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Fractional-order analysis of
temperature- and
rainfall-dependent mathematical
model for malaria transmission
dynamics

Ademe Kebede Gizaw * and Chernet Tuge Deressa

Department of Mathematics, College of Natural Sciences, Jimma University, Jimma, Ethiopia

Malaria remains a substantial public health challenge and economic burden

globally. Currently, malaria has been declared as endemic in 85 countries. In

this study, we developed and analyzed a fractional-order mathematical model

for malaria transmission dynamics that incorporates variability of temperature

and rainfall using Caputo-type AB operators. The existence and uniqueness of

the model’s solutions were established using the Banach fixed-point theorem.

The model system’s equilibria (both disease-free and endemic) were identified,

and lemmas and theorems were developed to prove their stability. Furthermore,

we used di�erent temperature ranges and rainfall data, validating them against

existing literature. Numerical simulations using the Toufik-Atangana schemes

with various fractional-order alpha values revealed that as the value of alpha

approaches 1, the behavior of the fractional-order model converges to that of

the classical model. The numerical results are promising and are expected to be

valuable for future research related to fractional-order models.
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1 Introduction

Malaria, a life-threatening mosquito-borne disease, ranks among the deadliest

infectious diseases worldwide [see [1] and references therein]. The World Health

Organization (WHO) data for 2022 indicate∼249millionmalaria cases, leading to 608,000

deaths in 85 countries [2]. This mosquito-borne infectious disease is the fifth leading

cause of death from infectious diseases globally (after respiratory infections, HIV/AIDS,

diarrheal diseases, and tuberculosis) and the second leading cause in Africa after HIV/AIDS

[3]. Moreover, malaria remains a significant cause of mortality and morbidity in many

tropical and subtropical regions, particularly within developing nations such as Ethiopia

[see [4] and references therein].

In Ethiopia, with a population exceeding 120 million, more than 60% face the risk of

contracting malaria [4]. This vulnerability stems from the fact that nearly 70% of Ethiopian

land falls within areas suitable for malaria transmission, with altitude and rainfall serving

as key risk factors.
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Mathematical models of malaria transmission dynamics are

valuable tools for understanding the disease, planning for the

future, and implementing effective control measures [5]. The first

integer-order model of this kind emerged from the study of Ross

[6] and Macdonald [7]. While researchers have expanded these

models over the years to incorporate various aspects of malaria

transmission and control, research has given less attention to

the impact of age structure. Recent studies have highlighted the

significance of age structure in both the vector population and

human population to understand the impact of climate variability

on malaria transmission dynamics [see [8–10] and the references

therein]. This is because environmental and climatic factors play a

significant role in influencing the vector population’s dynamics and

the biting rate of mosquitoes on humans.

Temperature and rainfall are key drivers of mosquito

population dynamics and subsequent malaria transmission, as

reported in [11] and the references therein. These factors positively

or negatively impact malaria transmission [12, 13]. Studies using

real data from 67 sub-Saharan African cities have shown that the

optimal temperature range for mosquito growth, and therefore

malaria transmission, falls between 16 and 28◦C [14]. This link

between climate and malaria burden is further supported by data

from South Africa’s KwaZulu-Natal province [8]. Their findings

reveal a clear trend: Within specific ranges, both increasing mean

monthly temperature and rainfall are associated with increased

malaria burden. Malaria burden rises with temperatures between

17 and 25◦C and rainfall between 32 and 110mm, while decreasing

outside these ranges. Interestingly, Okuneye and Gumel [8] also

pinpoints the specific temperature and rainfall combinations

where malaria transmission peaks. Their data show that the

highest transmission rates occur within the ranges of 21–25◦C for

temperature and 95–125mm for rainfall. In addition to impacting

transmission, temperature also directly affects the lifespan of adult

female mosquitoes, which averages ∼21 days [see [15] and the

reference therein]. Notably, mosquito survival rapidly declines as

temperatures exceed 34◦C.

According to current literature and researchers’ findings, all

these models employ integer-order derivatives in their differential

equations. However, fractional calculus has become increasingly

prevalent in epidemic modeling [see [16–19] and as well some of

the references therein]. This fractional approach has demonstrated

significant advantages over integer-order modeling, offering a

better fit to real data and possessing numerous other beneficial

properties [20]. Furthermore, the memory and inheritance features

of fractional calculus make it particularly well-suited for modeling

and understanding real-world phenomena [20]. Within this

framework, a variety of definitions and operators exist, including

the Atangana–Baleanu [21], Caputo–Fabrizio [22], and Caputo

derivatives [23], and serving as valuable tools for epidemic

disease modeling.

Among these, the Caputo and Caputo–Fabrizio derivatives

hold greater significance, with the latter particularly excelling due

to its non-singular, non-local core and enhanced ability to reflect

disease dynamics [[24] and the references within]. While the

Atangana–Baleanu operator has found applications in modeling

various real-world problems [24–28], its suitability for disease

modeling specifically requires further evaluation.

Motivated by previous studies, we present a novel mathematical

model of malaria transmission dynamics. Building upon the study

of [8], our model analyzes and extends their framework by

incorporating specific new compartments while omitting others.

We further employ ABC fractional operators to explore the model’s

dynamics in a non-integer-order setting.

2 Mathematical preliminaries

This section presents important theorems and definitions of

fractional calculus, especially some fundamental ideas about the

Atangana–Baleanu fractional derivative operators and other related

findings, before applying them to our suggested malaria model.

Definition 1. Let � ⊆ R be open and p ∈ [1;∞), so Hp(�)

can be defined as

Hp(�) =
{

ω ∈ L2(�) : Dαw ∈ L2; for all |α| ≤ p
}

. (1)

Definition 2. Yadeta et al. [29]. The Caputo derivative of

fractional order p with n − 1 < p ≤ n; n ∈ N, for an integrable

function g ∈ Cn, can be presented as

C
aD

p

t g (t) =
1

Ŵ
(

n− p
)

∫ t

a
gn (γ ) (t − γ )n−p−1 dγ. (2)

Definition 3. Atangana and Baleanu [21]. Let g ∈ H1(a, b),

a < b, γ ∈ [0, 1], therefore, Atangana–Baleanu–Caputo (ABC)

fractional derivative of g(t) with order γ is given by

ABC
a1

D
γ

t

(

g (t)
)

=
M (γ )

1− γ

∫ t

a1

g′ (τ )Eγ

[

−γ
(t − τ)γ

1− γ

]

dτ , (3)

where M (γ ) is positive and is a normalization function fulfilling

M (0) = M (1) = 1, and Eγ is the Mittag-Leffler function

Eγ (z) =
∞
∑

k=0

zk

Ŵ
(

γk+ 1
) , (4)

where γ > 0 and z is complex number.

The Mittag-Leffler function with two parameters appears most

frequently and has the following form:

Eα,β (z) =
∞
∑

k=0

zk

Ŵ
(

αk+ β
) . (5)

Definition 4 Atangana and Baleanu [21]. Let g ∈ H1(a, b),

a < b, γ ∈ [0, 1], then the Atangana–Baleanu Caputo integral of a

function g(t) of order γ is defined by

ABC
a1

I
γ

t

{

g (t)
}

= 1−γ
M(γ )

g (t) + γ
M(γ )Ŵ(γ )

∫ t
a1
g (τ ) (t − τ)γ−1dτ . (6)

Definition 5. Atangana and Baleanu [21]. The Laplace

transform of the Atangana–Baleanu fractional derivative of order

α in Caputo sense is given by

L
{

ABC
0 Dα

t f (t)
}

(s) =
B (α)

(

sαF (s) − sα−1f (0)
)

sα (1− α) + α
, s > 0, (7)
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where L is the Laplace transform operator.

Theorem 1. Atangana and Baleanu [21]. For a function g ∈
C[a, b], the inequality shown below holds.

∥

∥

ABC
a1

Dα
t g (t)

∥

∥ <
1− α

M (α)

∥

∥g (t)
∥

∥ , (8)

where
∥

∥g (t)
∥

∥ = max
t∈[a,b]

∣

∣g (t)
∣

∣.

In addition, ABC derivatives satisfy the Lipschitz requirement;

thus, we have

∥

∥

ABC
a1

Dα
t g1 (t) −ABC

a1
Dα
t g2 (t)

∥

∥ < k
∥

∥g1 (t) − g2 (t)
∥

∥ . (9)

3 Model formulation

3.1 Presumptions of the model

The human population at time t, denoted by (Nh (t)), comprises

two categories: adults and people under the age of seventeen. The

latter group is further divided into susceptible children(Sc (t)),

exposed children (Ec (t)), and infected children (Ic (t)). Adults are

categorized into four compartments: susceptible (Sa (t)), exposed

(Ea (t)), infected (Ia (t)), and recovered (Wa (t)). This leads to the

following equation:

Nh (t) = Sc (t) + Ec (t) + Ic (t) + Sa (t) + Ea (t)

+Ia (t) +Wa (t) . (10)

The total mosquito population at time t, denoted by (Nv (t)), is

divided into immature (MA (t)) and mature mosquitoes (Mv (t)).

Furthermore, there are three compartments in mature mosquitoes:

susceptible mosquitoes (Sv (t)), exposed mosquitoes (Ev (t)), and

infected mosquitoes (Iv (t)). So that:

Nv (t) = MA (t) + Sv (t) + Ev (t) + Iv (t) . (11)

In the compartmental model (12), πcis the recruitment

rate for children, λi (T) (i = c, a, v) are the infection rate of

susceptible children, adults, and vectors, respectively. bm(T) is the

temperature-dependent per capital biting rate of mosquitoes, and

βj

(

j = c, a,m
)

is the probability of infection per bite for children,

adults, and mosquitoes. µhis the natural death rate of humans,

and ξh is the maturation rate of children to adulthood. Immature

mosquitoes (eggs, larvae, and pupae) are lumped into a single

compartment (MA (t)) for computational convenience [see [8] and

the references therein].

The temperature-dependent egg deposition rate is represented

by αI (T). Following [14], we assume that the immature mosquito

population (encompassing larvae and pupae) is limited by the

carrying capacity Kv, where Kv exceeds MA. This parameter

reflects the available nutrients and space, as detailed in [8] and its

references. Therefore, αI (T)

(

1− MA
Kv

)

(Sv + Ev + Iv) represents

the logistic growth rate for the immature mosquitoes.

Using the parameters and their definitions given in Tables 1,

2, we can write the model as a system of first-order ordinary

TABLE 1 Description of variables of the model (12).

