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In the present study, we prove generalizations of Banach, Kannan, Chatterjea,
Ćirić-Reich-Rus fixed point theorems, as well as of the fixed point theorem
for mapping contracting perimeters of triangles. We consider corresponding
mappings in semimetric spaces with triangle functions introduced by Bessenyei
and Páles. Such an approach allows us to derive corollaries for various
types of semimetric spaces such as metric spaces, ultrametric spaces, and
b-metric spaces. The significance of these generalized theorems extends
across multiple disciplines, such as optimization, mathematical modeling, and
computer science. They may serve to establish stability conditions, demonstrate
the existence of optimal solutions, and improve algorithm design.
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1 Introduction

The Contraction Mapping Principle was established by Banach in his dissertation

(1920) and published in 1922 [1]. Although the idea of successive approximations

in a number of concrete situations (solution of differential and integral equations,

approximation theory) had appeared earlier in the studies by P. L. Chebyshev, E. Picard, R.

Caccioppoli, and others, S. Banach was the first to formulate this result in a correct abstract

form which is suitable for a wide range of applications.

In 1968, pioneering study by Kannan in fixed-point theory led to a significant result,

which is independent of the Banach contraction principle [2]. Kannan’s theorem provided

a crucial characterization of metric completeness: A metric space X is complete if and only

if every mapping satisfying Kannan contraction on X has a fixed point [3]. This discovery

spurred the introduction of numerous contractive definitions, many of which allowed for

discontinuity in their domain. Among these contractive conditions, those explored by

Chaterjee [4] and Ćirić-Reich-Rus [5–7] share similar characteristics, further enriching

understanding of the properties of contractive mappings in metric spaces. For various

contractive definitions, we suggest authors refer to a survey study by Rhoades [8]. After a

century, the interest of mathematicians around the world in fixed point theorems remains

high. This is evidenced by the appearance of numerous articles and monographs in recent

decades dedicated to fixed point theory and its applications. For a survey of fixed point

results and their diverse applications, see, for example, the monographs [9–11].

Let X be a nonempty set. Recall that a mapping d : X × X → R
+, R+ = [0,∞) is a

metric if for all x, y, z ∈ X the following axioms hold:
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(i) (d(x, y) = 0) ⇔ (x = y),

(ii) d(x, y) = d(y, x),

(iii) d(x, y) 6 d(x, z)+ d(z, y).

The pair (X, d) is called ametric space. If only axioms (i) and (ii)

hold, d is called a semimetric. A pair (X, d), where d is a semimetric

on X, is called a semimetric space. Such spaces were first examined

by Fréchet in the study mentioned in [12], where he called them

“classes (E).” Later these spaces and mappings on them attracted

the attention of many mathematicians [13–18].

In semimetric spaces, the notions of convergent and Cauchy

sequences, as well as completeness, can be introduced in the usual

way.

The concept of b-metric space was initially introduced by

Bakhtin [19] under the name of quasi-metric spaces, wherein he

demonstrated a contraction principle in this space. Czerwik [20, 21]

further utilized such space to establish generalizations of Banach’s

fixed point theorem. In a b-metric space, the triangle inequality

(iii) is extended to include the condition that there exists K ≥ 1,

ensuring that d(x, y) ≤ K[d(x, z) + d(z, y)] for all x, y, z ∈ X. Fagin

and Stockmeyer [22] further explored the relaxation of the triangle

inequality within b-metric spaces, labeling this adjustment as non-

linear elastic matching (NEM). They observed its application across

diverse domains, including trademark shape analysis [23] and the

measurement of ice floes [24]. Xia [25] utilized this semimetric

distance to investigate optimal transport paths between probability

measures.

Recall that an ultrametric is a metric for which the strong

triangle inequality d(x, y) 6 max{d(x, z), d(z, y)} holds for all

x, y, z ∈ X. In this case, the pair (X, d) is called an ultrametric space.

Note that the ultrametric inequality was formulated by F. Hausdorff

in 1934 and ultrametric spaces were introduced by Krasner [26] in

1944.

In 2017, Bessenyei and Páles [27] extended the Matkowski

fixed point theorem [28] by introducing a definition of a triangle

function 8 : R
2
+ → R

+
for a semimetric d. We adopt this

definition in a slightly different form, restricting the domain and

the range of 8 by R2
+ and R

+, respectively.

