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Asymmetric generalized error 
distribution with its properties 
and applications
Tayu Nigusie Abebe * and Ayele Taye Goshu 

Department of Mathematics, Kotebe University of Education, Addis Ababa, Ethiopia

The main finding of this study is the derivation of a new probability distribution 
that reveals interesting properties, especially with various asymmetry and kurtosis 
behavior. We call this distribution the asymmetric generalized error distribution 
(AGED). AGED is a new contribution to the field of statistical theory, offering 
more flexible probability density functions, cumulative distribution functions, 
and hazard functions than the base distribution. The AGED also includes normal, 
uniform, Laplace, asymmetric Laplace, and generalized error distribution (GED) 
as special cases. The mathematical and statistical features of the distribution 
are derived and discussed. Estimators of the parameters of the distribution are 
obtained using the maximum likelihood approach. In a simulation study, random 
samples are generated from the new probability distribution to illustrate what 
ideal data looks like. Using real data from diverse applications such as health, 
industry, and cybersecurity domains, the performance of the new distribution 
is compared to that of other distributions. The new distribution is found to be a 
better fit for the data, showing great adaptability in the context of real data 
analysis. We expect the distribution to be applied to many more real data, and 
the findings of the study can be used as a basis for future research in the field.
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1 Introduction

There has been a growing interest in the construction of flexible parametric families of 
distributions that exhibit asymmetry and peakedness differing from those of symmetric 
distributions (1–3). Many of these methods center around overcoming the assumptions of 
normality found in the empirical analysis of many parametric models.

An empirical analysis in various studies suggests that the assumption of normality of real 
data is often untenable (4, 5), and asymmetry is commonly observed (6, 7). It is highly 
acknowledged that data with heavy-peaked distribution are encountered in the empirical 
analysis (8), as is asymmetric distribution (9, 10). In all cases, it is important to adopt a flexible 
distribution that can directly address asymmetry and peakedness (6, 9).

There has been a different approach to develop asymmetric counterparts of symmetric 
distributions. Many of these approaches centered on overcoming assumptions of normality 
(11, 12). In many works of literature, asymmetry is achieved via the transformation of the 
skewing function (9, 10), which lacks a wide range of skewness and kurtosis. Moreover, the 
technique of creating asymmetric counterparts of symmetric distributions has a longer history 
(13–15).
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The approach that is commonly considered for constructing 
classes of asymmetric distributions from symmetric distribution 
is authored by Azzalini (16, 17). The initial idea appeared in 
O'hagan and Leonard (18) in the context of base distribution. 
Azzalini (16, 17) introduced asymmetric distributions called 
skew-normal (SN). The idea was further extended in Azzalini 
(13) introduced multivariate asymmetry distributions. An ideal 
class of distributions obtained from this methodology includes 
symmetric distributions, mathematical tractability, and a wide 
range of skewness and kurtosis. The theoretical and statistical 
properties of the methodology have been studied by various 
researchers (2, 3, 19, 20).

As noted in (5, 12) the generalized error distribution (GED) has 
short tails, making it unsuitable for modeling data with heavier tails. 
One method to solve this problem, as suggested in Azzalini (16), is to 
use an asymmetric pdf with flexible tails and excess kurtosis. Azzalini’s 
methodology generates distributions with flexible tails and 
excess kurtosis.

In this study, we follow Azzalini’s methodology to introduce a 
new distribution that is flexible enough for modeling data with 
heavier tails and excess kurtosis. More data with heavier tails and 
excess kurtosis are adequately modeled to the distribution and play 
an important role in this context. This new distribution is called 
asymmetric generalized error distribution (AGED) and is denoted by 
AGED � �� �� �:   , where α  represents the asymmetry parameter 

so that AGED � �� �0  corresponds to the generalized error 
distribution. We outline some properties of the distribution, provide 
a graphical representation of the distribution, and discuss 
some inferences.