Variable Description

Sc (t) Population of susceptible children

Ec (t) Population of latently infected children

Ic (t) Population of infectious children

Sa (t) Population of susceptible adults

Ea (t) Population of latently infected adults

Ia (t) Population of infectious adults

Wa (t) Population of recovered adults

MA (t) Population of aquatic mosquitoes

Sv (t) Population of susceptible mosquitoes

Ev (t) Population of exposed mosquitoes

Iv (t) Population of infectious mosquitoes

λi (t) Infection rate for susceptible children

(i= c), susceptible adults (i= a), and

susceptible mosquitoes (i= v)

differential equations:

dSc(t)
dt

= πc −
(

λc (T) + ξh + µh

)

Sc (t) ,
dEc(t)
dt

= λc (T) Sc (t) − (δc + µh)Ec (t) ,
dIc(t)
dt

= δcEc (t) −
(

µh + d1 + σc
)

Ic (t) ,
dSa(t)
dt

= ξhSc + γWa − (λa (T) + µh) Sa,
dEa(t)
dt

= λa (T) Sa − (µh + δa)Ea,
dIa(t)
dt

= δaEa −
(

σa + µh + d2
)

Ia,
dWa(t)

dt
= σcIc + σaIa − (µh + γ )Wa,

dMA (t)
dt

= αI (T)

(

1− MA
Kv

)

(Sv + Ev + Iv)

− (η (T,R) + µA (T))MA,
dSv(t)
dt

= η (T,R)MA − (λv (T) + µv (T)) Sv,
dEv(t)
dt

= λv (T) Sv − (µv (T) + αv)Ev,
dIv(t)
dt

= αvEv − µv (T) IV ,



































































































(12)

where the infection rates for children (λc(T)), adults (λa(T)), and

vectors (λv (T)) are given, respectively, by

λc (T) =
bm (T) βcIv

Nh
, λa (T) =

bm (T) βaIv

Nh
,

λv (T) =
bm (T) βm (Ia + Ic)

Nh
. (13)

4 Model analysis

To account for long-term dependencies and complex memory

effects in biological systems, we propose a fractional-order model

for malaria. We replace the first-order ordinary derivatives

in Equation 12—representing population change rates—with the

Atangana–Baleanu fractional derivative of order α (0 < α ≤ 1) to
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TABLE 2 Description of parameter of the model (12).

Parameter Description

5c Birth rate of children

µh Per capita death rate for humans

αI (T) Per capita egg deposition rate

µA(T), µv(T) Per capita death rate for aquatic and adult

mosquitoes, respectively

γ Recovery rate of infectious humans

δc , δa Progression rate from exposed to infectious class

of children and adults, respectively

σc , σa Progression rate from infectious class of children

and infectious adults class to recovered class of

adults, respectively

ξh Maturation rate of children to adults

η (T,R) Maturation rate of immature mosquitoes

bc(T) Per capita biting rate of mosquitoes on susceptible

children

ba(T) Per capita biting rate of mosquitoes on susceptible

adults

bm(T) Per capita biting rate of susceptible mosquitoes on

infectious humans

αv Progression rate from exposed to infectious class

of mosquitoes

βc Probability of malaria transmission from infected

mosquitoes to susceptible children

βa Probability of malaria transmission from infected

mosquitoes to susceptible adults

βm Probability of infection from infected humans to

susceptible mosquitoes

Kv Vector carrying capacity

PE( R), PL(R), PP(R) Maximum daily survival probability of egg, larva,

and pupa

B(T) The lifetime number of eggs laid

τEA(T) The development time from egg to adult mosquito

EFD(T) The number of eggs laid per female per day

Rl Rainfall threshold

d1 , d2 Disease-induced death rate of infectious humans

incorporate internal memory effects.

ABC
0 Dα

t Sc (t) = πc −
(

λc (T) + ξh + µh

)

Sc (t) ,
ABC
0 Dα

t Ec (t) = λc (T) Sc (t) − (δc + µh)Ec (t) ,
ABC
0 Dα

t Ic (t) = δcEc (t) −
(

µh + d1 + σc
)

Ic (t) ,
ABC
0 Dα

t Sa (t) = ξhSc + γWa − (λa (T) + µh) Sa,
ABC
0 Dα

t Ea (t) = λa (T) Sa − (µh + δa)Ea,
ABC
0 Dα

t Ia (t) = δaEa −
(

σa + µh + d2
)

Ia,
ABC
0 Dα

t Wa (t) = σcIc + σaIa − (µh + γ )Wa,

ABC
0 Dα

t MA (t) = αI (T)

(

1− MA
Kv

)

(Sv + Ev + Iv)

− (η (T,R) + µA (T))MA,
ABC
0 Dα

t Sv (t) = η (T,R)MA − (λv (T) + µv (T)) Sv,
ABC
0 Dα

t Ev (t) = λv Sv − (µv (T) + αv)Ev,
ABC
0 Dα

t Iv (t) = αv Ev − µv (T) IV ,



























































































(14)

with initial conditions:

Sc(0) > 0, Sa(0) > 0, Ec(0) > 0, Ea(0) > 0,

Ic(0) > 0, Ia (0) > 0,Wa (0) > 0, MA (0) > 0,

Sv (0) > 0, Ev (0) > 0, Iv (0) > 0, (15)

where ABC
0 Dα

t is Atangana-Beleanu in Caputo sense of order α, and

the infection rates for children (λc(T)), adults (λa(T)), and vectors

(λm (T)) are given, respectively, by

λc (T) =
bm (T) βcIv

Nh
, λa (T) =

bm (T) βaIv

Nh
,

λv (T) =
bm (T) βm (Ia + Ic)

Nh
. (16)

4.1 Existence and uniqueness of solutions

In this section, we will discuss the existence and uniqueness of

solutions ABC fractional operators of the model system (13). To do

this, we first re-write the model (13) in the following simple form:

ABC
0 Dα

t g (t) = F
(

t, g (t)
)

,

g (0) = g0 ≥ 0.

}

(17)

In (17),

g (t) =

(

Sc(t, Sa(t), Ec(t), Ea(t), Ic(t), Ia (t), Ic (t),

Wa (t), MA (t), Sv (t), Ev (t), Iv (t)

)T

∈ R11+ ,

(18)

and F is a continuous vector function defined as

F
(

t, g (t)
)

=









































F1
(

t, g (t)
)

F2
(

t, g (t)
)

F3
(

t, g (t)
)

F4
(

t, g (t)
)

F5
(

t, g (t)
)

F6
(

t, g (t)
)

F7
(

t, g (t)
)

F8
(

t, g (t)
)

F9
(

t, g (t)
)

F10
(

t, g (t)
)

F11
(

t, g (t)
)









































=















































πc −
(

λc (T) + ξh + µh

)

Sc (t) ,

λc (T) Sc (t) − (δc + µh)Ec (t) ,

δcEc (t) −
(

µh + d1 + σc
)

Ic (t) ,

ξhSc + γWa − (λa (T) + µh) Sa,

λa (T) Sa − (µh + δa)Ea,

δaEa −
(

σa + µh + d2
)

Ia,

σcIc + σaIa − (µh + γ )Wa,

αI (T)

(

1− MA
Kv

)

(Sv + Ev + Iv)

− (η (T,R) + µA (T))MA

η (T,R)MA − (λv (T) + µv (T)) Sv,

λv (T) Sv − (µv (T) + αv)Ev,

αv Ev − µv (T) IV ,















































, (19)
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and

g0 =

(

Sc (0) , Sa (0) , Ec (0) , Ea (0) , Ic (0) , Ia (0) , Ic (0) ,

Wa (0), MA (0), Sv (0), Ev (0), Iv (0)

)T

(20)

is the initial vector for state variables. The function F also satisfies

the Lipschitz criterion, which is as follows:

∥

∥F
(

t, g1 (t)
)

− F
(

t, g2 (t)
)
∥

∥ ≤ L
∥

∥g1 (t) − g2 (t)
∥

∥ , (21)

where L is a Lipschitz constant.

The following lemma helps us to show the existence and

uniqueness of the solution to the fractional model system (14):

Lemma 1. The unique solution of the differential equation with

fractional order α is given by

{

ABC
0 Dα

t g (t) = F
(

t, g (t)
)

,

g (0) = g0 ≥ 0,
where for α ∈ (0, 1], (22)

is expressed as

g (t) = g (0) +
1− α

B (α)
F
(

t, g (t)
)

+
α

B (α) Ŵ (α)

∫ t

0
F
(

τ , g (τ )
)

(t − τ)
α−1

dτ . (23)

Theorem 2. Under the condition that L =
(

(1−α)K
B(α)

+
αK

B(α)Ŵ(α)
Tα
max

)

< 1, then there exists a unique solution to the

fractional-order malaria model (14).

Proof.

Let τ = (0,T), and the operator F :

(

τ ,R11
)

−→
(

τ ,R11
)

, as

expressed in lemma (23), is given by

F
(

g (t)
)

= g (0) +
1− α

B (α)
F
(

t, g (t)
)

+
α

B (α) Ŵ (α)

∫ t

0
F
(

τ , g (τ )
)

(t − τ)
α−1

dτ (24)

g (t) = F
(

g (t)
)

is expressed as

g (t) = g (0) + 1−α
B(α)

F
(

t, g (t)
)

+ α
B(α)Ŵ(α)

∫ t
0 F

(

τ , g (τ )
)

(t − τ)
α−1

dτ (25)

Furthermore, let:

∥

∥g (t)
∥

∥

τ
= sup

t∈τ

∣

∣g (t)
∣

∣ , g (t) ∈ C, (26)

where ‖.‖τ represents the supremum norm over τ .

Using Equation 25, we obtain:

∥

∥F
(

g1 (t)
)

− F
(

g2 (t)
)
∥

∥ =
∥

∥

∥

1−α
B(α)

(

F
(

g1 (t)
)

− F
(

g2 (t)
))

+ α
B(α)Ŵ(α)

∫ t
0

(

F
(

τ , g1 (τ )
)

− F
(

τ , g2 (τ )
))

(t − τ)
α−1

dτ
∥

∥

∥

(27)

From:

∥

∥

∥

∥

∫ t

0
D (t, x) u (x) dx

∥

∥

∥

∥

≤ T ‖D (t, x)‖τ ‖u (x)‖τ (28)

With:

u (x) ∈ C
(

τ ,R11
)

and D (t, τ) ∈ C
(

τ 2,R
)

, that is:

‖D (t, x)‖ = sup
t,x∈τ

|D (t, x)| (29)

Now, using Equations 28, 29 and the triangular inequality on

Equation 27, we obtain

∥

∥F
(

g1 (t)
)

− F
(

g2 (t)
)
∥

∥ ≤
(1− α)K

B (α)

∥

∥g1 (t) − g2 (t)
∥

∥

τ

+
αK

B (α) Ŵ (α)

∫ t

0

∥

∥g1 (t) − g2 (t)
∥

∥

τ
(t − τ)α−1 dτ (30)

∥

∥F
(

g1 (t)
)

− F
(

g2 (t)
)
∥

∥ ≤
(1− α)K

B (α)
sup
t∈τ

∣

∣g1 (t) − g2 (t)
∣

∣

+
αK

B (α) Ŵ (α)
sup
t∈τ

∣

∣g1 (t) − g2 (t)
∣

∣

∫ t

0
(t − τ)α−1 dτ (31)

∥

∥F
(

g1 (t)
)

− F
(

g2 (t)
)
∥

∥ ≤
(

(1−α)K
B(α)

+ αK
B(α)Ŵ(α)

Tα
max

)

∥

∥g1 (t) − g2 (t)
∥

∥

τ
(32)

Therefore, we obtain

∥

∥F
(

g1 (t)
)

− F
(

g2 (t)
)
∥

∥ ≤ L
∥

∥g1 (t) − g2 (t)
∥

∥

τ
, (33)

where

L =
(

(1− α)K

B (α)
+

αK

B (α) Ŵ (α)
Tα
max

)

. (34)

Hence, if L < 1 on
(

τ ,R11+
)

, the operator F becomes a

contraction. Therefore, the fractional malaria model (14) has a

unique solution by the Banach fixed-point theorem.

