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In this study, the initial-boundary value problems to semilinear integro-

di�erential equations with multi-term fractional Caputo derivatives are analyzed.

A particular case of these equations models oxygen di�usion through capillaries.

Under proper requirements on the given data in the model, the classical and

strong solvability of these problems for any finite time interval [0,T] are proved via

so-called continuation method. The key point in this approach is finding suitable

a priori estimates of a solution in the fractional Hölder and Sobolev spaces.
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1 Introduction

Complex phenomena in the engineering and scientific fields are modeled utilizing the

fractional differential equations (FDEs). Nowadays, the fractional calculus is an efficient

tool for describing dynamic behavior of living systems and hereditary properties of various

materials: the relaxation process in polymers [1], chaotic neuron model [2], longtime

memory in financial time series via fractional Langevin equations [3], and tumor growth

models [4] (see also references therein). We also refer to [5, 6], where the authors propose

the advanced mathematical model for oxygen delivery to tissue through a capillary in

both (transverse and longitudinal) directions. In these studies, conveying oxygen from a

capillary to the surrounding tissue is described by means of a subdiffusion equation having

two fractional derivatives in time, that is

Dνt C− τD
µ
t C = div(a0∇C)− k−

∫ t

0

(t − s)ν−1

Ŵ(ν)
(b1(x, s)∇C(x, s)

+ b0(x, s)C(x, s))ds

with 0 < µ < ν < 1. Here, C represents the concentration of oxygen, τ is the time lag

in concentration of oxygen along the capillaries (in the present model, this parameter is a

positive constant), k is the rate of consumption per volume of tissue, and a0 and bi are the

diffusion coefficients of oxygen. In addition, the termDνt C−τD
µ
t C details the net diffusion

of oxygen to all tissues.

In this equation, the symbolDθt stands for the Caputo fractional derivative with respect

to time of order θ ∈ (0, 1),

Dθt C(x, t) =











1
Ŵ(1−θ)

∂
∂t

t
∫

0

C(x,s)−C(x,0)
(t−s)θ

ds if θ ∈ (0, 1),

∂C
∂t (x, t) if θ = 1,
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where Ŵ is the Euler’s Gamma function. An equivalent definition of

this derivative in the case of absolutely continuous functions reads

Dθt C(x, t) =











1
Ŵ(1−θ)

t
∫

0

(t − s)−θ ∂C
∂s (x, s)ds if θ ∈ (0, 1),

∂C
∂t (x, t) if θ = 1.

In this art, motivated by the discussion above, we focus on the

analytical study of the semilinear integro-differential equation with

memory terms. Let � ⊂ R
n, n ≥ 2, be a bounded domain with a

smooth boundary ∂�, and for any T > 0, we set

�T = �× (0,T) and ∂�T = ∂�× [0,T].

We consider the initial-value problems to the multi-term time-

fractional semilinear diffusion equation in the unknown function

u = u(x, t) :�T → R,

Dtu− L1u−K ∗ L2u+ f (u) = g(x, t) in �T , (1.1)

subject to the following initial and boundary conditions:























u(x, 0) = u0(x) in �̄,

u = ϕ1(x, t) on ∂�T inDBC case,

or

Mu+K1 ∗Mu− c0u = ϕ2(x, t) on ∂�T in 3BC case,

(1.2)

where the abbreviations DBC and 3BC mean the Dirichlet

boundary condition and the boundary condition of the third

kind, respectively.

Here, c0 is given positive number, g, u0,ϕi are given functions,

andK1 andK are prescribed memory kernels.

Here, the symbol ∗ stands for the usual time-convolution

product on (0, t),

(h1 ∗ h2)(t) =

t
∫

0

h1(t − s)h2(s)ds.

The operator Dt is the linear combination of Caputo fractional

derivatives with respect to time, namely

Dtu = Dνt (ρu)+

M
∑

i=1

D
νi
t (ρiu)−

N
∑

j=1

D
µj

t (γju), (1.3)

where ν ∈ (0, 1) and νi,µj ∈ (0, ν) are arbitrary but fixed, and

ρ = ρ(x, t), ρi = ρi(x, t) and γj = γj(x, t) are given positive

functions.