2 Generalized error distribution

The GED is a symmetric and unimodal member of the 
exponential family of distribution introduced by Subbotin (22) 
and has been used by different authors with different 
parameterizations (23, 24). A random variable X  have a 
generalized error distribution if its probability density function 
(pdf) is expressed by (21):
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where � � is the location parameter, � � �  is the scale 
parameter, and � � �  is the shape parameter. Here, ( ).Γ  is the Euler 
gamma function. We denote it by ( )~ ; , , X GED x µ σ β .

It is convenient to work with the alternative expression given in 
Eq. 1, which allows for mean zero and variance unity (25). The 
variance of the GED is a function of β  (26, 27). To rescale its 
variance, a scaling parameter η is introduced, and a substitution is 
made for � �� �� 1/  in Eq.  1 to get the following equivalent 
pdf (25):
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3 The newly suggested asymmetric 
generalized error distribution

In this section, the method of generating an asymmetric 
distribution from a symmetric distribution is presented to develop the 
new asymmetric generalized error distribution (AGED). Here, the 
method of constructing classes of asymmetric distributions suggested 
by Azzalini (16, 17) is used. The authors introduced a methodology 
that can be used to derive an asymmetric distribution from an existing 
symmetric distribution. This is expressed in Proposition 1.

3.1 Proposition 1

Let � x� � and ( )xΦ be pdf and cdf of the random variable X , 
respectively, and characterizing symmetric distribution such that 
� ��� � � � �x x , ( ) ( )1x xΦ Φ− = − , for all x∈. Then, the random 
variable X  has an asymmetric probability density function expressed 
in the form of:

 ( ) ( ) ( ); 2f x x xα φ α= Φ
 (4)

where � � is the asymmetry parameter and f x� �  is an 
asymmetric version of a symmetric base pdf.

In this study, we derived a new asymmetric distribution called the 
AGED. The approach of Azzalini (16, 17) is used with the base 
distribution of the generalized error distribution in Eq. 3.

3.2 Theorem 1

For the generalized error distribution, GED, in Eq. 3, the new 
asymmetric generalized error distribution (AGED), has probability 
density and cumulative distribution functions expressed as follows:
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dx T x,  and T .� �  is Owen’s T  

function (28). Here, Γ .� � is the Euler gamma function. The parameters 
α  determine the degree of asymmetry, which can generate 
distributions with flexible tail behavior and excess kurtosis. We denote 
it by X AGED~ � � � �, , ,� �. See Ref. (29–31).

3.3 Proof

Suppose g x� � is a pdf of GED defined in Eq. 3 and cdf, G x�� �  
obtained as:
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We have two cases to consider.
Case 1: for x � �

Let,
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Case 2: for x � � , similarly
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3.4 Corollary 1

A linear combination of the AGED is also asymmetric. In 
particular, the inclusion of µ  and variance σ 2 is possible using the 
transformation, Y X� �� � , where X  have AGED with mean zero 
and variance 1. Then, a random variable Y  is said to have an 
asymmetric generalized error distribution, Y AGED~ � � � �, , ,� � , 
and it has pdf expressed by:
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Where g .� � and G .� �  are the pdf and cdf of the symmetric base 
distribution, respectively, α  is the asymmetry parameters, and f .� � is 
the asymmetric version made from the symmetric distribution.

The theorem 2 shows a pdf of the AGED with shape parameter β  
and asymmetry parameter α , which is generated using the 
representation given in Eq. 12.

3.5 Theorem 2

Let U  and V  be  symmetric random variables such that 
U GED~ � � �, ,� � and V N~ � �,� �. Then, the representation of the 
new asymmetric generalized error distribution is
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 X U V U� �� ��  (12)

We call the distribution of X  the asymmetric generalized error 
distribution (AGED).

