000

Residual 0.027

τ Fixed effects Coef. Est. SE p-value

0.95

Intercept 2.513 0.084 <0.001

1̂γ −0.001 0.506 0.999

ˆ2γ 1.577 0.864 0.068

ˆ3γ 0.968 0.643 0.133

ˆ4γ −0.669 0.403 0.098

ˆ5γ 0.674 0.475 0.156

ˆ6γ 0.331 0.597 0.580

ˆ7γ 0.053 0.347 0.878

Age 0.000 0.134 0.998

Boys vs. Girls 0.008 0.018 0.630

White vs. Non-white 0.005 0.030 0.878

Stand-biased vs. Control −0.053 0.015 <0.001

Random effects Var. Est.

School (Intercept) 0.970

Residual 0.014

τ Fixed effects Coef. Est. SE p-value

0.99

Intercept 2.460 0.073 <0.001

1̂γ 0.686 0.347 0.048

ˆ2γ 0.844 1.114 0.449

ˆ3γ −0.486 0.970 0.617

ˆ4γ 0.329 0.233 0.157

Age −0.106 0.130 0.415

Boys vs. Girls −0.052 0.013 <0.001

White vs. Non-white −0.075 0.047 0.113

Stand-biased vs. Control −0.057 0.021 0.007

Random effects Var. Est.

School (Intercept) 0.932

Residual 0.004

SDEE is considered as a curve to model specific quantiles of log (BMI). A random intercept adjusts for the clustering of students within schools. The model assesses the effects of a curvilinear 
SDEE on specific quantiles of log (BMI), providing additional interpretations for students with extreme log (BMI) values. τ = 0.1, 0.25, 0.5, 0.85, 0.95 and 0.99 are the quantiles. ˆ ˆ, ,γ γ…1 7  are 
estimates for the spline coefficients of SDEE at each quantile. Coef. Est., coefficient estimate; SDEE, school-day energy expenditure; SE, bootstrap standard error; Var. Est, variance estimate.
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