Coming to the remaining operators, Li, i = 1, 2, are

linear elliptic operators of the second order with time-dependent

coefficients, while M is a first-order differential operator. Their

precise forms will be given in Sections 3, where we detail the main

assumptions in the model.

Published works concerning the multi-term fractional

diffusion/wave equations, i.e., the equation with the operator

Dtu =

N
∑

i=1

qiD
νi
t u, (1.4)

with qi being positive, and 0 ≤ ν1 < ν2 < ... < νM ,

are quite limited in spite of rich literature on their single-term

version. Exact solutions of linear multi-term fractional diffusion

equations with qi being positive constants on bounded domains

are searched employing eigenfunction expansions in Daftardar-

Gejji and Bhalekar [7] and Morales-Delgado et al. [5]. We quote

Srivastava and Rai [6] andMorales-Delgado et al. [5], where certain

numerical solutions are constructed to the corresponding initial-

boundary value problems to evolution equations with Dt given

via Equation 1.4. Finally, we mention [8], where existence and

non-existence of the mild solutions to the Cauchy problem for

semilinear subdiffusion equation with the operator Equation 1.4

are discussed. In particular, the authors obtain the Fujita-type and

Escobedo-Herrero-type critical exponents for this equation and the

system. It is worth noting that, all these works concern to evolution

equations with the operator Equation 1.4 which can be rewritten in

the form of a generalized fractional derivative with a non-negative

locally integrable kernelN(t), that is

Dtu(x, t) =
∂

∂t

∫ t

0
N(t−τ )u(x, τ )dτ−N(t)u(x, 0), t > 0. (1.5)

Coming to the initial-boundary value problems associated with

Equation 1.1 with the operator Dt given by Equation 1.3, we point

out two principal differences with respect to the aforementioned

articles. The first deals with the presence of Caputo fractional

derivatives of the product of two functions: the desired solution u

and the prescribed coefficients ρ, ρi, γj. Incidentally, we recall that

the well-known Leibniz rule does not work in the case of fractional

derivatives. The second distinction is that the operator Dt given by

Equation 1.3 (under certain assumptions on the coefficients) can be

represented in the form Equation 1.4 but with a negative kernel.

Indeed, setting in Equation 1.3

M = 0, N = 1, ρ = Cρ , γ1 = 1+ Cρ ,

where Cρ is a positive constant, we have the representation

Dtu =
∂

∂t
(N ∗ (u− u0))

with

N = Cρ

[

t−ν

Ŵ(1− ν)
−

t−µ1

Ŵ(1− µ1)

]

−
t−µ1

Ŵ(1− µ1)

being negative for t > e−Cγ [see Janno and Kinash [9], Lemma 4];

Cγ is the Euler–Mascheroni constant. In fact, the non-negativity

of the kernel N is a principal assumption in the aforementioned

studies.

The linear version of Equations 1.1, 1.3 subject to various type

boundary conditions with the coefficients in Dt being alternating

sign is discussed in Pata et al. [10] and Vasylyeva [11]. For any fixed

time T, the existence and uniqueness of a solution to semilinear

problem (Equations 1.1, 1.3) with the Dirichlet or the Neumann

boundary conditions are analyzed in Siryk and Vasylyeva [12]

and Vasylyeva [11]. Namely, if the coefficients of the operator

Dt are only time-dependent and non-decreasing functions, then

the well-posedness of these problems in the fractional Hölder

and Sobolev spaces is established in the one-dimensional case in
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Siryk and Vasylyeva [12]. As for the multidimensional case, the

classical solvability of the Cauchy-Dirichlet problem to semilinear

(Equation 1.1) in the case of two-term fractional derivatives in Dt

(i.e., eitherM = 1,N = 0 orM = 0,N = 1) is proved in Vasylyeva

[11]. In this study, the coefficients in Equation 1.1 are time and

space dependent but instead of their non-decreasing in time, they

have to satisfy more complex assumption. Indeed, ifM = 1,N = 0,

then the function ρ
ρ1

should be decreasing. Finally, we remark that

in Vasylyeva [11], the non-linear term is the local Lipschitz.