3.6 Proof

Let X U V U� �� . Then

  P X x P U V U x�� � � � �� ��
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But, U  and V are symmetric random variables, and following  
that:
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Since U and V  have symmetric pdf, we have:
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Then, X  has a pdf of 2g G. .� � � �, which is defined in Eq. 5.

3.7 Corollary 2

Let ( )~ , , , X AGED µ σ β α and X U V U� �� , where 
U GED~ � � �, ,� �  and V N~ � �,� � . Then, for � � 0, random 
variable X  converges in distribution to U .

3.8 Proof

SinceV N~ � �,� � and E V c�� � �2 0, that isV c
P
→ . Therefore, 

by applying Slutsky’s lemma (32) to X U V U� ��  to  
obtain:

 X U GED
d
� � � �~ ,� � � �, , 0

That is, for decreasing value ofα , X  converges in 
distribution toGED � � �, ,� �.

Using the distribution, reliability measures can be  assessed. 
Identification of a system’s important components and estimation of the 
effects of component failure are important in reliability measures (33). 
Therefore, it is essential to derive the functions of the AGED reliability 
measures, an important quantity characterizing life phenomena (34).

For a random variable X with probability density function and 
cumulative distribution function f x� � and F x� � defined in Eqs 5, 6, 
respectively, survival and hazard functions can be  defined as 
S x F x� � � � � �1  and h x f x S x� � � � � � �/ , respectively (35).

4 Plots of the asymmetric generalized 
error distribution

Graphs of probability density and cumulative distribution 
function of AGED are illustrated in Figure  1 for some values of 
parameters that give possible shapes of function. The asymmetry 
parameter α  controls the magnitude of the asymmetry exhibited by 
the probability density function. The AGED can take a number of 
forms, including symmetric, near symmetric, and asymmetric. As 
� � ��, the asymmetric generalized error distribution converges in 
distribution to the half asymmetric generalized error distribution, and 
for � � 0, the distribution reduced to the generalized error 
distribution. However, for � � 0 5. , the generalized error distribution 
converges to the asymmetric generalized error distribution (Figure 2).

Extremely illustrated properties instantly follow from definition 1 
and Figure 1 is as follows:

If X AGED~ � � � �, , ,� � , then the following properties are 
concluded directly from theorem (1) and Figures 1, 3, 4:

 • If � � 0, then X GED~ � � �, ,� �: The distribution reduced to the 
generalized error distribution with location parameter µ , scale 
parameter σ , and shape parameter β  (21).

 • If � ��, then X HAGED~ � � � �, , ,� � : The distribution 
becomes a half asymmetric generalized error distribution with 
location parameter µ , scale parameter σ , and shape parameter β .

 • If � � 0 5.  and � �1, then X ALap~ � � �, ,� �: The distribution is 
asymmetric Laplace distribution with location parameter µ  and 
scale parameters σ  and β  (27).

 • If � � 2 , then X AST~ �� � : The AGED distribution goes to 
asymmetric student t −  distribution with location parameter µ , 
scale parameter σ , and shape parameters α and β  (26).

5 Moment and its measures

Let X  be a random variable from AGED with pdf defined in Eq. 5, 
the ′r th moments of the random variable X  is obtained as follows (36):
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where X GEDg ~ � � �, ,� � . However, for a random variable 
X AGED~ � � � �, , ,� � with pdf given in Eq. 5, it follows the form of 
the binomial theorem:
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Consider a random variable Z AGED~ 01, , ,� �� �  with pdf in 
Eq. 5, then
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A B

FIGURE 1

Graph of probability density (A) and cumulative distribution function (B) of AGED.

A B

FIGURE 2

Graph of survival function (B) and hazard function (A) of AGED.
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where W z� �  and similarly,
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and ′k th moment of Z  becomes:
  

E Z
k

E G W E G Wk k�
�

�
� �

�� ��� ��
�� � � � � �� � � � �� ���

�

1

1 1
1 1

1 1
/

/

/ /
�

� �
� �� �

���
�
��� �

FIGURE 3

Graph of the density function of AGED with different values of parameters.