Definition 1.1. Consider a semimetric space (X, d). We say that

8 : R
+ × R

+ → R
+ is a triangle function for d if 8 is symmetric

and non-decreasing in both of its arguments, satisfies 8(0, 0) = 0

and, for all x, y, z ∈ X, the generalized triangle inequality

d(x, y) 6 8(d(x, z), d(z, y)) (1)

holds.

Obviously, metric spaces, ultrametric spaces, and b-metric

spaces are semimetric spaces with the triangle functions 8(u, v) =

u + v, 8(u, v) = max{u, v}, and 8(u, v) = K(u + v), K > 1,

respectively.

In Bessenyei and Páles [27], semimetric spaces with so-

called basic triangle functions that are continuous at the origin

were investigated. These spaces were termed regular. It was

demonstrated that in a regular semimetric space, the topology

is Hausdorff, a convergent sequence has a unique limit, and

possesses the Cauchy property, among other properties. For

further developments in this area, see also [29–33].

In this study, we revisit several well-known fixed-point

theorems, either extending their capabilities by modifying their

assumptions or presenting new and innovative proofs. With the

help of key Lemma 1.2 and its conclusion, we unveil further

results that offer insightful perspectives on the nature of fixed-point

theorems, not only within the metric context but also within more

general spaces.

Here is the key lemma essential for the subsequent sections.

Lemma 1.2. Let (X, d) be a semimetric space with the triangle

function 8 satisfying the following conditions:

1) The equality

8(ku, kv) = k8(u, v) (2)

holds for all k, u, v ∈ R
+.

2) For every 0 6 α < 1, there exists C(α) > 0 such that for

every p ∈ N
+ the inequality

8(1,8(α,8(α2, ....,8(αp−1,αp)))) 6 C(α) (3)

holds.

Let (xn), n = 0, 1, . . ., be a sequence in X having the property

that there exists α ∈ [0, 1) such that

d(xn, xn+1) 6 αd(xn−1, xn) (4)

for all n > 1. Then, (xn) is a Cauchy sequence.

Proof.We break the proof of this lemma into several parts. 1. Initial

bounds: by Equation (4), we have

d(x1, x2) 6 αd(x0, x1), d(x2, x3) 6 αd(x1, x2),

d(x3, x4) 6 αd(x2, x3), . . . .

Hence, we obtain

d(xn, xn+1) 6 αnd(x0, x1). (5)

2. Use of generalized triangle inequality (Equation 1): applying

consecutively generalized triangle inequality (Equation 1) to the

points xn, xn+1, xn+2, . . . , xn+p, where p ∈ N
+, p > 2, we obtain

d(xn, xn+p) 6 8(d(xn, xn+1), d(xn+1, xn+p))

6 8(d(xn, xn+1),8(d(xn+1, xn+2), d(xn+2, xn+p)))

. . .

6 8(d(xn, xn+1),8(d(xn+1, xn+2), . . . ,8(d(xn+p−2, xn+p−1),

d(xn+p−1, xn+p)))).

3. Utilizing properties of 8: by the monotonicity of 8 and

inequalities (Equation 5), we have
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d(xn, xn+p) 6 8(αnd(x0, x1),8(αn+1d(x0, x1),

· · · ,8(αn+p−2d(x0, x1),α
n+p−1d(x0, x1)))).

Applying several times equality (Equation 2), we get

d(xn, xn+p) 6 αn8(1,8(α, · · · ,8(αp−2,αp−1)))d(x0, x1).

4. Bounding the expression and concluding Cauchy sequence:

by condition (Equation 3), we obtain

d(xn, xn+p) 6 αnC(α)d(x0, x1). (6)

Since 0 6 α < 1, we have d(xn, xn+p) → 0 as n → ∞ for every

p > 2. If p = 1, the relation d(xn, xn+1) → 0 follows from the study

mentioned in Equation (5). Thus, (xn) is a Cauchy sequence, which

completes the proof.

Remark 1.3. Let (X, d) be a complete semimetric space. Then the

sequence (xn) has a limit x∗. If additionally the semimetric d is

continuous, then we get d(xn, xn+p) → d(xn, x
∗) as p → ∞. Hence,

letting p → ∞ in Equation (6) we get

d(xn, x
∗) 6 αnC(α)d(x0, x1). (7)

2 Banach contraction principle in
semimetric spaces

It is possible to extend the well-known concept of contraction

mapping to the case of semimetric spaces. We shall say that a

mapping T : X → X is a contraction mapping on the semimetric

space (X, d) if there exists α ∈ [0, 1) such that

d(Tx,Ty) 6 αd(x, y) (8)

for all x, y ∈ X.