4.2 Positivity and boundedness of solutions

For the Atangana–Baleanu–Caputo fractional derivative

models to be stable, have a steady state of existence, and have

biological significance, their solutions have to be positive. Here is

a lemma that can be used to prove the positivity of the solution to

the proposed model.

Lemma 2. (Generalized Mean Value Theorem see [30]).

Supposing that g(t) ∈ C[a, b] and ABC
0 Dα

t g (t) ∈ C
[

a, b
]

for

0 < α ≤ 1, then

g (t) = g
(

k
)

+ 1
Ŵ(α)

ABC

0
Dα
t g (τ )

(

t − k
)α

,

with 0 ≤ τ ≤ t, ∀t ∈
[

a, b
]

. (35)

Remark 1 Suppose that g(t) ∈ C[0, b] and ABC
0 Dα

t g (t) ∈
C
[

a, b
]

for 0 < α ≤ 1 from Lemma 2 one can deduce that

i. if ABC
0 Dα

t g (t) ≥ 0, ∀t ∈
(

0, b
]

, then the function g (t) is

non-decreasing and

ii. if ABC
0 Dα

t g (t) ≤ 0, ∀t ∈
(

0, b
]

, then the function g (t)

is non-increasing.
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Let � =
{(

Sc(t), Sa(t), Ec(t), Ea(t), Ic(t), Ia (t),

Wa (t), MA (t), Sv (t), Ev (t), Iv (t)
)T ∈ R11+

}

. (36)

Theorem 3. The solution of the fractional malaria model (14)

x (t) =

(

Sc (t) , Sa (t) , Ec (t) , Ea (t) , Ic (t) , Ia (t) ,

Wa (t) , MA (t) , Sv (t) , Ev (t) , Iv (t)

)

, (37)

which starts at, t = t0 remains in � for any t ≥ t0.

Proof. With reference [31], beginning with the first equation in

Equation 14, we want to show that Sc (t) ≥ 0 for all t > t0.

If, to the contrary, it is not true, then there exists a constant

t > t0 such that











Sc (t) > 0, for t ∈ (t, t0) ,

Sc
(

t1,
)

= 0,

Sc
(

t+1
)

< 0.

(38)

Now, from the first equation in Equation 14 and based on

Equation 38, we obtain

ABC
0 Dα

t Sc (t1)|Sc(t1)=0 = πc > 0. (39)

Consequently, invoking Remark 1 of lemma 2, we obtain

Sc
(

t+1
)

≥ 0, which contracts the assertion Sc
(

t+1
)

< 0. Therefore,

we conclude that Sc (t) ≥ 0 for all t > t0. Similarly, we establish the

following inequalities for t > t0:

Ec (t) ≥ 0, Ic (t) ≥ 0, Sa (t) ≥ 0, Ea (t) ≥ 0,

Ia (t) ≥ 0, Wa (t) ≥ 0, MA (t) ≥ 0, Sv (t) ≥ 0,

Ev (t) ≥ 0, Iv (t) ≥ 0.

This completes the proofs of Theorem 3.

4.3 Invariant region

Given non-negative initial data, we identify the region where

the solutions to the system of Equation 14 are viable. Here, we are

primarily concerned with demonstrating that the viable region is

located in R11+ , which is a positive invariant region with regard to

the model (14) under the initial condition (15).

Theorem 4. Let the Atangana–Baleanu fractional model (14)

has a unique solution (Nh, Nv) for all t ≥ 0. Then, the

epidemiologically feasible region of the model is given by � =
�h × �v ⊂ R11+ , where

�h =
{(

Sc (t) , Sa (t) , Ec (t) , Ea (t) , Ic (t) , Ia (t) , WA (t)
)

∈ R7+ : 0 ≤ Nh ≤
πc

µh

}

(40)

and

�v =
{(

MA (t), Sv (t), Ev (t), Iv (t)
)

∈ R4+ : 0 ≤ Mv ≤ η(T,R)MA
µv(T)

}

. (41)

Proof. Let Nhand Nvrepresent the total population of humans

and mosquitoes, respectively. By adding all the equations

corresponding to the human and mosquito components of the

system (14), we get

ABC
0 Dα

t (Nh (t))= π c − µhNh −
(

d1Ic + d2Ia
)

≤ πc − µhNh (42)

and

ABC
0 Dα

t (Mv (t)) = η (T,R)MA − µv (T)Nv (43)

To prove theorem 4, we need to show that system (14) has

bounded solutions. Biologically, the least possible value of each

state of the model system (14) is zero. Next, we determine the upper

bound of the states. To do this,

let

ABC
0 Dα

t (Nh (t)) ≤ πc − µhNh (44)

and

ABC
0 Dα

t (Nv (t)) = η (T,R)MA − µv (T)Nv. (45)

Then, by applying the Laplace transform on both sides of

Equation 44, we obtain

L
[

ABC
0 Dα

t (Nh (t))
]

(s) ≤
πc

s
− µhL [Nh (t)] (s) , (46)

and using definition 5, we obtain

B (α)
(

sαL [Nh (t)] (s) − sα−1Nh (0)
)

sα (1− α) + α
≤

πc

s
+

sα−1Nh (0)

sα (1− α) + α
,

(47)

where Nh (0) represents the initial value of the total

human population.

This implies that

L {Nh (t)} (s) ≤
(

sα−1Nh (0)B (α)

B (α) sα + µH (sα (1− α) + α)

)

+
πc

s

(

sα (1− α) + α

B (α) sα + µh (sα (1− α) + α)

)

(48)

Therefore,

L {Nh (t)} (s) ≤
πcα

(B (α) + µh (1− α))

(

sα−(α+1)

sα + µhα
B(α)+µh(1−α)

)

+
(

πc (1− α)

B (α) + µh (1− α)
+

Nh (0)B (α)

B (α) + µh (1− α)

)

sα−1

sα +
µhα

B (α) + µh (1− α)

. (49)

Applying the inverse Laplace transform on both sides of (49),

we get

Nh (t) ≤
πcα tα

(B (α) + µh (1− α))
Eα,α+1

(

−ktα
)

+
(

πc (1− α)

B (α) + µh (1− α)
+

Nh (0)B (α)

B (α) + µh (1− α)

)

Eα,1

(

−ktα
)

, (50)
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where

k =
µhα

B (α) + µh (1− α)
. (51)

Furthermore,

Eα,α+1

(

−ktα
)

=
1

−ktα

(

Eα,1

(

−ktα
)

− 1
)

. (52)

Thus,

Nh (t) ≤ πc
−µh

(

Eα,1

(

−ktα
)

− 1
)

+
(

πc(1−α)
B(α)+µh(1−α)

+ Nh(0)B(α)
B(α)+µh(1−α)

)

Eα,1

(

−ktα
)

= πc
µh

(53)

since Eα,1

(

−ktα
)

→ 0 as t → ∞.

Thus, the epidemiologically feasible region for the human

population is

�h =
{

(Sc,Ec, Ic, Sa,Ea, Ia,Wa) ∈ R7+ : 0 ≤ Nh ≤
πc

µh

}

. (54)

Similarly, it can be shown that the feasible region for the
mosquito population is

�v =
{

(MA, SM ,EM , IM) ∈ R3+ : 0 ≤ Sv + Ev + Iv ≤
η (T,R)MA

µv (T)

}

.

(55)

Thus, the proposed model is mathematically well-posed and

epidemiologically sound on the region � = �h × �v ⊂ R11+ .

4.4 Existence of equilibrium points and the
basic reproduction number

This section presents the disease-free and endemic equilibrium

points of our Atangana–Baleanu fractional-order malaria model

(14) to analyze their stability and dynamical behavior.

4.4.1 Disease-free equilibrium point
The steady-state solution of the model system (a form of the

ABC fractional model) (14) obtained in the absence of disease is

known as the disease-free equilibrium (DFE). The autonomous

form of Equation 14 exhibits two disease-free equilibria, as stated

in Theorem 6 below, depending on the magnitude of the threshold

quantity M, where M = ηI αI
(ηI+µA)µv

. For this analysis, we consider

the special case of the non-autonomous version of model (14)

in which the temperature- and rainfall-dependent parameters are

constant, specifically: ηI (T,R) = ηI , αI (T) = αI , µA (T) = µA,

and µv (T) = µv.

Theorem 5. The model system (14) possesses two malaria

disease-free equilibrium points: the trivial disease-free equilibrium
(

E01
)

and the biologically realistic disease-free equilibrium
(

E02
)

.

These equilibria are defined as follows:

• E01 =
(

S0c , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
)

holds whenM ≤ 1.

• E02 =
(

S0c , 0, 0, 0, 0, 0,M
0
A, S

0
v , 0, 0, 0

)

holds whenM > 1.

where

S0c =
πc

ξh + µh
(56)

M0
A =

(

1−
1

M

)

Kv (57)

S0v =
ηI

µv

[

1−
1

M

]

Kv (58)

Proof: To find the disease-free equilibria of the ABC fractional

malaria model (14), we set the right-hand side of each equation in

system (14) to zero and also set Ec = Ic = Ea = Ia = Ev = Iv =
0. This means all infected and infectious compartments are empty.

From the equations ABC
0 DMA (t) = ABC

0 DSv (t) = 0, we obtain

two possibilities: eitherMA = 0 orMA = Kv

(

1− 1
M

)

.

Therefore:

i. E01: WhenMA = 0 and all infected and infectious compartments

are empty (Ec = Ic = Ea = Ia = Ev = Iv = 0), and each

equation in Equation 14 is equal to zero, we obtain

S0c =
πc

ξh + µh
(59)

E0c = I0c = S0a = E0a = I0a

= W0
a = M0

A = S0v = E0v = I0v = 0 (60)

Therefore, E01 =
(

S0c , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
)

.

ii. E02: When MA = Kv

(

1− 1
M

)

and all infected and infectious

compartments are empty (Ec = Ic = Ea = Ia = Ev = Iv = 0),

and each equation in Equation 14 is equal to zero, we obtain

S0c =
πc

ξh + µh
(61)

E0c = I0c = S0a = E0a = I0a = W0
a = E0v = I0v = 0 (62)

S0v =
ηI

µv

[

1−
1

M

]

Kv (63)

Therefore, E02 =
(

S0c , 0, 0, 0, 0, 0,M
0
A, S

0
v , 0, 0, 0

)

.