The goal of this study is finding sufficient conditions on the

coefficients of the operator Dt , the order fractional derivatives

ν,µj, and νi, j, i ≥ 1, and the non-linearity f which provide

one-to-one classical and strong solvability (for any fixed T) in the

case of the DBC or the 3BC. Actually, we consider two types of

the non-linearity f (u). The first is f satisfying the local Lipschitz

condition and having the linear growth. As for the second, f is

a continuous differentiable on R with a super-linear growth. For

example, f is a polynomial of odd degree with the positive leading

coefficient (see Giorgi et al. [13]). Coming to the coefficients in

the fractional operator Dt , we discuss both the non-decreasing

coefficients and the coefficients satisfying the properties of

Theorem 2 [11].

We notice that the key ingredient in the proof of the classical

solvability is the continuation approach, based on the introduction

of a family of auxiliary problems depending on a parameter λ ∈

[0, 1]. Then, one has to produce a priori estimates in the fractional

Hölder spaces for the solution which are independent of λ. One of

the crucial points in the arguments is concerned to the estimates of

‖u‖C(�̄T )
, obtained via integral iteration technique adopted to the

multi-term fractional case. As for the strong solvability, it is proved

via the construction of this solution as a limit of approximate

smooths solutions and exploiting a priori estimates in the

Sobolev spaces.

Finally, we notice that assumptions on the coefficients and

the memory kernels in the one-dimensional and multidimensional

cases are different. It is related with using various approaches to get

a priori estimates of the solutions if n = 1 and n ≥ 2. Namely, if

n ≥ 2, we relax assumptions on the coefficients ofDt , in particular,

we allow coefficients depending on time and space in Equation 1.3.

However, we require more regular memory kernel in Equation 1.1,

K ∈ C1([0,T]).

Outline of the study

This article is organized as follows: in Section 2, we introduce

the notations and the functional spaces. The general assumptions

and main results (Theorems 3.1, 3.2) are stated in Section 3.

Theorem 3.1 is devoted to the one-valued classical solvability to

Equation 1.1 with the DBC or the 3BC in the multidimensional

case, while the strong solvability is established in Theorem 3.2.

Section 4 is auxiliary and contains some technical and preliminary

results from fractional calculus, playing a key role in the course

of the investigation. Section 5 concerns to the obtaining a priori

estimates in the fractional Hölder and Sobolev spaces, which will be

a crucial point in the proof of the main results. Here, the key bound

is the estimate of ‖u‖
C
α,αν/2

(�̄T )
, produced via integral iteration

techniques adapted to the case of multi-term fractional derivatives.

The proof of Theorems 3.1 and 3.2 is carried out in Section 6.

2 Functional spaces and notation

Throughout this study, the symbol C will denote a generic positive

constant, depending only on the structural quantities of the

problem.

In the course of our study, we will exploit the fractional Hölder

and Sobolev spaces. To this end, in what follows, we take two

arbitrary (but fixed) parameters

α ∈ (0, 1) and ν ∈ (0, 1).

For any non-negative integer l, any p ≥ 1, s ≥ 0, and any

Banach space (X, ‖ · ‖X), we consider the usual spaces

Cl+α(�̄), Ws,p(�), Lp(�), Cs([0,T],X), Ws,p((0,T),X).

Recall that for non-integer s, the space Ws,p is called Sobolev-

Slobodeckii space [for its definition and properties see, e.g., Adams

and Fournier [14], Chapter 1].

Denoting for β ∈ (0, 1)

〈v〉
(β)
x,�T

= sup
{

|v(x1 ,t)−v(x2 ,t)|
|x1−x2|β

: x2 6= x1, x1, x2 ∈ �̄, t ∈ [0,T]
}

,

〈v〉
(β)
t,�T

= sup
{

|v(x,t1)−v(x,t2)|
|t1−t2|β

: t2 6= t1, x ∈ �̄, t1, t2 ∈ [0,T]
}

.