Theorem 2.1. Let (X, d) be a complete semimetric space with

the triangle function 8 continuous at (0, 0) and satisfying

conditions (Equations 2, 3). Let T : X → X be a contraction

mapping. Then, T has a unique fixed point.

Proof. Let x0 ∈ X and let xn = Txn−1, n = 1, 2, .... By Equation (8)

and by Lemma 1.2, (xn) is a Cauchy sequence, and by completeness

of (X, d), this sequence has a limit x∗ ∈ X.

Let us prove that Tx∗ = x∗. It is easy to observe that

the contraction mappings on semimetric spaces are continuous.

Indeed, let yn → y0 as n → ∞. Then d(yn, y0) → 0, and

by Equation (8), we have d(Tyn,Ty0) → 0, i.e., Tyn → Ty0. Since

xn → x∗, by the continuity of T, we have xn+1 = Txn → Tx∗. By

generalized triangle inequality (Equation 1) and continuity of 8 at

(0, 0), we have

d(x∗,Tx∗) 6 8(d(x∗, xn), d(xn,Tx
∗)) → 0

as n → ∞, which means that x∗ is the fixed point.

Suppose that there exist two distinct fixed points x and y. Then,

Tx = x and Ty = y, which contradicts to the study mentioned in

Equation (8).

Corollary 2.2. The following assertions hold:

(i) (Banach contraction principle) Theorem 2.1 holds for

metric spaces, i.e., for semimetric spaces with the triangle

function 8(u, v) = u+ v.

(ii) The following inequality holds:

d(xn, x
∗) 6

αn

1− α
d(x0, x1).

Proof. (i) It is easy to observe that 8 satisfies equality (Equation 2)

and 8 is continuous at (0, 0). Consider expression (Equation 3) for

such power triangle functions 8:

1+ α + α2 + · · · + αp−1 + αp.

According to the formula for the sum of infinite geometric

series, this sum is less than 1/(1−α) = C(α) for every finite p ∈ N
+,

which establishes inequality (Equation 3).

Assertion (ii) follows directly from the study mentioned in

Equation (7).

Corollary 2.3. The following assertions hold:

(i) Theorem 2.1 holds for ultrametric spaces, i.e., for semimetric

spaces with the triangle function 8(u, v) = max{u, v}.

(ii) The following inequality holds:

d(xn, x
∗) 6 αnd(x0, x1).

Proof. (i) It is easy to observe that 8 satisfies equality (Equation 2)

and 8 is continuous at (0, 0). Consider expression (Equation 3) for

the power triangle functions 8. Since α < 1, we have

max{1,α,α2, · · · ,αp−1,αp} = 1 = C(α),

which establishes inequality (Equation 3).

Assertion (ii) follows directly from Equation (7). Distance

spaces with power triangle functions 8(u, v) = (uq + vq)
1
q , q ∈

[−∞,∞] were considered in [34]. In [34] these functions have

a little more general form. Note also that semimetric spaces with

power triangle functions are metric spaces if q > 1.

Corollary 2.4. The following assertions hold:

(i) Theorem 2.1 holds for semimetric spaces with power triangle

functions 8(u, v) = (uq + vq)
1
q if q > 0.

(ii) The following inequality holds for q > 1:

d(xn, x
∗) 6

αn

(1− αq)
1
q

d(x0, x1).

Proof. (i) It is easy to observe that 8 satisfies equality (Equation 2)

and 8 is continuous at (0, 0). Consider expression (Equation 3) for

the power triangle functions 8:

(1+ αq + α2q + · · · + α(p−1)q + αpq)
1
q .

It is clear that the sum

1+ αq + α2q + · · · + α(p−1)q + αpq (9)
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consists of p+ 1 terms of geometric progression with the common

ratio αq and start value 1. Since α < 1, we have the inequality

αq < 1. According to the formula for the sum of infinite geometric

series, sum (Equation 9) is less than 1/(1 − αq) for every finite

p ∈ N
+. Hence,

(1+ αq + α2q + · · · + α(p−1)q + αpq)
1
q < (1/(1− αq))

1
q = C(α),

which establishes inequality (Equation 3).

Assertion (ii) follows directly from Equation (7) and from the

fact that semimetric spaces with power triangle functions are metric

spaces if q > 1.