This completes the proof of Theorem 5.

4.4.2 The basic reproduction number
Definition 6. Diekmann et al. [32] and Van den Driessche and

Watmough [33]. The basic reproductive number R0 = ρ
(

F V−1
)

is the spectral radius (largest eigenvalue) of the next-generation

matrix, where F represents the Jacobian of the rates of flows

from uninfected to infected classes evaluated at the disease-free

equilibrium and V is the Jacobian of the rates of all other flows to

and from infected classes evaluated at the disease-free equilibrium.

Theorem 6.

i. IfM ≤ 1, then the basic reproduction number, R0 , associated

with system (14) is zero.
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ii. IfM > 1, then the basic reproduction number, R0, associated

with system (14) is:

R0

=
√

(bm)
2
(δc)

2βmαvπc η

(δc+µh)(µh+d1+σc)(µv+ αv)(Nh)
2(µv)

2(ξh+µh)

[

1− 1
M

]

kv,

where

M =
η αI

(η + µA ) µv
.

Proof. To compute the basic reproduction number of the

ABC fractional malaria model (14) from the malaria disease-

free equilibrium using the next-generation matrix method [33],

we focus on the infected compartments (those representing

disease progression dynamics) of the model, leading to the

following subsystem:

ABC
0 Dα

t Ec =
bm(T)βcIv

Nh
Sc − (δc + µh)Ec,

ABC
0 Dα

t Ic = δcEc −
(

µh + d1 + σc
)

Ic
ABC
0 Dα

t Ea =
bm(T)βaIv

Nh
Sa − (µh + δa)Ea,

ABC
0 Dα

t Ia = δaEa −
(

σa + µh + d2
)

Ia,
ABC
0 Dα

t Ev =
bmβm(Ia+Ic)

Nh
S
v
− (µv + αv)Ev,

ABC
0 Dα

t Iv (t) = αvEv − µvIV .







































(64)

Thus, the Jacobian matrix for the infected sub-population

Equation 64 is given by

J (Ec , Ic ,Ea , Ia ,Ev , Iv)

=





















− (δc + µh) 0 0 0 0 Scbmβc
Nh

δc −
(

µh + d1 + σc
)

0 0 0 0

0 0 − (µh + δa) 0 0 Sabmβa
Nh

0 0 δa −
(

σa + µh + d2
)

0 0

0 Svbmβm
Nh

0 Svbmβm
Nh

− (µv + αv) 0

0 0 0 0 αv −µv





















(65)

Now, we look at two cases to determine the basic

production number.

Case I: Following (65), the transmission matrix F (of new

infection terms) and the transition matrix V (of transition terms)

corresponding to the fractional ABC model (14) at trivial disease-

free equilibrium point (E01 ) are given, respectively, by

F =





















0 0 0 0 0
S0c bmβc
Nh

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





















(66)

and

V =

















(δc + µh) 0 0 0 0 0

−δc
(

µh + d1 + σc

)

0 0 0 0

0 0 (µh + δa) 0 0 0

0 0 −δa
(

σa + µh + d2
)

0 0

0 0 0 0 (µv + αv) 0

0 0 0 0 −αv µv

















,

(67)

where S0c =
πc

ξh+ µh
.

⇒ V−1

=





















1
(δc+µh)

0 0 0 0 0
δc

(δc+µh)(µh+d1+σc)
1

(µh+d1+σc)
0 0 0 0

0 0 1
(µh+δa)

0 0 0

0 0 βa
(µh+δa)(σa+µh+d2)

1

(σa+µh+d2)
0 0

0 0 0 0 1
(µv+ αv)

0

0 0 0 0 αv
(µv+ αv)µv

1
µv





















.

(68)

Thus,

FV−1 =





















0 0 0 0
−αvS

0
c bm(T)βc
N∗
h

µvS
0
c bm(T)βc
N∗
h

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





















. (69)

The basic reproduction number in this particular case is zero

because zero is the only eigenvalue of the matrix FV−1. This

suggests that the disease will not spread if an infected person is

introduced into the community at trivial disease-free site
(

E01
)

, that

is, trivial disease-free site
(

E01
)

is locally asymptotically stable for

this particular case.

Case II: Following (65), the transmission matrix F (of new

infection terms) and the transition matrix V (of transition terms)

associated with the fractional ABC model (14) at realistic disease-

free equilibrium point
(

E02
)

are given, respectively, by

F =























0 0 0 0 0
S0c bmβc
N∗
h

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0
S0vbmβm

N∗
h

0
S0vbmβm

N∗
h

0 0

0 0 0 0 0 0























(70)

and

V =

















(δc + µh) 0 0 0 0 0

−δc
(

µh + d1 + σc
)

0 0 0 0

0 0 (µh + δa) 0 0 0

0 0 −δa
(

σa + µh + d2
)

0 0

0 0 0 0 (µv + αv) 0

0 0 0 0 −αv µv

















.

(71)

⇒ V−1

=





















1
(δc+µh)

0 0 0 0 0
δc

(δc+µh)(µh+d1+σc)
1

(µh+d1+σc)
0 0 0 0

0 0 1
(µh+δa)

0 0 0

0 0 δa
(µh+δa)(σa+µh+d2)

1

(σa+µh+d2)
0 0

0 0 0 0 1
(µv+ αv)

0

0 0 0 0 αv
(µv+ αv)µv

1
µv





















.

(72)
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As a result, one can get

FV−1 =























0 0 0 0
S0c bmβcαv

(µv+ αv)N
∗
h
µv

S0c bmβc
N∗
h
µv

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
bmδcS

0
vβm

(δc+µh)(µh+d1+σc)N∗
h

bmS
0
vβm

(µh+d1+σc)N∗
h

bmS
0
vβmβm

(µh+δa)(σa+µh+d2)N∗
h

bmS
0
vβm

(σa+µh+d2)N∗
h

0 0

0 0 0 0 0 0























(73)

From (73), we get the characteristic polynomial

0 = λ4

(

λ2−
(

bm
)2

(δc)
2 S

0
cS

0
vβmαv

(δc + µh)
(

µh + d1 + σc
)

(µv + αv)
(

N∗
h

)2
µv

)

,

(74)

where

S0c =
πc

ξh + µh
,N∗

h =
πc

µh
, and S0v =

ηI

µv

[

1−
(η + µA) µv

η αI

]

Kv

(75)

which implies that

R0

=
√

(bm)
2
(δc)

2βmαv ηI (µh)
2

(δc+µh)(µh+d1+σc)(µv+ αv)πc(µv)
2(ξh+µh)

[

1− (ηI+µA)µv

ηI αI

]

kv . (76)

Therefore,

R0

=
√

(bm)
2
(δc)

2βmαv η(µh)
2

(δc+µh)(µh+d1+σc)(µv+ αv)πc(µv)
2(ξh+µh)

[

1− 1
M

]

kv, (77)

where

M =
η αI

(η + µA) µv
. (78)

This completes the proof of the Theorem 6.

Theorem 7. Themalaria disease-free equilibrium points E01 and

E02 are locally asymptotically stable if R0 < 1 and unstable if

R0 > 1.

Proof. The Jacobian matrix JE01
is found about the malaria

disease-free equilibrium
(

E01
)

:

JE01
=







































−A1 0 0 0 0 0 0 0 0 0 −B

0 −A2 0 0 0 0 0 0 0 0 B

0 βc −A3 0 0 0 0 0 0 0 0

ξh 0 0 −A4 0 0 γ 0 0 0 0

0 0 0 0 −A5 0 0 0 0 0 0

0 0 0 0 βa −A6 0 0 0 0 0

0 0 σc 0 0 σa −A7 0 0 0 0

0 0 0 0 0 0 0 −A8 A9 A9 A9

0 0 0 0 0 0 0 ηI −µv 0 0

0 0 0 0 0 0 0 0 0 −A10 0

0 0 0 0 0 0 0 0 0 αv −µv







































,

(79)

where

A1 = (ξh + µh) , A2 = (δc + µh) ,

A3 =
(

µh + d1 + σc
)

, A4 = µh,

A5 = (µh + δa) , A6 =
(

σa + µh + d2
)

,

A7 = (µh + γ ) , A8 = −αI (T)
1

Kv
S0v − (η + µA) ,

A9 = αI (T)

(

1−
M0

A

Kv

)

, A10 = (µv + αv) . (80)

The eigenvalues of Equation 79 are− (ξh + µh) −
(δc + µh), −

(

µh + d1 + σc
)

, −µh, − (µh + δa),

−
(

σa + µh + d2
)

, − (µh + γ ), − (µv + αv), −µv, and

−µv−(η+µA)±
√

µv
2+(η+µA)2−2µv(η+µA)+4αI(T)ηI

2 have all negative

real part, so for R0 < 1, the disease-free equilibrium is locally

asymptotically stable.

The following Jacobian matrix JE02
is found about the

biologically realistic disease-free equilibrium
(

E02
)

:

JE02
=











































−A1 0 0 0 0 0 0 0 0 0 − bmβcS
0
c

Nh

0 −A2 0 0 0 0 0 0 0 0
bmβcS

0
c

Nh

0 βc −A3 0 0 0 0 0 0 0 0

ξh 0 0 −A4 0 0 γ 0 0 0 0

0 0 0 0 −A5 0 0 0 0 0 0

0 0 0 0 βa −A6 0 0 0 0 0

0 0 σc 0 0 σa −A7 0 0 0 0

0 0 0 0 0 0 0 −A8 A9 A9 A9

0 0
−bmβmS0v

Nh
0 0

−bmβmS0v
Nh

0 ηI −µv 0 0

0 0
bmβmS0v

Nh
0 0

bmβmS0v
Nh

0 0 0 −A10 0

0 0 0 0 0 0 0 0 0 αv −µv











































,

(81)

where

A1 = (ξh + µh) , A2 = (δc + µh) ,

A3 =
(

µh + d1 + σc
)

, A4 = µh, A5 = (µh + δa) ,

A6 =
(

σa + µh + d2
)

, A7 = (µh + γ ) ,

A8 = −αI (T)
1

Kv
S0v − (η + µA) ,

A9 = αI (T)

(

1−
M0

A

Kv

)

, A10 = (µv + αv) . (82)

It follows from Equation 81, the eigenvalues − (ξh + µh),

−µh, − (µh + γ ), −
(

σa + µh + d2
)

, − (µh + βa), and λ2 +
(

µv + αI
1
Kv
S0v + (η + µA)

)

λ +
(

µv + αI
1
Kv
S0v

)

= 0 containing

negative real parts. The remaining (four) eigenvalues are found in

the roots of the equation provided below:
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p (λ) = λ4 + K1λ
3 + K2λ

2 + K3λ+K4 = 0, (83)

where the coefficients are











































































K1 = (δc + µh) +
(

µh + d1 + σc
)

+ (µv + αv) + µv,

K2 = (δc + µh)
(

µh + d1 + σc
)

+ (δc + µh) µv

+
(

µh + d1 + σc
)

µv

+ (δc + µh) (µv + αv) +
(

µh + d1 + σc
)

(µv + αv)

+ (µv + αv) µv,

K3 = (δc + µh)
(

µh + d1 + σc
)

µv

+ (δc + µh)
(

µh + d1 + σc
)

(µv + αv)

+ (δc + µh) (µv + αv) µv +
(

µh + d1 + σc
)

(µv + αv) µv,

K4 = (δc + µh)
(

µh + d1 + σc
)

(µv) (µv + αv)

−
(

bmβcS
0
c

Nh

)

(βc)

(

bmβmS
0
v

Nh

)

(αv) .