Then, we assert the following definition.

Definition 2.1. A function v = v(x, t) belongs to the class

Cl+α,
l+α
2 ν(�̄T), for l = 0, 1, 2, if the function v and its corresponding

derivatives are continuous and the norms here below are finite:

‖v‖
C
l+α, l+α2 ν

(�̄T )

=



















‖v‖
C([0,T],C

l+α
(�̄))

+
∑l

|j|=0〈D
j
xv〉

(
l+α−|j|

2 ν)

t,�T
, l = 0, 1,

‖v‖
C([0,T],C

2+α
(�̄))

+ ‖Dνt v‖Cα,
α
2 ν (�̄T )

+
∑2

|j|=1〈D
j
xv〉

(
2+α−|j|

2 ν)

t,�T
, l = 2.

In a similar way, for l = 0, 1, 2, we introduce the space

Cl+α,
l+α
2 ν(∂�T).

The properties of these spaces have been discussed in

Krasnoschok et al. [15] (Section 2). As for the limiting case ν = 1,

these classes boil down to the usual parabolic Hölder spaces.

Finally, we will say that a function v defined in �T belongs to

H
s1 ,s2
p (�T) with p > 1 and s1, s2 ≥ 0, if v ∈ Ws1 ,p((0,T), Lp(�)) ∩

Lp((0,T),W
s2 ,p(�)), and the norm here below is finite

‖v‖H s1,s2
p (�T )

= ‖v‖Ws1,p((0,T),Lp(�)) + ‖v‖Lp((0,T),Ws2,p(�)).

The space H s1 ,s2
p (∂�T) is defined in the similar manner.
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3 Main results

First, we state additional requirements on the given data in

Equations 1.1, 1.2.

• h1 (Conditions on the fractional order of the derivatives in

Equation 1.3): We assume that

ν ∈ (0, 1), νi,µj ∈
(

0, ν(2−α)2

)

, νi 6= µj,

i = 1, 2, ...,M, j = 1, 2, ...,N,

0 < ν1 < ν2 < ... < νM < ν, 0 < µ1 < µ2 < ... < µN < ν.

• h2 (Conditions on the operators): The operators appearing in

Equations 1.1, 1.2 read







































L1 =
∑n

ij=1
∂
∂xi

(

aij(x, t)
∂
∂xj

)

+
∑n

i=1 ai(x, t)
∂
∂xi

+ a0(x, t),

L2 =
∑n

ij=1
∂
∂xi

(

aij(x, t)
∂
∂xj

)

+
∑n

i=1 bi(x, t)
∂
∂xi

+ b0(x, t),

M = −
∑n

ij=1 aij(x, t)Ni
∂
∂xj

,

(3.1)

where Ni is a component of the outward normal N =

{N1, ...,Nn} to �; the fractional operator Dt in Equation 1.1 is

given by Equation 1.3.

There are positive constants 0 < δ1 < δ2, such that

δ1|ξ |
2 ≤

n
∑

ij=1

aij(x, t)ξiξj ≤ δ2|ξ |
2

for any (x, t, ξ ) ∈ �̄T × R
n.

Moreover, we require that

a0, b0 ∈ Cα,αν/2(�̄T), aij, ai, bj ∈ C1+α,(1+α)ν/2(�̄T),

i, j = 1, ..., n.

• h3 (Conditions on the coefficients ofDt): We require that for

ν0 ≥ max{1, ν(2+ α)/2}

the relations hold

ρ(x, t), ρi(x, t), γj(x, t) ∈ Cν0 ([0,T], C1(�̄));

and there are positive constants δ, δ3, δ4, such that

ρ ≥ δ > 0, ρi ≥ δ3 > 0, γj ≥ δ4 > 0

for each (x, t) ∈ �̄T and for all i = 1, 2, ...,M, j = 1, 2, ...,N.