Corollary 2.5. Theorem 2.1 holds for b-metric spaces with the

coefficient K if αK < 1, where α is the coefficient from Equation 8.

Proof. It is clear that 8(u, v) = K(u + v) satisfies

condition (Equation 2) and it is continuous at (0, 0). Consider

expression (Equation 3) for the function 8:

K + K2α + K3α2 + · · · + Kpαp−1 + Kpαp (10)

6 K + K2α + K3α2 + · · · + Kpαp−1 + Kp+1αp.

It is clear that this sum consists of p + 1 terms of geometric

progression with the common ratio αK and the start value K.

According to the formula for the sum of infinite geometric series,

sum (Equation 10) is less than K/(1− αK) = C(α) for every finite

p ∈ N
+, which establishes inequality (Equation 3).

Note that Corollary 2.5 is already known, see Theorem 1 in Kir

and Kiziltunc [35].

3 Kannan’s contractions in semimetric
spaces

Kannan [2] proved the following result which gives the fixed

point for discontinuous mappings.

Theorem 3.1. Let T : X → X be a mapping on a complete metric

space (X, d) such that

d(Tx,Ty) 6 β(d(x,Tx)+ d(y,Ty)), (11)

where 0 6 β < 1
2 and x, y ∈ X. Then, T has a unique fixed point.

The mappings satisfying inequality (Equation 11) are called

Kannan type mappings.

Theorem 3.2. Let (X, d) be a complete semimetric space with the

continuous triangle function 8, satisfying conditions (Equations

2, 3). Let T : X → X satisfy inequality (Equation 11) with

some 0 6 β < 1
2 and let additionally the following condition

hold:

(i) 8(0,β) < 1.

Then, T has a unique fixed point.

Proof. Let x0 ∈ X. Define xn = Txn−1 = Tnx0 for n = 1, 2, . . .. It

follows straightforwardly that

d(xn, xn+1) = d(Txn−1,Txn)

6 β(d(xn−1,Txn−1)+ d(xn,Txn)) = β(d(xn−1, xn)+ d(xn, xn+1)),

and

d(xn, xn+1) 6 αd(xn−1, xn),

where α =
β

1−β
, 0 6 α < 1. By Lemma 1.2, (xn) is a Cauchy

sequence, and by completeness of (X, d), this sequence has a limit

x∗ ∈ X.

Let us prove that Tx∗ = x∗. By the generalized triangle

inequality (Equation 1), the monotonicity of 8, and (Equation 11),

we get

d(x∗,Tx∗) 6 8(d(x∗,Tnx0), d(T
nx0,Tx

∗))

6 8(d(x∗,Tnx0),β(d(T
n−1x0,T

nx0)+ d(x∗,Tx∗))).

Letting n → ∞, by the continuity of 8, we obtain

d(x∗,Tx∗) 6 8(0,βd(x∗,Tx∗)).

Using (Equation 2), we have

d(x∗,Tx∗) 6 d(x∗,Tx∗)8(0,β).

By condition (i), we get d(x∗,Tx∗) = 0.

Suppose that there exist two distinct fixed points x and y. Then,

Tx = x and Ty = y, which contradicts to Equation (11).

Corollary 3.3. Theorem 3.2 holds for semimetric spaces with the

following triangle functions: 8(u, v) = u + v; 8(u, v) = K(u + v),

1 6 K 6 2; 8(u, v) = max{u, v}; 8(u, v) = (uq + vq)
1
q , q > 0,

and with the corresponding estimations (Equation 7) from above

for d(xn, x
∗).

Proof. The proof follows directly from Corollaries 2.2, 2.3, and 2.4

and from the fact that all above mentioned triangle functions satisfy

condition (i) of Theorem 3.2.

4 Chatterjea’s contractions in
semimetric spaces

Chatterjea [4] proved the following result.

Theorem 4.1. Let T : X → X be a mapping on a complete metric

space (X, d) such that

d(Tx,Ty) 6 β(d(x,Ty)+ d(y,Tx)), (12)

where 0 6 β < 1
2 and x, y ∈ X. Then, T has a unique fixed point.
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The mappings satisfying inequality (Equation 12) are called

Chatterjea type mappings.