FIGURE 4

Graph of density functions of AGED for different values of parameters.
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Therefore, for a random variable X AGED~ � � � �, , ,� �, the ′r th 
moment for a random variable X  can be defined as:
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In particular, the first four moments of a random variableX are 
defined as:
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The skewness and kurtosis of the asymmetric generalized error 
distribution are functions of � � �, , , and α . However, the actual 
equations in terms of � � �, , , and α  are quite expansive. In compact 
form, we can write the variance �� �, skewness �3� �, and kurtosis � 4� � 
of X  using the standardized moments of Z  and defined as:
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We perform a brief comparison illustrating that the tails of the 
AGED are heavier than those of the GED. Table 1 noted that the 
AGED has much heavier tails than the GED, as Figure 1 depicts the 
AGED for different values of parameters.

Similarly, the degree of asymmetry and peakedness of the AGED 
for different values of β  and α  are shown, and for small values of β , 

the kurtosis coefficient increases in the AGED. The ranges of both 
coefficients are smaller in GED. Thus, the AGED is more flexible for 
modeling data with larger coefficients of asymmetry and  
kurtosis.

6 Estimation of the parameters

In this section, we go over how to estimate the AGED parameters 
using the maximum likelihood approach.

6.1 Maximum likelihood estimation

Let 1 2, , , nX X X  be an independent and identically distributed 
(i.i.d.) random variable and Xi having the density function 
AGED � � � �, , ,� �  defined in Eq. 5, then the likelihood function of 
AGED is defined as (36):
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The maximum likelihood estimator is the value θ  that maximizes 
the likelihood function (36). Rather than the likelihood function, the 
log-likelihood function of AGED is given as:
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where ln .� � is the natural logarithm function, and � � � � �� � �, , , .
By differentiating Eq. 25 with respect to the parameters � � �, , ,

and α and equating them to 0, we obtain:
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(26)

TABLE 1 The skewness �3� � and kurtosis coefficient �4� � of AGED for 
selected values of parameters.

β α γ3 γ4

1 0.5 1.2979 3.2500

1 1.3185 3.4955

1.5 1.3849 3.6366

2 1.4575 3.8407

2 0.5 0.5543 1.7655

1 0.6631 1.8953

1.5 0.7419 2.0025

2 0.8019 2.1033

3 0.5 0.4309 1.6211

1 0.5412 1.7291

1.5 0.6097 1.8073

2 0.6587 1.8692
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Solving Eqs 26–29, we get MLEs of � � �, , , and α . However, there 
is no explicit form for the solutions to these equations; thus, we obtain 
the MLEs numerically using the fitdistrplus package in R (37).

Maximum likelihood estimators are consistent in the sense that p
nθ θ→  as n �� and asymptotically normally distributed: such that 

n Nn
d

� �

� � � �4 0,�  , where Σ is the variance–covariance matrix 

and can be obtained by inverting the Fisher information matrix I  (38).
We now take the second partial derivatives of Eqs 26–29, and the 

observed hessian matrix of the AGED distribution can be obtained 
and is given by:
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Based on the above, the observed Fisher information matrix 
I = −Η , from which we can derive the estimated dispersion matrix as:
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In addition, � �ij ji�  for i j� �1 2, ,3,4. The asymptotic normality 
distribution of MLEs is guaranteed. More precisely, the random vector 

of , , ,θ µ σ β α
 

=  
 

     follows the multivariate normal 

distribution 4 ,N θ
 

Σ 
 

  .

7 Simulations studies

To establish the performance of an estimator, we  conduct a 
simulation study. We choose parameter values that are consistent with 
the graph depicted in Figure 1. The effect of various shape parameter 
values on the distribution is shown in Figure 1.