In addition, if N ≥ 1, then

ρ(x, t) = ρ0(x, t)+

N
∑

j=1

γj(x, t),

where the function ρ0 ∈ Cν0 ([0,T], C1(�̄)) is positive for all

t ∈ [0,T] and x ∈ �̄.

Moreover, we require that the one of the following

conditions holds:

(i) either ∂ρ
∂t ,

∂ρ0
∂t ,

∂ρi
∂t ,

∂γj
∂t are non-negative for all (x, t) ∈

�̄T ;

(ii) or






∂
∂t

(

ρ0
ρi

)

, ∂
∂t

(

ρ0
γj

)

≤ 0 if N ≥ 1,

∂
∂t

(

ρ
ρi

)

≤ 0, if N = 0,

for all i = 1, ...,M, j = 1, ...,N, and any (x, t) ∈ �̄T .

• h4 (Conditions on the right-hand sides): The given functions

have the following regularity:

g ∈ Cα,
να
2 (�̄T), u0 ∈ C2+α(�̄),

ϕ1 ∈ C2+α,
2+α
2 ν(∂�T), ϕ2 ∈ C1+α,

1+α
2 ν(∂�T),

• h5 (Conditions on the memory kernels):

K(t) ∈ C1([0,T]), K1 ∈ L1(0,T).

• h6 (Compatibility conditions): The following compatibility

conditions hold for every x ∈ ∂� at the initial time t = 0,

ϕ1(x, 0) = u0(x) and

Dtϕ1|t=0 = L1u0(x)|t=0 − f (u0)+ g(x, 0),

if theDBC holds, and there is

Mu0(x)|t=0 − c0u0(x) = ϕ2(x, 0)

in the 3BC case.

• h7 (Conditions on the nonlinearity): We assume that the one

of the following requirements holds:

• h7.I: either f (u) is the local Lipschitz and has a linear

growth, i.e., for every ̺ > 0, there exists a positive constant

C̺ , such that

|f (u1)− f (u2)| ≤ C̺|u1 − u2|

for any u1, u2 ∈ [−̺, ̺]; and

there is a positive constant L, such that

|f (u)| ≤ L(1+ |u|) for any u ∈ R;

• h7.II: or f ∈ C1(R), and for some non-negative constants

Li, i=1,2,3,4, and q ≥ 0, the inequalities hold















|f (u)| ≤ L1(1+ |u|q),

uf (u) ≥ −L2 + L3|u|
q+1,

f ′(u) ≥ −L4.

Remark 3.1. It is apparent that if the positive functions ρ, ρi, γj are

time-independent, then condition h3(i) boils down to h3(ii).

Example 3.1. The simplest example of the functions satisfying h3

is

ρ = C0, γj = Cj, ρi = C̄i, i = 1, ...,M, j = 1, ...,N,

where C0, Cj, C̄i are positive constants, such that

C0 −

N
∑

j=1

Cj > 0.
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Now, we are in the position to state the one-valued classical

solvability of Equations 1.1, 1.2.

Theorem 3.1. Let T > 0 be arbitrarily given, ∂� ∈ C2+α , n ≥ 2,

and let assumptions h1–h6 hold. We assume that f (u) meets the

requirement h7.I if N ≥ 1, while in the case of N = 0, f (u) satisfies

h7. Then, initial-boundary value problem Equations 1.1, 1.2 admits

a unique classical solution u = u(x, t) satisfying the regularity:

u ∈ C2+α,
2+α
2 ν(�̄T), D

νi
t u,D

µj

t u ∈ Cα,
αν
2 (�̄T),

i = 1, ...,M, j = 1, ...N.

The next assertion is related to the strong solvability of

Equations 1.1, 1.2.

Theorem 3.2. Let N = 0, n ≥ 2, ∂� ∈ C2+α , and let T > 0 be

arbitrarily given. We assume that h1–h5 and h7 hold and

ψ1,ψ2, u0 ≡ 0, f ∈ Lp(�T) ∩Ws1 ,r((0,T),Ws2 ,r(�)),

where p > max{n + 2
ν
; 1
ν−νM

}, r ≥ n + 1, s1 ∈ (r−1, 1), and

s2 ∈ ((n+ 1)r−1, 1). Moreover, in theDBC case, we require

f (0)|∂� = g(x, 0)|∂�.