(84)

Thus, by Routh–Hurwitz criteria, the four eigenvalues found in

the roots of λ4 + K1λ
3 + K2λ

2 + K3λ+K4 = 0 will have a negative

real part if they satisfy the Routh–Hurwitz criteria, that is, Ki > 0,

for i = 1, · · · , 4.
It can be easily seen from the first, second, and third equations

in Equation 84 that K1 > 0, K2 > 0, and K3 > 0, respectively.

Furthermore, from the fourth equation in Equation 84, we have

K4 = (δc + µh)
(

µh + d1 + σc
)

(µv) (µv + αv)
(

1− R20
)

,

so K4 > 0, (85)

if R0 < 1 and K4 < 0, if R0 > 1.

Thus,
∣

∣arg λj
∣

∣ > ∝π
2 for all 0 < α ≤ 1. Therefore, E02 will be

locally asymptotically stable for R0 < 1 and unstable for R0 > 1 as

in [34].

Lemma. Vargas-De-León [35]. Let f (t) ∈ R+ be a continuous

and differentiable function. Then, for any time instance t ≥ 0.

ABC
0 D

α

t

(

f (t) − f ∗ − f ∗ ln
f (t)

f ∗

)

≤
(

1−
f ∗

f (t)

)

ABC
0 D

α

t (86)

and

1

2

ABC

0
D

α

t
f 2 (t) ≤ α (t)ABC0 Df (t) ,

(87)

where 0 < α < 1.

Note that α = 1, the inequalities in Equations 86, 87

become equalities.

Theorem 8. If R0 < 1, then the malaria-free equilibria, E01 and

E02, of the proposed model (13) are global asymptotic stability.

Proof. To prove this, we construct a candidate Lyapunov

function L :R11+ → R [36, 37] such that

L (Sc, Ec, Ic, Sa, Ea, Ia, Wa,MA, Sv, Ev, Iv)

=
(

Sc − S∗c − S∗c ln
Sc
S∗c

)

+ Ec + Ic + Sa + Ea + Ia +Wa +MA + Sv + Ev + Iv,

(88)

where S0c =
πc

ξh+ µh
.

Now applying ABC operator on both sides of Equation 88,

we get

ABC
0 D

α

t L = ABC
0 D

α

t

(

Sc − S∗c − S∗c ln
Sc
S∗c

)

+ ABC
0 D

α

t Ec +
ABC
0 D

α

t Ic

+ABC
0 D

α

t Sa +
ABC
0 D

α

t Ea +
ABC
0 D

α

t Ia +
ABC
0 D

α

t Wa

+ABC
0 D

α

t MA
+ ABC

0 D
α

t Sv +
ABC
0 D

α

t Ev +
ABC
0 D

α

t Iv

(89)

Substituting Equation 14 into Equation 86 and after some

algebraic simplification, we obtain

ABC
0 D

α

t L ≤

−πc

S0cSc

(

Sc − S0c
)2

+
(

bm(T)δc
Nh

Iv + 2ξh + µh

)

S0cπc − µh

(

Ec + Ic + Sa + Ea + Ia +Wa,

)

−
(

d1Ic + d2Ia
)

+ αI (T)

(

1− MA
Kv

)

(Sv + Ev + Iv)

−µv (T)MA − µv (T) (Sv + Ev + IV) + ξhSc

.

(90)

As

(

bm (T) δc

Nh
Iv + ξh + µh

)

S0cπc

+αI (T) (Sv + Ev + Iv) + ξhSc ≥ 0, (91)

we conclude that

ABC
0 D

α

t L ≤

−πc

S0c Sc

(

Sc − S0c
)2 − µh

(

Ec + Ic + Sa + Ea + Ia +Wa,

)

−
(

d1Ic + d2Ia
)

− µv (T)MA

−αI (T) MA
Kv

(Sv + Ev + Iv) − µv (T) (Sv + Ev + IV )

.

(92)

As a result, ABC0 D
α

t L ≤ 0 when 0 < α < 1 and ABC
0 D

α

t L = 0

if and only if Sc = S0c ,Ec = E0c , I
0
c = Ic, S

0
a= Sa = 0,E0a =

Ea = 0, I0a = Ia = 0,W0
a = Wa, = 0, Sv = S0v , Ic = Ic0 =

0, Ia = I0a = 0,MA = M0
A. Thus, by LaSalle’s invariance

principle [38], the malaria-free equilibria, E01 and E02, are globally

asymptotically stable.

4.5 Existence of endemic equilibrium

The endemic equilibrium point of the fractional model (14),

denoted by

E∗ =
(

S∗c , E
∗
c , I

∗
c , S

∗
a , E

∗
a , I

∗
a , W

∗
a ,M

∗
A, S

∗
v , E

∗
v , I

∗
v

)

, is defined

where d1 = d2 = 0, which leads to, Nh = πc
µh

. This equilibrium

point satisfies the following equation:

λ∗ap
(

λ∗a
)

= λ∗a

(

D2

(

λ∗a
)2 + D1

(

λ∗a
)

+ D0

)

= 0. (93)

Accordingly, the roots of Equation 93 that are either λ∗a =0

correspond to the disease-free equilibrium point or the non-zero

roots of

p
(

λ∗a
)

= D2

(

λ∗a
)2 + D1

(

λ∗a
)

+ D0 = 0, (94)

where
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D2 = µhbm (T) βmπcµv (T) (µv (T) + αv) βcδcf2f3f7f4f5f7
+µhbm (T) βmπcµv (T) (µv (T) + αv) βcγσcδaδcf2f3f7

+γσaδaπc (µv (T))2 (µv (T) + αv) βc+
+γσaδaπc (µv (T))2 (µv (T) + αv) βaf1

−
(

µhbm (T) βmπcµv (T) (µv (T) + αv) βcδcγσaδa
+f2f3f7f4f5f7πc (µv (T))2 (µv (T) + αv) βc

)

.

D1 = δaξhf2f3
(

f7
)2 + µhbm (T) βmπcµv (T) (µv (T) + αv)

µhβcδcf 2f3f7f4f5f7
+µhbm (T) βaαvµhbm (T) βmηI (T,R)M∗

Aβcδcf2f3f7f4f5f7
+µhbm (T) βaαvµhbm (T) βmηI (T,R)M∗

Aβcγσ
c
δaδcf2f3f7−









µhbm (T) βaαvµhbm (T) βmηI (T,R)M∗
Aβcδcγσaδa

+µhf2f3f7f4f5f7
πc (µv (T))2 (µv (T) + αv) βcf2f3f7f4f5f7

πc (µv (T))2 (µv (T) + αv) βaf1









,

D0 = µhbm (T) βaαvµhbm (T) βmηI (T,R)M∗
Aβaδaξhf2f3

(

f7
)2

+f2f3f4f5
(

f7
)2
(

µhbm (T) βaαvµhbm (T) βmηI (T,R)M∗
Aµhβcδc

−µhπc (µv (T))2 (µv (T) + αv) βaf1

)

.

(95)

Theorem 9. The endemic equilibrium E∗ =
(

S∗c , E
∗
c , I

∗
c , S

∗
a , E

∗
a , I

∗
a , W

∗
a ,M

∗
A, S

∗
v , E

∗
v , I

∗
v

)

of the model

system (13) is globally asymptotically stable in � if R0 > 1.

Proof. To prove this, we define the Lyapunov function

as follows:

L (Sc, Ec, Ic, Sa, Ea, Ia, Wa,MA, Sv, Ev, Iv)

=























(

Sc − S∗c − S∗c ln
Sc
S∗c

)

+
(

Ec − E∗c − E∗c ln
Ec
E∗c

)

+
(

Ic − I∗c − I∗c ln
Ic
I∗c

)

+
(

Sa − S∗a − S∗a ln
Sa
S∗a

)

+
(

Ea − E∗a − E∗a ln
Ea
E∗a

)

+
(

Ia − I∗a − I∗a ln
I
I∗a

)

+
(

Wa −W∗
a − I∗a ln

Wa
W∗

a

)























+











(

MA −M∗
A −M∗

A ln MA
M∗

A

)

+
(

Sv − S∗v − S∗v ln
Sv
S∗V

)

+
(

Ev − E∗v − E∗v ln
Ev
E∗V

)

+
(

Iv − I∗v − I∗v ln
Iv
I∗V

)











. (96)

L is continuously differentiable function and also

L
(

S∗c , E
∗
c , I

∗
c , S

∗
a , E

∗
a , I

∗
a , W

∗
a ,M

∗
A, S

∗
v , E

∗
v , I

∗
v

)

= 0, and

L
(

S∗c , E
∗
c , I

∗
c , S

∗
a , E

∗
a , I

∗
a , W

∗
a ,M

∗
A, S

∗
v , E

∗
v , I

∗
v

)

> 0

for all
(

S∗c , E
∗
c , I

∗
c , S

∗
a , E

∗
a , I

∗
a , W

∗
a ,M

∗
A, S

∗
v , E

∗
v , I

∗
v

)

6= (Sc, Ec, Ic, Sa, Ea, Ia, Wa,MA, Sv, Ev, Iv) , (97)

and applying lemma[35], we obtain

ABC
0 D

α

t (L)

≤



































A1

(

1− S∗c
Sc

)

ABC
0 D

α

t Sc (t) + A2

(

1− E∗c
Ec

)

ABC
0 D

α

t Ec (t)

+A3

(

1− I∗c
Ic

)

ABC
0 D

α

t Ic (t)+

A4

(

1− S∗a
Sa

)

ABC
0 D

α

t Sa (t) + A5

(

1− E∗a
Ea

)

ABC
0 D

α

t Ea (t)

+A6

(

1− I∗a
Ia

)

ABC
0 D

α

t Ia (t)

+A7

(

1− W∗
a

Wa

)

ABC
0 D

α

t Wa (t)+A8

(

1− M∗
A

MA

)

ABC
0 D

α

t MA (t)

A9

(

1− S∗v
Sv

)

ABC
0 D

α

t Sv (t)

+A10

(

1− E∗v
Ev

)

ABC
0 D

α

t Ev (t) + A11

(

1− I∗v
Iv

)

ABC
0 D

α

t II (t)



































.