The simulations of the AGED are done based on the accept-reject 
method. Three designs are presented and used to generate random 
samples from AGED for a parameter considered. The designs for 
parameters of the AGED considered are 01 2, , ,�� �, 011, , ,�� �, and 
013, , ,�� � for designs 1, 2, and 3, respectively. We use three values of 

the asymmetry parameter, � � 0 5 1 2. , , , to cover the cases where the 
distribution is asymmetric. The realization plot, histogram, and 
density plot are assessed.

7.1 The acceptance-rejection method

We use a very clever method known as the acceptance-rejection 
method (39, 40). The acceptance-rejection (A-R) method is one of the 
standard methods used for generating random samples from 
distributions (41, 42). We generate a random sample of size hundred 
thousand from the target density AGED, f x� � defined in Eq. 5, and 
density, g x� �, which we choose to be the standard normal distribution.

Numerically maximized, there exists a finite constant m, such that 
m f x g x� � � � ��� ��sup / , and record a maximum value as m . Then, 
define h x f x mg x� � � � � � ��� ��/ . The acceptance-rejection algorithm is:

 1.  Generate X  from the standard normal distribution, g x� �, 
i.e., X N~ 01,� �.

 2. Generate U  from uniform distribution U U~ 01,� � and 
independent of X .

 3. If U h x� � �,  accept X  as candidate samples; otherwise, 
reject X , and go back to step (1).

 4. Repeat step (1) to (3), until X  is successfully generated.

Figures  5, 6 show the results of the A-R algorithm for the 
parameter considered. The histograms associated with samples of size 
hundred thousand generated from AGED and the fitted pdf of AGED 
to the random samples are illustrated.

The histogram and density of the AGED are plotted. All points 
under the curve are an accepted random sample and have x −
coordinated distributed AGED. The points above the curve are rejected.

8 Parameter estimation using the MLE 
method

8.1 Applications—fitting to simulated data

In this section, we study and evaluate the long-term performance 
of the maximum likelihood estimators (MLEs) of AGED parameters 
based on finite random samples. Several finite samples of sizes n =100, 

https://doi.org/10.3389/fams.2024.1398137
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Abebe and Goshu 10.3389/fams.2024.1398137

Frontiers in Applied Mathematics and Statistics 09 frontiersin.org

500, 1,000, and 100,000 are considered. Three different designs for 
parameters � � �, , ,and α are considered. Thus, asymmetry and 
kurtosis are constructed.

For each sample size n� � and the specified values of the parameters 
defined in the simulation design, datasets are generated from the 
AGED, as per Eq. 5. From each dataset, the estimates of the parameters 
� � � �, , ,� �  are obtained by the maximum likelihood method. For 

comparing the performance of the estimators, we use bias and mean 
square error (MSE) (43).

The average estimates of the parameters, bias, and MSE are 
calculated using an optimization algorithm in R software. The 
result verifies the consistency of MLEs. The consistency of MLE 
can be  verified as bias, and the MSE of the estimators is 
reasonable and diminished for increasing sample size, indicating 
that estimated values of parameters tend to their true value 
(Tables 2–4).

8.2 Applications—fitting to real data

In this section, we  illustrate the modeling performance of the 
asymmetric generalized error distribution (AGED) by modeling data 
with asymmetry and excess kurtosis. Three practical datasets are used 
to assess the performance of AGED compared to other distributions.

8.2.1 Datasets
Three practical datasets are considered. The first data are the cyber 

attacks, which are measured as the average length time of cyber attacks 

per week. It consists of an average time of attacks of 363 weeks and is 
obtained from (44).

The second dataset is heart failure data. This dataset comprises a 
substantial number of individuals diagnosed with heart failure and its 
associated factors, which consists of 304 patients following treatment 
and was taken from (45). In this respect, we  model a number of 
cholesterol levels in heart failure patients. Statistical measures and the 
ML estimates of the AGED are obtained and compared with the 
competing distributions.