To prove the following theorem, we need the notion of an

inverse function for a non-decreasing function. This is due to the

fact that the aim of this theorem is also to cover the class of

ultrametric spaces and the fact that the function 9(u) = max{u, 1}

is not strictly increasing. By Gutlyanskii et al. [36, p. 34] for every

non-decreasing function9 : [0,∞] → [0,∞], the inverse function

9−1
: [0,∞] → [0,∞] can be well defined by setting

9−1(τ ) = inf
9(t)>τ

t.

Here, inf is equal to ∞ if the set of t ∈ [0,∞] such that

9(t) > τ is empty. Note that the function 9−1 is non-decreasing

too. It is evident immediately by the definition that

9−1(9(t)) 6 t for all t ∈ [0,∞]. (13)

Theorem 4.2. Let (X, d) be a complete semimetric space with the

continuous triangle function 8, satisfying conditions (Equations 2,

3) and such that the semimetric d is continuous. Let T : X → X

satisfy inequality (Equation 12) with some real number β > 0 such

that the following conditions hold:

(i) 8(0,β) < 1.

(ii) 9−1(1/β) > 1 if β > 0, where 9(u) = 8(u, 1).

Then T has a fixed point. If 0 6 β < 1
2 , then the fixed point is

unique.

Proof. Let β = 0. Then, (Equation 12) is equivalent to d(Tx,Ty) = 0

for all x, y ∈ X. Let x0 ∈ X and x∗ = Tx0. Then d(Tx0,T(Tx0)) = 0

and d(x∗,Tx∗)=0. Hence, x∗ is a fixed point. Suppose that there

exist another fixed point x∗∗ 6= x∗, x∗∗ = Tx∗∗. Then, by the

equality d(Tx,Ty) = 0, we have d(Tx∗,Tx∗∗) = d(x∗, x∗∗) = 0,

which is a contradiction.

Let now β > 0 and let x0 ∈ X. Define xn = Txn−1 = Tnx0
for n = 1, 2, . . .. If xi = xi+1 for some i, it is clear that xi is a fixed

point. Suppose that xi 6= xi+1 for all i.

It follows straightforwardly that

d(xn, xn+1) = d(Txn−1,Txn) 6 β(d(xn−1,Txn)+ d(xn,Txn−1))

= β(d(xn−1, xn+1)+ d(xn, xn)) = βd(xn−1, xn+1).

Hence, by the generalized triangle inequality (Equation 1) and

condition (Equation 2), we get

d(xn, xn+1) 6 β8(d(xn−1, xn), d(xn, xn+1))

and

1

β
6 8

(

d(xn−1, xn)

d(xn, xn+1)
, 1

)

= 9

(

d(xn−1, xn)

d(xn, xn+1)

)

, (14)

where 9(u) = 8(u, 1), u ∈ [0,∞). It is clear that 9(u) is non-

decreasing on [0,∞). Hence, 9−1(u) is also non-decreasing on

[0,∞). Hence, it follows from Equations (13, 14) that

9−1

(

1

β

)

6
d(xn−1, xn)

d(xn, xn+1)

and

d(xn, xn+1) 6
(

9−1
(

1/β
))−1

d(xn−1, xn).

Consequently,

d(xn, xn+1) 6 αd(xn−1, xn),

where α =
(

9−1
(

1/β
))−1

. Since by condition (ii) 9−1(1/β) > 1

we get 0 6 α < 1. By Lemma 1.2, (xn) is a Cauchy sequence, and

by completeness of (X, d), this sequence has a limit x∗ ∈ X.

Let us prove that Tx∗ = x∗. By the generalized triangle

inequality (Equation 1), the monotonicity of 8 and (Equation 12),

we get

d(x∗,Tx∗) 6 8(d(x∗,Tnx0), d(T
nx0,Tx

∗))

6 8(d(x∗,Tnx0),β(d(T
n−1x0,Tx

∗)+ d(x∗,Tnx0))).

Letting n → ∞, the continuity of 8 and d we obtain

d(x∗,Tx∗) 6 8(0,βd(x∗,Tx∗)).

Using (Equation 2), we have

d(x∗,Tx∗) 6 d(x∗,Tx∗)8(0,β).

By condition (i), we get d(x∗,Tx∗) = 0.

Suppose that there exist two distinct fixed points, x and y. Then,

Tx = x and Ty = y, which contradicts to Equation (12).

Corollary 4.3. Theorem 4.2 holds in ultrametric spaces with the

coefficient 0 6 β < 1.