Then, the initial-boundary value problem Equations 1.1, 1.2 admits

a unique strong solution in the class Hν,2p (�T).

Remark 3.2. Theorems 3.1 and 3.2 hold if Dtu in Equation 1.3 is

changed by

Dtu = ρ(x, t)Dνt u+

M
∑

i=1

ρi(x, t)D
νi
t u−

N
∑

j=1

γj(x, t)D
µj

t u,

where ρ, ρi, γj satisfies h3, but the requirement on the regularity of

these functions can be relaxed. Namely, ρ, ρi, γj ∈ Cα,αν/2(�̄T).

The remaining part of this study is devoted to the verification

of Theorems 3.1, 3.2. Here, we proceed with a detailed proof of

Theorem 3.1 in the most difficult case, i.e., if N ≥ 1,M ≥ 1

in Equation 1.3. This means that the non-linear term f (u) satisfies

h7.I. The verification of the remaining cases is simpler and repeats

the main steps (with minor changes) in the arguments related with

the cases N,M ≥ 1.

4 Technical results

In this section, we collect some useful properties of fractional

derivatives and integrals, as well as several preliminaries results that

will be significant in our investigation. Throughout this art, for any

θ > 0, we use the notation

ωθ =
tθ−1

Ŵ(θ)

and define the fractional Riemann-Liouville integral and the

derivative of order θ , respectively, of a function v = v(x, t) with

respect to time t as

Iθt v(x, t) = (ωθ ∗ v)(x, t) ∂θt v(x, t) =
∂⌈θ⌉

∂t⌈θ⌉
(ω⌈θ⌉−θ ∗ v)(x, t),

where ⌈θ⌉ is the ceiling function of θ (i.e., the smallest integer

greater than or equal to θ).

It is apparent that, for θ ∈ (0, 1), there holds

∂θt v(x, t) =
∂

∂t
(ω1−θ ∗ v)(x, t).

Accordingly, the Caputo fractional derivative of the order θ ∈

(0, 1) to the function v(x, t) can be represented as

Dθt v(·, t) =
∂

∂t
(ω1−θ ∗ v)(·, t)− ω1−θ (t)v(·, 0)

= ∂θt v(·, t)− ω1−θ (t)v(·, 0) (4.1)

provided that both derivatives exist.

At this point, we subsume [16, Proposition 4.1], [11,

Proposition 1] as the following claim.

Proposition 4.1. The following hold.

(i) For any given positive numbers θ1 and θ2 and a summable kernel

k = k(t), there are relations

(ωθ1 ∗ ωθ2 )(t) = ωθ1+θ2 (t), (1 ∗ ωθ1 )(t) = ω1+θ1 (t),

ωθ1 (t) ≥ CTθ1−1, (ωθ1 ∗ k)(t) ≤ Cωθ1 (t).

Here, the positive constant C depends only on T, θ1, and ‖k‖L1(0,T).

(ii) Let k(t) ∈ C1([0,T]), θ ∈ (0, 1), θ1 ≥ 1, v = v(t) ∈

Cθ ([0,T]), Dθt v(t) ∈ C([0,T]), w = w(t) ∈ Cθ1 ([0,T]). Then, the

equality holds

(k ∗ wDθt v)(t) = k(0)w(t)(ω1−θ ∗ [v− v(0)])(t)

+ (k′ ∗ w(ω1−θ ∗ [v− v(0)]))(t)

+ (k ∗ w′(ω1−θ ∗ [v− v(0)]))(t), t ∈ [0,T].

The next result is key inequalities in the fractional calculus and

includes [12, Proposition 5.1, Corollaries 5.2-5.3].

Proposition 4.2. The following holds.