The third dataset is reported in (46), which includes 63 
observations of the strengths of 1.5 cm of glass fiber, originally 
obtained from workers at the National Physical Laboratory, 
England, and used in the work (47). We have utilized these data 
to present the modeling performance of the AGED compared to 
other competing distributions. Table 5 reports the summary of 
data, whereas the goodness of fit (GOF) statistics can be viewed 
in Tables 6–8.

Some descriptive statistics for the data, including skewness 
and kurtosis coefficients, are displayed in Table 5, where γ3 and 
γ 4 denote skewness and kurtosis coefficients, respectively. In this 
respect, we  highlight the peakedness and asymmetry of  
the data.

Second, different distributions are considered to model these 
datasets. There are many distributions that have been proposed; 
however, distributions having special cases for the suggested pdf 
would be  used. The generalized error distribution, the Laplace 
distribution, and the normal distribution are used to fit the data and 
are compared with AGED.

FIGURE 5

Graphs of realized random samples of size 100,000 taken from AGED with the corresponding pdf (5): (A) design 1, (B) design 2, and (C) design 3.

https://doi.org/10.3389/fams.2024.1398137
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Abebe and Goshu 10.3389/fams.2024.1398137

Frontiers in Applied Mathematics and Statistics 10 frontiersin.org

We examined the performance of the AGED. Using mostly the 
prominent goodness-of-fit statistics, Kolmogorov–Smirnov statistics 
(K-S), consistent Akaike’s information criteria (CAIC), Hannan–
Quinn information criteria (HQIC), and Bayesian information 

criterion (BIC) (48), we  compared the competing distribution 
with AGED.

When the estimates of parameters are computed, we examine via 
GOF statistics which of the four pdfs is the best fit for the data. The 

A

B

C

A

B

C

FIGURE 6

Histograms (left) and density (right) of random samples of size 100,000 taken from AGED with corresponding pdf (5): for (A) design 1, (B) design 2, and 
(C) design 3, respectively.

TABLE 2 Bias and MSE of the maximum likelihood estimators of design 1.

α About μ About σ About β About α

MLE Bias MSE MLE Bias MSE MLE Bias MSE MLE Bias MSE

0.5

0.046 0.046 0.003 0.924 −0.075 0.007 1.982 −0.017 0.002 0.533 0.033 0.002

0.068 0.068 0.054 0.762 −0.237 0.086 1.872 −0.127 0.065 0.728 0.228 0.092

0.364 0.364 0.227 0.681 −0.318 0.228 1.589 −0.410 0.412 0.836 0.336 0.256

0.764 0.764 0.814 0.269 −0.730 0.883 1.253 −0.904 2.472 1.067 0.567 0.806

1

0.017 0.016 0.005 1.136 0.136 0.003 1.927 −0.082 0.019 1.005 0.005 0.020

0.057 0.057 0.038 1.242 0.242 0.021 1.702 −0.297 0.083 1.026 0.026 0.049

0.289 0.089 0.341 1.291 0.291 0.482 1.698 −0.301 0.627 1.284 0.284 0.283

0.693 0.693 1.012 1.488 0.488 0.884 1.429 −0.870 1.712 2.218 0.218 0.558

2

0.025 0.024 0.001 1.004 0.004 0.006 2.001 0.001 0.002 2.004 0.004 0.004

0.062 0.062 0.082 1.040 0.040 0.135 2.068 0.068 0.061 2.016 0.016 0.031

0.070 0.069 0.342 1.121 0.121 0.533 2.079 0.079 0.412 2.286 0.286 0.348

0.284 0.284 0.928 1.464 0.464 0.892 2.489 0.489 0.684 3.402 1.402 2.500
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lower those values, the better the fit (48–50). The corresponding 
maximum likelihood estimates and goodness-of-fit (GOF) statistics 
are presented in Tables 6–8.