Proof. According to the assumption, 8(u, v) = max{u, v}, 9(u) =

max{u, 1} and

9−1(u) =

{

0, u ∈ [0, 1],

u, u ∈ (1,∞).

Clearly, condition (i) holds for all 0 6 β < 1 and condition (ii)

holds for all 0 < β < 1.

Corollary 4.4. Theorem 4.2 holds for semimetric spaces with the

following triangle functions 8(u, v) = (uq + vq)
1
q , q > 1 and with

the coefficient 0 6 β < 2−1/q in Equation (12).

Proof.We have9(u) = (uq+1)
1
q and9−1(u) = (uq−1)

1
q . Clearly,

condition (i) holds for all 0 6 β < 1 but condition (ii) holds if

0 < β < 2−1/q.

Note that the following proposition is already known, see

Theorem 3 in [35]. But it does not follow from Theorem 4.2

since the semimetric d in a b-metric space (X, d) is not obligatory

continuous if K > 1.

Proposition 4.5. Theorem 4.2 holds in b-metric spaces with K > 1

and with the coefficient 0 6 β < 1
2K in Equation (12).

Corollary 4.6. Theorem 4.1 holds.

Proof. It suffices to set K = 1 in Proposition 4.5 or q = 1 in

Corollary 4.4.
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5 Ćirić-Reich-Rus’s contractions in
semimetric spaces

In 1971, independently, Ćirić [5], Reich [6], and Rus [7]

extended the Kannan fixed point theorem to cover a broader class

of mappings.

Theorem 5.1. Let T : X → X be a mapping on a complete metric

space (X, d) with

d(Tx,Ty) 6 αd(x, y)+ βd(x,Tx)+ γ d(y,Ty), (15)

α > 0,β > 0, γ > 0 and α + β + γ < 1. Then, T has a unique

fixed point.

In what follows, we will refer to the mapping (Equation 15) as

the Ćirić-Reich-Rus mapping. This theorem integrates principles

from both the Banach contraction principle (by choosing β = γ =

0) and the Kannan fixed point theorem with α = 0 and β = γ .

Theorem 5.2. Let (X, d) be a complete semimetric space with the

continuous triangle function 8, satisfying conditions (Equations

2, 3). Let T : X → X be a Ćirić-Reich-Rus mapping with the

coefficients α > 0,β > 0, γ > 0, α+β+γ < 1, and let additionally

the following condition hold:

(i) 8(0, γ ) < 1.

Then, T has a unique fixed point.

Proof. Let x0 ∈ X. Define xn = Txn−1 = Tnx0 for n = 1, 2, . . ..

Then, it follows straightforwardly that

d(xn, xn+1) = d(Txn−1,Txn)

6 αd(xn−1, xn)+ βd(xn−1,Txn−1)+ γ d(xn,Txn)

= αd(xn−1, xn)+ βd(xn−1, xn)+ γ d(xn, xn+1).

Hence,

d(xn, xn+1) 6 δd(xn−1, xn),

where δ =
α+β
1−γ

, 0 6 δ < 1. By Lemma 1.2, (xn) is a Cauchy

sequence and by completeness of (X, d), this sequence has a limit

x∗ ∈ X.

Let us prove that Tx∗ = x∗. By the generalized triangle

inequality (Equation 1), the monotonicity of 8, and (Equation 15),

we get

d(x∗,Tx∗) 6 8(d(x∗,Tnx0), d(T
nx0,Tx

∗))

6 8(d(x∗,Tnx0),αd(T
n−1x0, x

∗)+βd(Tn−1x0,T
nx0)+γ d(x∗,Tx∗)).

Letting n → ∞, by the continuity of 8, we obtain

d(x∗,Tx∗) 6 8(0, γ d(x∗,Tx∗)).

Using (Equation 2), we have

d(x∗,Tx∗) 6 d(x∗,Tx∗)8(0, γ ).

By condition (i), we get d(x∗,Tx∗) = 0.

Suppose that there exist two distinct fixed points x and y. Then,

Tx = x and Ty = y, which contradicts to Equation (15).

Corollary 5.3. Theorem 5.2 holds for semimetric spaces with the

following triangle functions: 8(u, v) = u + v; 8(u, v) = K(u + v),

1 6 K < 1/γ ; 8(u, v) = max{u, v}; 8(u, v) = (uq + vq)
1
q , q > 0,

with the corresponding estimations (Equation 7) from above for

d(xn, x
∗).