(98)

Applying Equation 14 from Equation 98, we
obtain

ABC
0 D

α

t (L) ≤



































































(

1− S∗c
Sc

) (

πc −
(

bm(T)βcIv
Nh

+ ξ
h
+ µh

))

+
(

1− E∗c
Ec

) (

bm(T)βcIv
Nh

Sc (t) − (βc + µh)Ec

)

+
(

1− I∗c
Ic

)

(

βcEc (t) −
(

µh + d1 + σc
)

Ic
)

+
(

1− S∗a
Sa

) (

ξhSc + γWa −
(

bm(T)βaIv
Nh

+ µh

)

Sa

)

+
(

1− E∗a
Ea

) (

bm(T)βaIv
Nh

Sa − (µh + βa)Ea

)

+
(

1− I∗a
Ia

)

(

βaEa −
(

σa + µh + d2
)

Ia
)

+
(

1− W∗
a

Wa

)

(

σcIc + σaIa − (µh + γ )Wa,

)

+A8

(

1− M∗
A

MA

) (

αI (T)

(

1− MA
Kv

)

(Sv + Ev + Iv) − (ηI (T,R) + µA (T))MA)

+
(

1− S∗v
Sv

) (

ηI (T,R)MA −
(

bm(T)βm(Ia+Ic)
Nh

+µv (T)) Sv)

+
(

1− E∗v
Ev

) (

bm(T)βm(Ia+Ic)
Nh

Sv − (µv (T) + αv)Ev

)

+
(

1− I∗v
Iv

)

(αvEv − µv (T) IV )



































































.

(99)

By further rewriting this inequality, we have

ABC
0 D

α

t (L) ≤





















































































































(

1− S∗c
Sc

) (

πc −
(

bm(T)βcIv
Nh

+ ξh + µh

)

(

Sc − S∗c
)

−
(

bm(T)βcIv
Nh

+ ξ
h
+ µh

)

(

S∗c
)

)

+
(

1− E∗c
Ec

)

(

bm(T)βcIv
Nh

Sc − (βc + µh)
(

Ec − E∗c
)

− (βc + µh)
(

E∗c
))

+
(

1− I∗c
Ic

)

(

βcEc −
(

µh + d1 + σc
) (

Ic − I∗c
)

−
(

µh + d1 + σc
) (

I∗c
))

+
(

1− S∗a
Sa

) (

ξhSc + γWa −
(

bm(T)βaIv
Nh

+ µh

)

(

Sa − S∗a
)

−
(

bm(T)βaIv
Nh

+ µh

)

(

S∗a
)

)

+
(

1− E∗a
Ea

) (

bm(T)βaIv
Nh

Sa − (µh + βa)
(

Ea − E∗a
)

− (µh + βa)
(

E∗a
))

+
(

1− I∗a
Ia

)

(

βaEa −
(

σa + µh + d2
) (

Ia − I∗a
)

−
(

σa + µh + d2
) (

I∗a
))

+
(

1− W∗
a

Wa

)

(σcIc + σaIa − (µh + γ )
(

Wa, −W∗
a

)

− (µh + γ )
(

W∗
a

))

+
(

1− M∗
A

MA

)







αI (T)

(

1− MA
Kv

)

(Sv + Ev + Iv)

− (ηI (T,R) + µA (T))
(

MA −M∗
A

)

− (ηI (T,R) + µA (T))
(

M∗
A

)







+
(

1− S∗v
Sv

)









ηI (T,R)MA −
(

bm(T)βm(Ia+Ic)
Nh

+µv (T))
(

Sv − S∗v
)

−
(

bm(T)βm(Ia+Ic)
Nh

+ µv (T)

)

(

S∗v
)









+
(

1− E∗v
Ev

) (

bm(T)βm(Ia+Ic)
Nh

Sv

− (µv (T) + αv)
(

Ev − E∗v
)

− (µv (T) + αv)
(

E∗v
))

+
(

1− I∗v
Iv

)

(

αvEv − µv (T)
(

IV − I∗v
)

−µv (T)
(

I∗v
))





















































































































.

(100)

This inequality can be rewritten as

ABC
0 D

α

t (L) = C1 − C2, (101)

where
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C1 = πc

(

1−
S∗c
Sc

)

+
(

bm(T)βcIv
Nh

+ ξh + µh

)

(S∗c )
2

Sc

+ bm(T)βcIv
Nh

Sc + (βc + µh)
(E∗c )

2

Ec
+ βcEc +

(

µh + d1 + σc
) (I∗c )

2

Ic

+ξhSc + γWa +
(

bm(T)βaIv
Nh

+ µh

)

(S∗a)
2

Sa

+ bm(T)βaIv
Nh

Sa + (µh + βa)
(E∗a)

2

Ea
+ βaEa +

(

σa + µh + d2
)

(I∗a)
2

Ia
+ σcIc + σaIa + (µh + γ )

(W∗
a )

2

Wa

+αI (T)

(

1− MA
Kv

)

(Sv + Ev + Iv) + (ηI (T,R) + µA (T))
(M∗

A)
2

MA

+ηI (T,R)MA +
(

bm(T)βm(Ia+Ic)
Nh

+ µv (T)

)

(S∗v)
2

Sv

+ bm(T)βm(Ia+Ic)
Nh

Sv + (µv (T) + αv)

(E∗v)
2

Ev
+ αvEv + µv (T)

(I∗v )
2

Iv
(102)

and

C2 =
(

bm (T) βcIv

Nh
+ ξ

h

+ µh

)

S∗c
Sc

+
(

bm(T)βcIv
Nh

+ ξ
h
+ µh

)

(Sc−S∗c )
2

Sc
+
(

bm(T)βcIv
Nh

+ ξ
h
+ µh

)

S∗c +
bm(T)βcIv

Nh
Sc

E∗c
Ec

+ (βc + µh)
(Ec−E∗c )

2

Ec
+ (βc + µh)E

∗
c

+βcEc
I∗c
Ic
+
(

µh + d1 + σc
) (Ic−I∗c )

2

Ic

+
(

µh + d1 + σc
)

I∗c + (ξhSc + γWa)
S∗a
Sa

+
(

bm(T)βaIv
Nh

+ µh

)

(Sa−S∗a)
2

Sa

+
(

bm(T)βaIv
Nh

+ µh

)

S∗a +
bm(T)βaIv

Nh
Sa

E∗a
Ea

+ (µh + βa)

(Ea−E∗a)
2

Ea
+ (µh + βa)

(

E∗a
)

+βaEa
I∗a
Ia
+
(

σa + µh + d2
) (Ia−I∗a)

2

Ia
+
(

σa + µh + d2
)

I∗a

+ (σcIc + σaIa)
W∗

a
Wa

+ (µh + γ )
(Wa,−W∗

a )
2

Wa,

+ (µh + γ )W∗
a + αI (T)

(

1− MA
Kv

)

(Sv + Ev + Iv)
M∗

A
MA

+ (ηI (T,R) + µA (T))
(MA−M∗

A)
2

MA
+ (ηI (T,R) + µA (T))M∗

A

+ηI (T,R)MA
S∗v
Sv

+
(

bm(T)βm(Ia+Ic)
Nh

+ µv (T)

)

(Sv−S∗v)
2

Sv

+
(

bm(T)βm(Ia+Ic)
Nh

+ µv (T)

)

+ bm(T)βm(Ia+Ic)
Nh

Sv
E∗v
Ev

+ (µv (T) + αv)

(Ev−E∗v)
2

Ev
+ (µv (T) + αv)E

∗
v + αvEv

I∗v
Iv

+µv (T)
(IV−I∗v )

2

IV
+ µv (T) I∗v . (103)

As a result, ABC0 D
α

t (L) < 0 for C1 < C2and
ABC
0 D

α

t (L) = 0

if and only if S∗c = Sc, E∗c = Ec, I∗c = Ic, S∗a = Sa, E∗a =
Ea, I∗a = Ia, W∗

a = Wa,M
∗
A = MA, S∗v = Sv, E∗v = Ev,

and I∗v = Iv. The largest closed and bounded invariant set in

{(Sc, Ec, Ic, Sa, Ea, Ia, Wa,MA, Sv, Ev, Iv) ∈ R11+ : ABC0 D
α

t (L) = 0

is the singleton {E∗}, where E∗ is the endemic equilibrium point.

As a result, when R0 > 1 in the region �, the unique equilibrium

point E∗ is globally asymptotically stable, according to the LaSalle

invariance principle [38]. This completes the proof of the theorem.

5 Sensitivity analysis

To ensure model predictions remain reliable despite potential

uncertainties in parameter values, sensitivity analysis is widely

conducted. It reveals how changes in parameters affect the

system’s overall dynamics, particularly in relation to the basic

reproduction number, offering crucial insights. Sensitivity

analysis using the fixed-point estimation method described

in reference [39] is applied to the fractional malaria model

(14). This method analyzes the effects of local changes in

model parameters by calculating the normalized forward

sensitivity index of a variable v to a parameter (p), which is

defined as

πv
p =

∂v

∂p
×

p

v
. (104)

We created Table 3 using the following values: bm = 0.29, δc =
0.0003, βm = 0.022, µh = 0.00005, πc = 540, η = 0.343, d1 =
0.0002, µA = 0.1041, αI = 1.84, ξh = 0.000161, and µv = 0.05

per day, Kv = 40000, αv = 0.5, and σc = 0.002 as given in [[8]

and the references therein]. Figure 1 illustrates a schematic of the

mathematical model for malaria transmission (Equation 12), based

on the works of [8, 10].

Figure 2 depicts the sensitivity analysis of the basic

reproduction number [fractional malaria model (14)] for the

14 parameters in Table 4.

From the analysis of Table 4 and Figure 2, it is evident that each

parameter has a positive or negative effect on the basic reproduction

number (R0). Parameters with positive signs, such as bm, δc, βm,

αv, µh, η, kv, and αI , increase R0, while those with negative signs,

such as πc, d1, µA, ξh, σc, and µv, decrease it. The parameter with a

higher sensitivity index magnitude is more influential than those

with smaller magnitudes, as exhibited in Figure 2. For instance,

among the parameters given in the fractional malaria model (14)

relative to R0, the per capita death rate for adult mosquitoes (µv),

the lifetime number of eggs laid (bm), the maturation rate of

immaturemosquitoes (η), vector carrying capacity(kv), and the rate

at which exposed children transition to the infected class (δc) are

the most sensitive parameters, in that order. Therefore, to eliminate

or control malaria disease, it is important to focus on controlling

these parameters.

TABLE 3 Temperature-dependent parameters [see [8, 14, 41, 42] and

there references therein].