It can be seen that the GOF statistic values of the AGED are lower 
than those of competing distributions, indicating its superiority in 
fitting all datasets compared to competing distributions. In light of 

this, we can conclude that the AGED provides a better fit than a 
competing distribution.

Figures  7–9 display the histogram of the three practical 
datasets with the estimated pdf of the AGED along with the 
competing distributions. The figures show that a closer fit to the 
data was provided by the AGED for all datasets. In light of this, 

TABLE 4 Bias and MSE of the maximum likelihood estimator of design 3.

About μ About σ About β About α

α MLE Bias MSE MLE Bias MSE MLE Bias MSE MLE Bias MSE

0.5

0.028 0.028 0.004 0.527 0.027 0.022 2.974 −0.025 0.006 0.502 0.002 0.034

0.021 0.021 0.012 0.515 0.015 0.153 2.904 −0.095 0.018 0.527 0.027 0.093

0.038 0.038 0.061 0.577 0.077 0.239 2.725 −0.274 0.087 1.003 0.503 0.379

0.356 0.356 0.234 0.842 0.342 0.341 1.904 −1.095 1.305 1.713 1.213 1.694

1

0.018 0.018 0.012 1.023 0.023 0.004 3.001 0.004 0.004 1.006 0.006 0.001

0.024 0.024 0.085 1.043 0.043 0.022 3.021 0.021 0.043 1.067 0.067 0.042

0.178 0.178 0.118 1.284 0.284 0.076 3.325 0.325 0.123 1.064 0.064 0.233

0.328 0.328 0.295 1.452 0.452 0.279 3.542 0.542 0.347 1.463 0.463 0.647

2

0.046 0.046 0.012 1.027 0.027 0.002 3.023 0.023 0.012 2.014 0.014 0.007

0.051 0.051 0.035 1.084 0.084 0.019 3.042 0.042 0.018 2.039 0.039 0.023

0.052 0.052 0.050 1.228 0.228 0.113 3.132 0.132 0.013 2.236 0.236 0.074

0.392 0.392 0.281 1.409 0.409 0.222 3.204 0.204 0.146 3.471 0.471 0.450

TABLE 3 Bias and MSE of the maximum likelihood estimator of design 2.

About μ About σ About β About α

α MLE Bias MSE MLE Bias MSE MLE Bias MSE MLE Bias MSE

0.5

0.035 0.035 0.003 0.937 −0.062 0.037 1.021 0.021 0.014 0.511 0.011 0.008

0.099 0.099 0.010 0.928 −0.071 0.154 1.082 0.082 0.102 0.562 0.062 0.395

0.272 0.272 0.092 0.601 −0.398 0.334 1.486 0.486 1.001 1.162 0.662 0.696

0.331 0.331 0.288 0.576 −0.423 0.397 2.383 1.383 2.137 4.572 4.072 16.727

1

0.036 0.036 0.008 0.983 0.016 0.003 1.048 0.048 0.023 1.028 0.028 0.002

0.039 0.039 0.039 0.874 0.125 0.014 1.218 0.218 0.018 1.092 0.092 0.046

0.248 0.248 0.048 0.682 0.317 0.027 1.378 0.378 0.742 1.378 1.378 0.046

0.402 0.402 1.135 0.371 0.628 0.574 2.288 1.288 2.244 2.076 1.076 1.305

2

0.018 0.018 0.010 0.857 −0.143 0.039 1.972 0.027 0.017 2.010 0.012 0.021

0.112 0.112 0.039 0.728 −0.271 0.076 1.678 0.321 0.045 2.238 0.238 0.033

0.238 0.238 0.076 0.338 −0.661 0.267 1.463 0.536 0.289 2.292 0.292 0.297

0.761 0.761 1.001 0.215 −0.784 0.714 1.257 0.742 0.850 3.085 1.085 1.340

TABLE 5 Summary statistics of datasets.