6 Mappings contracting perimeters of
triangles in semimetric spaces

Let X be a metric space. In Petrov [37], a new type of mappings

T : X → X was considered and characterized as mappings

contracting perimeters of triangles (see Definition 6.1). It was

demonstrated that such mappings are continuous. Furthermore,

a fixed-point theorem for such mappings was proven, with

the classical Banach fixed-point theorem emerging as a simple

corollary. An example of a mapping contracting perimeters of

triangles, which is not a contraction mapping, was constructed

for a space X with card(X) = ℵ0. In this section, we establish a

generalization of the aforementioned theorem.

The following definition was introduced in Petrov [37] for the

case of ordinary metric spaces. In this study, we extend it for the

case of general semimetric spaces.

Definition 6.1. Let (X, d) be a semimetric space with |X| > 3. We

shall say that T : X → X is a mapping contracting perimeters of

triangles on X if there exists α ∈ [0, 1) such that the inequality

d(Tx,Ty)+ d(Ty,Tz)+ d(Tx,Tz) 6 α(d(x, y)+ d(y, z)+ d(x, z))

(16)

holds for all three pairwise distinct points x, y, z ∈ X.

Remark 6.2. Note that the requirement for x, y, z ∈ X to be

pairwise distinct in Definition 6.1 is essential. One can observe

that otherwise this definition is equivalent to the definition of

contraction mapping.

We shall say that x0 is an accumulation point of the semimetric

space (X, d); if for every ε > 0, there exists x ∈ X, x 6= x0, such that

d(x0, x) 6 ε.

The subsequent proposition demonstrates that mappings

contracting perimeters of triangles are continuous not only in

ordinary metric spaces but also in more general semimetric spaces

with triangle functions continuous at the origin.

Proposition 6.3. Let (X, d), |X| > 3, be a semimetric space with

a triangle function 8 continuous at (0, 0), and let T : X → X be

a mapping contracting perimeters of triangles on X. Then, T is

continuous.

Proof. Let x0 be an isolated point inX. Then, clearly,T is continuous

at x0. Let now x0 be an accumulation point. Let us show that for

every ε > 0, there exists δ > 0 such that d(Tx0,Tx) < ε whenever
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d(x0, x) < δ. Suppose that x 6= x0, otherwise this assertion is

evident. Since x0 is an accumulation point, for every δ > 0 there

exists y ∈ X such that x0 6= y 6= x and d(x0, y) < δ. Since the points

x0, x, and y are pairwise distinct by Equation (16), we have

d(Tx0,Tx) 6 d(Tx0,Tx)+ d(Tx0,Ty)+ d(Tx,Ty)

6 α(d(x0, x)+ d(x0, y)+ d(x, y)).

Using the generalized triangle inequality d(x, y) 6

8(d(x0, x), d(x0, y)) and monotonicity of 8, we get

d(Tx0,Tx) 6 α(d(x0, x)+ d(x0, y)+ 8(d(x0, x), d(x0, y)))

6 α(2δ + 8(δ, δ)).

Since 8 is continuous at (0, 0) and 8(0, 0) = 0, we get that

for every ε > 0, there exists δ > 0 such that the inequality

α(2δ + 8(δ, δ)) < ε holds, which completes the proof.

Let T be a mapping on the metric space X. A point x ∈ X is

called a periodic point of period n if Tn(x) = x. The least positive

integer n for which Tn(x) = x is called the prime period of x. In

particular, the point x is of prime period 2 if T(T(x)) = x and

Tx 6= x.

The following theorem is the main result of this section.

Theorem 6.4. Let (X, d), |X| > 3, be a complete semimetric space

with the triangle function 8 continuous at (0, 0) and satisfying

conditions (Equations 2, 3) and let the mapping T : X → X satisfy

the following two conditions:

(i) T does not possess periodic points of prime period 2.

(ii) T is a mapping contracting perimeters of triangles on X.

Then, T has a fixed point. The number of fixed points is at most

two.

Proof. Let x0 ∈ X, Tx0 = x1, Tx1 = x2, . . . , Txn = xn+1,

. . . . Suppose xi is not a fixed point of the mapping T for every

i = 0, 1, .... Let us show that all xi are different. Since xi is not fixed,

xi 6= xi+1 = Txi. By condition (i) xi+2 = T(T(xi)) 6= xi and by the

supposition that xi+1 is not fixed, we have xi+1 6= xi+2 = Txi+1.