Description Equation

Mosquito biting rate (bm(T)) bm (T) = −0.00014T2 + 0.027T − 0.322

Mosquito egg deposition rate

(αI (T))

αI (T) = −0.153T2 + 8.61T − 97.7

Temperature-dependent

progression rate of exposed

vectors (αv(T))

αv(T) = −0.00083T2 + 0.044T − 0.487

Mosquito adult mortality rate

(µv (T))

µv (T) =
− ln

(

−0.000828T2 + 0.0367T + 0.522
)

Immature mosquito mortality

rate (µA (T))

µA (T) = 1

8.560 + 20.654

[

1+
(

T
19:759

)6:827
]−1
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FIGURE 1

A schematic of the mathematical model for malaria transmission.

FIGURE 2

Sensitivity to model parameters (Table 2).

6 Model analysis with
climate-dependent (temperature and
rainfall) parameter

This section examines the model parameters that affect

malaria transmission dynamics focusing on temperature and

rainfall. The results presented below were obtained using

MATLAB software.

6.1 The mosquito maturation rate

The mosquito maturation rate, denoted by η(T,R), depends

on both temperature (T) and rainfall (R). It determines the rate

at which immature mosquitoes develop into mature adults, as

described by the following equation [see [8, 14, 41] and the

references therein].

η (T,R) =
B (T)PE (R) PL (R) PP (R) PL(T)

TEA (T)
, (105)
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TABLE 4 Sensitivity analysis of the basic reproduction number (R0) at

parameter values given above.

Parameter description Parameter Sensitivity
Index

The life time number of eggs laid bm 1

The rate at which exposed children

transition to infected class

δc 0.5003

Probability of infection from

infected humans to susceptible

mosquitoes

βm 0.5

Progress rate of exposed to infected

mosquitoes

αv 0.0454

Per capita death rate for humans µh 0.3701

Birthrate of children πc −0.5

Maturation rate of immature

mosquitoes

η 0.5043

Disease-induced death rate of

infectious children

d1 −0.0444

Per capita death rate for aquatic

mosquitoes

µA −0.0043

Vector carrying capacity Kv 0.5

Per capita egg deposition rate αI 0.0184

Maturation rate of children to adult ξh −0.3815

Progression rate from infectious

class of children to recovered class

of adults

σc −0.4444

Per capita death rate for adult

mosquitoes

µv −1.064

where

• B (T) = −0:153T2+ 8:61T−97.7
− ln(−0.000828T2+ 0.0367T + 0.522)

, where B (T) is the

lifetime number of eggs laid,

• PE (R) = 4×0.93
2500 R (50− R), where PE (R) is the daily survival

probabilities of eggs,

• PL (R) = 4×0.25
2500 R (50− R), where PL (R) is the daily survival

probabilities of larva,

• PP (R) = 4×0.75
2500 R (50− R), wherePP (R) is the daily survival

probabilities of pupae,

• PL(T) = e−(0:00554T−0:06737), where PL(T) is the temperature-

dependent daily probability of survival of larvae,

• TEA (T) = 1
−0:00094T2+ 0.049T−0.552

, where TEA (T) is the

development time from egg to adult mosquito.

• Thus, η (T,R) = −0:153T2+ 8:61T−97.7
− ln(−0.000828T2+ 0.0367T + 0.522)

4∗ .93
2500 R

(50− R) 4∗ .25
2500 R (50− R) 4∗ .75

2500 R (50− R)

e
−(0:00554T−0:06737) 1

−0:00094T2+ 0.049T− 0.552

Based on the study of malaria transmission shown in

[8, 14, 40, 41] and Figure 3, we examined the effects of

temperature on the infected mosquito population in our

proposed integer-order malaria model (14). We simulated infected

mosquito populations across four temperature ranges: 17–25◦C,

21–25◦C, 30–32◦C, and 35–39◦C. The results are shown in

Figures 4A–D, respectively.

Furthermore, we investigated the effects of daily rainfall on

mosquito development. Mosquito burden are known to peak

at 25◦C [[8, 40–42] and Figure 4A], so we used this constant

temperature (T= 25◦C) for our analysis, as in previous studies [see

[42] and the reference therein]. Figure 5 depicts the relationship

between mosquito maturation rate (η(T,R)) and rainfall (R) in

millimeters for a temperature of 25◦C. As shown in Figure 5,

aquatic mosquitoes cannot survive daily rainfall exceeding 50

millimeters. It is important to note that aquatic mosquitoes

cannot survive daily rainfall exceeding 50mm, which limits vector

population growth. These effects are illustrated in Figures 6A–D.

The mosquito maturation rate, denoted by η(T,R), depends on

both temperature (T) and rainfall (R). This rate determines the

speed at which immature mosquitoes develop into mature adults.

We examined this rate for various temperature and rainfall values:

T= 20, 25, 30, and 35◦C and R= 10, 20, 30, and 40mm. The results

are shown in Figure 6.

7 Results and discussion

7.1 Results

This section presents fractional-order (14) malaria models

using graphs to understand the behavior of the solution

trajectories. To draw the graph of the fractional-order model

(13), we use the scheme introduced in [43], that is, from the

solution of the differential equation with fractional order α

given by

{

ABC
0 Dα

t

(

g (t)
)

= F
(

t, g (t)
)

,

g (0) = g0 ≥ 0,
where for α ∈ (0, 1], (106)

expressed as

g (t) = g (0) +
1− α

B (α)
F
(

t, g (t)
)

+
α

B (α) Ŵ (α)

∫ t

0
F
(

τ , g (τ )
)

(t − τ)
α−1

dτ , (107)

where

g (t) =

(

Sc (t) , Sa(t), Ec(t), Ea(t), Ic(t), Ia(t),

Wa (t), MA (t), Sv (t), Ev (t), Iv (t)

)T

. (108)

At t = tn+1, n = 0, 1, 2, · · · , we obtain

g (tn+1) − g (0) =
1− α

B (α)
F
(

tn, g (tn)
)

+
α

B (α) Ŵ (α)
∫ tn+1

0
F
(

τ , g (τ )
)

(tn+1 − τ)
n−1

dτ

=
1− α

B (α)
F
(

tn, g (tn)
)

+
α

B (α) Ŵ (α)
∑n

i=0

∫ ti+1

ti
F
(

τ , g (τ )
)

(tn+1 − τ)
n−1

dτ . (109)

With the help of interpolation polynomial, we approximate the

function f
(

τ , g (τ )
)

over [ti, ti+1 ].

F
(

τ , g (τ )
) ∼= pk (τ ) =

F
(

ti, g (ti)
)

h
(τ − ti−1)

− F(ti−1 ,g(ti−1))
h (τ − ti) . (110)
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FIGURE 3

Relationship between basic reproduction number vs. temperature.

FIGURE 4

Model simulations 4 show new mosquito infections for temperatures: (A) (17–25◦C), (B) (21–25◦C), (C) (30–32◦C), and (D) (35–39◦C).

Using Equation 110, Equation 109 takes the form:

g (tn+1) = g (0) +
1− α

B (α)
F
(

tn, g (tn)
)

+
α

B (α) Ŵ (α)

(

n
∑

i=0

f
(

ti, g (ti)
)

h

∫ ti+1

ti

(τ − ti−1) (tn+1 − τ)n−1 dτ

−
f
(

ti−1, g (ti−1)
)

h

∫ ti+1

ti

(τ − ti) (tn+1 − τ)n−1

)

dτ . (111)
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Solving the integrals involved in Equation 111, we get the

approximate solution as below:

g (tn+1) = g (t0) +
1− α

B (α)
F
(

tn, g (tn)
)

+
α

B (α) Ŵ (α)

FIGURE 5

Mosquito maturation rate (η(T,R)) vs. rainfall (R) in mm for (T = 25).

n
∑

i=0











hαF
(

ti, g (ti)
)

((n+ 1− i)α (n− i+ 2+ α)

− (n− i)α (n− i+ 2+ 2α))

−hαF
(

ti−1, g (ti−1)
)

(

(n+ 1− i)α+1 − (n− i)α (n− i+ 1+ α)
)











(112)

Hence, we have the following recursive formulas for the

proposed malaria model (14):

Sc (tn+1) = Sc (t0) +
1− α

B (α)
F1
(

tn, g (tn)
)

+
α

B (α) Ŵ (α)

n
∑

i=0











hαF1
(

ti, g (ti)
)

((n+ 1− i)α (n− i+ 2+ α)

− (n− i)α (n− i+ 2+ 2α))

−hαF1
(

ti−1, g (ti−1)
)

(

(n+ 1− i)α+1 − (n− i)α (n− i+ 1+ α)
)











, (113)

Ec (tn+1) = Ec (t0) +
1− α

B (α)
F2
(

tn, g (tn)
)

+
α

B (α) Ŵ (α)

n
∑

i=0











hαF2
(

ti, g (ti)
)

((n+ 1− i)α (n− i+ 2+ α)

− (n− i)α (n− i+ 2+ 2α))

−hαF2
(

ti−1, g (ti−1)
)

(

(n+ 1− i)α+1 − (n− i)α (n− i+ 1+ α)
)











, (114)

FIGURE 6

(A–D) Show mosquito stages (aquatic, susceptible, exposed, and infected) at 25◦C over time (days) for di�erent rainfall rates (10, 20, 30, and 40mm).
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FIGURE 7

Impact of temperature and daily rainfall on mosquito maturation rate. Values used: T = 20, 25, 30, and 35◦C and R = 10, 20, 30, and 40mm.

FIGURE 8

(A–D) Exemplify the total numbers of infected vectors for 17–25◦C for di�erent values of fractional order alpha: (A) (α = 0.7), (B) (α = 0.8), (C) (α =
0.9), and (D) (α = 1), respectively.
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FIGURE 9

(A–D) Depict the total numbers of infected vectors for 35–39◦C for di�erent values of fractional order alpha: (A) (α = 0.7), (B) (α = 0.8), (C) (α = 0.9),

and (D) (α = 1), respectively.