Data Mean, X 1st Qu. Median, X 3rd Qu. 3γ 4γ

1 5.3810 3.9850 5.1000 6.5450 0.7249 3.6930

2 2.4630 2.1100 2.4000 2.7450 1.1377 7.4116

3 1.5070 1.3750 1.5900 1.6850 −0.8,999 3.9,237
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we can draw the conclusion that the AGED is a better fit for all 
datasets compared to competing distributions.

For all datasets, Figures 7–9 show that AGED fits better than the 
competing distributions. In particular, the peakedness can be fitted. 
The asymmetry illustrated in Table 5 has also been fitted, as unequally 

TABLE 8 MLEs and GOF statistics results of the strengths of glass fibers 
dataset.

Parameters Laplace Normal GED AGED

µ 1.4209 1.4449 1.6089 1.5451

σ 0.6619 0.4142 0.4043 0.3712

β – – 1.7276 1.6375

α – – – 0.8572

AIC 91.0946 48.1046 48.2540 40.4331

CAIC 91.2946 48.3047 48.6608 41.1227

BIC 95.3808 52.3909 54.6834 49.0056

HQIC 92.7804 49.7904 50.7827 43.8047

K-S 0.2569 0.2480 0.2096 0.1390

P-value 0.1751 0.0008 0.0078 0.2569

FIGURE 7

Histogram and fitted probability density function of AGED, GED, 
Normal, and Laplace distribution for cyber dataset.

FIGURE 9

Histogram and fitted probability density function of AGED, GED, 
Normal, and Laplace distribution for strengths of glass fibers dataset.

FIGURE 8

Histogram and fitted probability density function of AGED, GED, 
Normal, and Laplace distribution for heart failure dataset.

TABLE 7 MLEs and GOF statistics results of the heart failure dataset.

Parameters Laplace Normal GED AGED

µ 2.4849 2.4504 2.4831 2.1207

σ 0.4417 0.6613 0.5141 0.6998

β – – 2.1768 1.8659

α – – – 0.7784

AIC 471.7472 495.9515 475.7462 385.9587

CAIC 471.7872 496.0317 475.8264 386.093

BIC 479.1747 503.339 486.8874 400.8137

HQIC 474.7187 498.883 480.2034 391.9017

K-S 0.0952 0.1070 0.0715 0.5996

P-value 0.0256 0.0424 0.0173 0.6723

TABLE 6 MLEs and GOF statistics results of the cyber dataset.

Parameters Laplace Normal GED AGED

µ 5.1688 5.4654 5.4975 5.3477

σ 1.6202 1.0240 2.5607 1.8784

β – – 2.1686 1.9225

α – – – 1.6067

AIC 1554.052 1535.163 1579.988 1510.969

CAIC 1554.085 1535.196 1580.055 1511.081

BIC 1561.841 1542.952 1591.671 1526.547

HQIC 1557.148 1538.259 1584.632 1517.161

KS 0.0635 0.0701 0.10003 0.3012

P-value 0.1067 0.0562 0.0014 0.8959
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distributed histograms around the location in the figures can show 
that there is an asymmetry in the datasets.

9 Conclusion

The main finding of this study is the derivation of a new probability 
distribution that reveals interesting properties, especially with various 
asymmetry and kurtosis behaviors; we call it the asymmetric generalized 
error distribution (AGED). AGED is a new contribution to the field of 
statistical theory and provides a more flexible pdf, cdf, and hazard 
function than the base distribution. The mathematical and statistical 
features of the distribution are derived and discussed. To estimate the 
distribution parameters, maximum likelihood estimators are derived. A 
simulation study is done using the acceptance-rejection algorithm. In the 
applications, the datasets have high kurtosis and skewness. The criteria 
indicate that the AGED provides better fits to the datasets. This implies 
that the new distribution is a good alternative for modeling data with 
asymmetric and excess kurtosis behavior. We expect that the distribution 
can be applied to many more real datasets, and the findings of the study 
can be used as the basis for future research in the field.
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