Hence, xi, xi+1, and xi+2 are pairwise distinct. Furthermore, set

p0 = d(x0, x1)+ d(x1, x2)+ d(x2, x0),

p1 = d(x1, x2)+ d(x2, x3)+ d(x3, x1),

· · ·

pn = d(xn, xn+1)+ d(xn+1, xn+2)+ d(xn+2, xn),

· · · .

Since xi, xi+1, and xi+2 are pairwise distinct by Equation (16),

we have p1 6 αp0, p2 6 αp1, . . . , pn 6 αpn−1 and

p0 > p1 > ... > pn > . . . . (17)

Suppose now that j > 3 is a minimal natural number such that

xj = xi for some i such that 0 6 i < j − 2. Then, xj+1 = xi+1,

xj+2 = xi+2. Hence, pi = pj which contradicts to Equation (17).

Thus, all xi are different.

Furthermore, let us show that (xi) is a Cauchy sequence. It is

clear that

d(x0, x1) 6 p0,

d(x1, x2) 6 p1 6 αp0,

d(x2, x3) 6 p2 6 αp1 6 α2p0,

· · ·

d(xn−1, xn) 6 pn−1 6 αn−1p0, (18)

d(xn, xn+1) 6 pn 6 αnp0,

· · · .

Comparing Equation (18) with Equation (5) and using the

proof of Lemma 1.2, we get that (xn) is a Cauchy sequence. By

completeness of (X, d), this sequence has a limit x∗ ∈ X.

Let us prove that Tx∗ = x∗. Since xn → x∗, by continuity

of T, we have xn+1 = Txn → Tx∗. By the generalized triangle

inequality (Equation 1) and continuity of 8 at (0, 0), we have

d(x∗,Tx∗) 6 8(d(x∗, xn), d(xn,Tx
∗)) → 0

as n → ∞, which means that x∗ is the fixed point.

Suppose that there exist at least three pairwise distinct fixed

points x, y, and z. Then, Tx = x, Ty = y and Tz = z, which

contradicts to Equation (16).

Corollary 6.5. Theorem 6.4 holds for semimetric spaces with the

following triangle functions: 8(u, v) = u + v; 8(u, v) = K(u + v),

K > 1; 8(u, v) = max{u, v}; 8(u, v) = (uq + vq)
1
q , q > 0, with the

corresponding estimations (Equation 7) from above for d(xn, x
∗).

The following example shows that condition (i) in Theorem 6.4

is necessary.

Example 1. Let us construct an example of the mapping T

contracting perimeters of triangles which does not have any fixed

point. Let X = {x, y, z}, d(x, y) = d(y, z) = d(x, z) = 1 and let

T : X → X be such that Tx = y, Ty = x, and Tz = x. In this case,

the points x and y are periodic points of prime period 2.

7 Applications

Fixed point theorems offer a robust framework for

comprehending and addressing the solutions to linear and

non-linear problems that arise in biological, engineering, and

physical sciences.

In Chapter 6 of Subramaniyam’s monograph [11], various

applications of the contraction principle are explored. These

applications span domains including Fredholm and Volterra

integral equations, existence theorems for initial value problems

of first-order ordinary differential equations (ODEs), solutions of

second-order ODE boundary value problems (BVPs), functional

differential equations, discrete BVPs, a variety of functional

equations, commutative algebra, and fractals [see also Kirk [9], [38],

Agarwal et al. [10], Matkowski [28], and references therein].
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In its multifaceted nature, fixed point theorems play a pivotal

role in analyzing solutions to non-linear partial differential

equations (PDEs). Notably, Brouwer’s, Schauder’s, and Schaefer’s

fixed point theorems, among others, have emerged as powerful

tools for ensuring the existence and uniqueness of solutions across a

diverse spectrum of non-linear PDEs (see Albert [39], Herbert [40],

and references therein).

8 Conclusion and future research
directions

In summary, our study has revisited numerous renowned fixed-

point theorems, providing extensions by adjusting assumptions

and introducing innovative proofs. Utilizing Lemma 1.2 and its

corollary, we have gained further insights into the essence of fixed-

point theorems, broadening their relevance beyond metric spaces

to encompass more general scenarios. This investigation indicates

promising directions for future research, especially concerning the

application of our approach to other contractive mappings across

diverse conditions. Additionally, exploring real-world applications

in light of established results offers intriguing possibilities for

addressing various practical problems across different settings.
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