Ic (tn+1) = Ic (t0) +
1− α

B (α)
F3
(

tn, g (tn)
)

+
α

B (α) Ŵ (α)

n
∑

i=0











hαF3
(

ti, g (ti)
)

((n+ 1− i)α (n− i+ 2+ α)

− (n− i)α (n− i+ 2+ 2α))

−hαF3
(

ti−1, g (ti−1)
)

(

(n+ 1− i)α+1 − (n− i)α (n− i+ 1+ α)
)











, (115)

Sa (tn+1) = Sa (t0) +
1− α

B (α)
F4
(

tn, g (tn)
)

+
α

B (α) Ŵ (α)

n
∑

i=0











hαF4
(

ti, g (ti)
)

((n+ 1− i)α (n− i+ 2+ α)

− (n− i)α (n− i+ 2+ 2α))

−hαF4
(

ti−1, g (ti−1)
)

(

(n+ 1− i)α+1 − (n− i)α (n− i+ 1+ α)
)











, (116)

Ea (tn+1) = Ea (t0) +
1− α

B (α)
F5
(

tn, g (tn)
)

+
α

B (α) Ŵ (α)

n
∑

i=0











hαF5
(

ti, g (ti)
)

((n+ 1− i)α (n− i+ 2+ α)

− (n− i)α (n− i+ 2+ 2α))

−hαF5
(

ti−1, g (ti−1)
)

(

(n+ 1− i)α+1 − (n− i)α (n− i+ 1+ α)
)











, (117)

Ia (tn+1) = Ia (t0) +
1− α

B (α)
F6
(

tn, g (tn)
)

+
α

B (α) Ŵ (α)

n
∑

i=0











hαF6
(

ti, g (ti)
)

((n+ 1− i)α (n− i+ 2+ α)

− (n− i)α (n− i+ 2+ 2α))

−hαF6
(

ti−1, g (ti−1)
)

(

(n+ 1− i)α+1 − (n− i)α (n− i+ 1+ α)
)











, (118)

Wa (tn+1) = Wa (t0) +
1− α

B (α)
F7
(

tn, g (tn)
)

+
α

B (α) Ŵ (α)

n
∑

i=0











hαF7
(

ti, g (ti)
)

((n+ 1− i)α (n− i+ 2+ α)

− (n− i)α (n− i+ 2+ 2α))

−hαF7
(

ti−1, g (ti−1)
)

(

(n+ 1− i)α+1 − (n− i)α (n− i+ 1+ α)
)











, (119)

MA (tn+1) = MA (t0) +
1− α

B (α)
F8
(

tn, g (tn)
)

+
α

B (α) Ŵ (α)

n
∑

i=0











hαF8
(

ti, g (ti)
)

((n+ 1− i)α (n− i+ 2+ α)

− (n− i)α (n− i+ 2+ 2α)
)

−hαF8
(

ti−1, g (ti−1)
)

(

(n+ 1− i)α+1 − (n− i)α (n− i+ 1+ α)
)











, (120)
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FIGURE 10

Infected vector vs. time (days) for di�erent temperatures 17–25◦C and di�erent alphas (α = 0.6, 0.7, 0.8, 0.9, and 1).

Sv (tn+1) = Sv (t0) +
1− α

B (α)
F9
(

tn, g (tn)
)

+
α

B (α) Ŵ (α)

n
∑

i=0











hαF9
(

ti, g (ti)
)

((n+ 1− i)α

(n− i+ 2+ α) − (n− i)α (n− i+ 2+ 2α))

−hαF9
(

ti−1, g (ti−1)
)

(

(n+ 1− i)α+1 − (n− i)α (n− i+ 1+ α)
)











, (121)

Ev (tn+1) = Ev (t0) +
1− α

B (α)
F10

(

tn, g (tn)
)

+
α

B (α) Ŵ (α)

n
∑

i=0











hαF10
(

ti, g (ti)
)

((n+ 1− i)α (n− i+ 2+ α)

− (n− i)α (n− i+ 2+ 2α))

−hαF10
(

ti−1, g (ti−1)
)

(

(n+ 1− i)α+1 − (n− i)α (n− i+ 1+ α)
)











, (122)

Iv (tn+1) = Iv (t0) +
1− α

B (α)
F11

(

tn, g (tn)
)

+
α

B (α) Ŵ (α)

n
∑

i=0















hαF11
(

ti, g (ti)
)

((n+ 1− i)α (n− i+ 2+ α) − (n− i)α

(n− i+ 2+ 2α))

−hαF11
(

ti−1, g (ti−1)
) (

(n+ 1− i)α+1

− (n− i)α (n− i+ 1+ α))















, (123)

where

Fj
(

tn, g (tn)
)

= Fj

(

tn,

(

Sc (tn) , Sa (tn) , Ec (tn) , Ea (tn) , Ic (tn) , Ia (tn) ,

Wa (tn) , MA (tn) , Sv (tn) , Ev (tn) , Iv (tn)

))

,

j = 1, 2, · · · , 11 (124)

Fi
(

ti, g (ti)
)

= Fi

(

ti,

(

Sc (ti) , Sa (ti) , Ec (ti) , Ea (ti) , Ic (ti) , Ia (ti) ,

Wa (ti) , MA (ti) , Sv (ti) , Ev (ti) , Iv (ti)

))

,

i = 1, 2, · · · , 11 (125)

Fi
(

ti−1, g (ti−1)
)

= Fi






ti−1,







Sc (ti−1) , Sa (ti−1) , Ec (ti−1) , Ea (ti−1) ,

Ic (ti−1) , Ia (ti−1) , Wa (ti−1) , MA (ti−1) ,

Sv (ti−1) , Ev (ti−1) , Iv (ti−1)












,

i = 1, 2, · · · , 11. (126)

7.2 Discussion

Fractional-order malaria model analysis considering

temperature and rainfall with Caputo operators showed correlation

between these factors and mosquito population dynamics. Key

factors affecting mosquito dynamics identified through sensitivity
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FIGURE 11

(A–C) Show the total numbers of susceptible, exposed, and infected children under 17, for di�erent values of alpha.

analysis were adult mosquito death rate, egg laying rate, maturation

rate, vector carrying capacity, and exposed child transition rate,

aligning with prior studies [8].

Based on the study of malaria transmission shown in [8, 14,

40–42] and Figure 3, we examined the effects of temperature on

the infected mosquito population in our proposed integer-order

malaria model 14(α = 1). We varied temperatures across four

ranges: 17–25◦C, 21–25◦C, 30–32◦C, and 35–39◦C. The results

are shown in Figures 4A–D, respectively. Figure 4A confirms that

within the 17–25◦C range, both infections and malaria burden

rise with temperature, with the optimal temperature being 25◦C

[as expected from [8, 14, 40–42]]. However, Figures 4B–D show

varying trends at higher temperatures: a peak burden at higher

temperatures [Figure 4B, supported by [8]], a decrease with

increasing temperature [Figure 4C, consistent with [8] and the

references therein and [40]], and a drastic decrease with increasing

temperature (Figure 4D) [see [15] and the references therein and

[14, 40]].

As Figure 6A shows, the maximum value for aquatic mosquito

vector growth is observed at a rainfall of 40mm. In contrast, the

remaining mosquito stages, including the susceptible mosquito

(Figure 6B), exposed mosquito (Figure 6C), and infected mosquito

(Figure 6D), all require a maximum rainfall of 30mm for

growth. Notably, infected mosquito populations peak at 30mm

of rainfall, suggesting that this is a favorable condition for

malaria transmission compared to other rainfall values considered.

Thus, we conclude that the peak for malaria transmission is at

temperature (T = 25◦C) [8, 40–42] and rainfall (R = 30mm) [42].

Figure 7 reveals that mosquito maturation rate peaks and reaches

its minimum at 20◦C (19.18 and 10mm, respectively) despite

variations in rainfall (10–40 mm).

Figure 8 shows mosquito infection peaks at 25◦C for all

fractional orders (α = 0.7, 0.8, 0.9, and 1), similar to the classical

malaria model 14 (Figure 4A) and aligned with prior findings [8,

40–42]. In addition, Figures 8A–D (α = 0.7, 0.8, 0.9, and 1) reveal a

rise in mosquito infections with increasing temperature, consistent

with the classical model 14 (Figure 4A) [8], whereas Figures 9A–D

for all fractional orders (α = 0.7, 0.8, 0.9, and 1) show a dramatic

reduction in mosquito infection as the temperature increases from

35 to 39◦C. This is similar to the graph of the classical malaria

model (14) as in Figure 4D, which is consistent with the findings

in [15] and the reference therein and [40].

Furthermore, from Figures 8, 9, we can see that as the value of

the fractional order alpha approaches 1, the results resemble the

graph of the classical malaria model 14. For instance, Figures 8A–D

(α = 0.7, 0.8, 0.9, and 1) resemble the classical malaria model 14

(α = 1) in Figure 4A, and Figures 9A–D (α = 0.7, 0.8, 0.9, and 1)

resemble the classical malaria model 14 (α = 1) (Figure 4D).
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FIGURE 12

(A–C) Show the total numbers of susceptible, exposed, and infected adults, for di�erent values of alpha.

Furthermore, Figure 10 shows that, like Figures 8A–D plotted

on the different plane, the burden of mosquito peaks shown to

occur at 25◦C. As the value of the fractional-order derivative

approaches one, it resembles Figure 4A, the classical model of 14

(α = 1). One advantage of ABC fractional derivative operators is

that we can obtain distinct solutions.

Figure 11A demonstrates that as the number of susceptible

children under seventeen decreases, the value of alpha (α) also

decreases. This suggests a linear relationship between the two.

Conversely, Figure 11B reveals that decreasing the exposed class

of children under seventeen lowers alpha (α). This implies faster

transitions from susceptible to exposed with a lower alpha value.

Finally, Figure 11C shows a steeper curve. This indicates that model

(14) relies heavily on past infection data when determining the rate

of change in infected individuals.

Figures 12A–C examine adult susceptibility and disease

spread. Figure 12A shows a rise and fall in susceptible

adults, reflecting growth (new adults) followed by depletion

(infections/immunity). Figure 12B reveals slower transitions

from susceptible to exposed adults with lower alpha (α).

Conversely, Figure 12C shows infected mosquitoes raise

with higher alpha (α), implying the model prioritizes past

infections in adult disease spread. The decline in infected adults

with higher alpha (α) suggests the model incorporates other

factors later.

Furthermore, for our future study, research directions [44–

49] will be used. These areas, particularly those related to non-

standard finite difference methods in fractional modeling [44, 49]

and delay techniques in epidemic models [45–48], align well with

the potential applications of our proposed method.

8 Conclusion

This study analyzes malaria transmission dependence on

temperature and rainfall using a fractional-order differential

model with Atangana–Baleanu operators (in the Caputo sense). It

confirms the model’s solution existence, uniqueness, and stability.

Sensitivity analysis identified adult mosquito mortality, egg laying,

maturation, and exposed child transition rates as key factors,

aligning with prior research [8].

Simulations confirmed theoretical results: Peak malaria

transmission occurred at 25◦C (Figure 4A), consistent with

[8, 40–42]. Malaria burden increased with temperature (17–25◦C)

(Figure 4A) [agreeing with [8]]. Figures 4B–D show a decrease

with increasing temperature, also supported by [13–15], and the

references therein.

Fractional-order model simulations (alpha approaching 1)

resembled the classical model. For instance, Figures 8A–D (α

= 0.7, 0.8, 0.9, and 1) resemble the classical malaria model in
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Figure 4A, and Figures 9A–D (α = 0.7, 0.8, 0.9, and 1) resemble

Figure 4D. This study lays the groundwork for future research

on infectious diseases using fractional derivatives, particularly

ABC operators. Further extension could incorporate real-data

non-autonomous parts, requiring additional compartments for

mosquito and human populations.
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