(i) Let θ , θ1 ∈ (0, 1) and θ1 > θ/2, v ∈ Cθ1 ([0,T]). For any even

integer p ≥ 2, the inequalities are true

∂θt v
p(t) ≤ ∂θt v

p(t)+ (p− 1)vp(t)ω1−θ (t) ≤ pvp−1(t)∂θt v(t).

If v is non-negative, then these bounds hold for any integer odd p.

(ii) Let 0 < θ1 < θ ≤ 1, θ2 ∈ (θ1, 1), and v ∈ Cθ2 ([0,T]).

Then, there is positive value T1 = T1(θ), such that the following

inequalities hold:

N1 = N(t; θ , θ1) = ω1−θ (t)− ω1−θ1 (t) ≥ 0 for all

t ∈ [0,T1];
d
dt
(N1 ∗ v

p)(t) ≤ d
dt
(N1 ∗ v

p)(t)+ (p− 1)vp(t)N1(t)

≤ pvp−1(t) d
dt
(N1 ∗ v)(t) for all

t ∈ [0,min{T,T1}],

where pmeets requirements of (i).

At this point, for given functions w1 and w2, we define

Jθ (t) = Jθ (t;w1,w2) =

∫ t

0

[w1(t)− w1(s)]

(t − s)1+θ
[w2(s)− w2(0)]ds,

W(w1) = W(w1; t, τ ) =

∫ 1

0

∂w1

∂z
(z)ds, where

z = st + (1− s)τ , 0 < τ < t < T,
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and assert the results obtained in ([12], Proposition 5.5) and related

to the fractional differentiation of the product.

Proposition 4.3. Let θ ∈ (0, 1), w1 ∈ C1([0,T]), w2 ∈ C([0,T]).

(i) If Dθt w2 belongs either to C([0,T]) or to Lp(0,T), p ≥ 2, then,

there are equalities:

Dθt (w1w2) = w1(t)D
θ
t w2(t)+ w2(0)D

θ
t w1(t)

+
θ

Ŵ(1− θ)
Jθ (t;w1,w2),

∂θt (w1w2) = w1(t)D
θ
t w2(t)+ w2(0)∂

θ
t w1(t)

+
θ

Ŵ(1− θ)
Jθ (t;w1,w2),

andDθt (w1w2), ∂
θ
t (w1w2) have the regularity:

Dθt (w1w2), ∂
θ
t (w1w2) ∈

{

C([0,T]), if Dθt w2 ∈ C([0,T]),

Lp(0,T), if Dθt w2 ∈ Lp(0,T).

(ii) For any θ1 ≥ θ > 0 and each t ∈ [0,T], there hold

Iθ1t (w1∂
θ
t w2)(t) = Iθ1−θt (w1w2)(t)− w2(0)

× [Iθ1−θt w1 − Iθ1t (w1ω1−θ )(t)]

− θI1+θ1−θt (W(w1)w2)(t),

Iθ1t (w1D
θ
t w2)(t) = Iθ1−θt (w1w2)(t)− w2(0)I

θ1−θ
t w1

− θI1+θ1−θt (W(w1)w2)(t).

5 A priori estimates

First, recasting step-by-step the proof of ([11], Theorem 1) and

additionally exploiting [17, Theorem 3.4] and arguments leading to

([18], Theorem 4.1) in the 3BC case, we claim the following result.

Lemma 5.1. Let f (u) ≡ 0, n ≥ 2, ν,µj, νi satisfy h1, and

p >















max{n+ 2
ν
; 1
ν−νM

; 1
ν−µN

}, if N ≥ 1,M ≥ 1,

max{n+ 2
ν
; 1
ν−νM

}, if N = 0,M ≥ 1;

max{n+ 2
ν
; 1
ν−µN

}, if N ≥ 1,M = 0.

We require that

g ∈ Lp(�T), u0 ∈ W
2− 2

pν ,p(�), ϕ1 ∈ H
ν(1− 1

2p ),2−
1
p

p (∂�T),

ϕ2 ∈ H
ν( 12−

1
2p ),1−

1
p

p (∂�T).

Moreover, in theDBC case, we additionally assume

u0(x)|∂� = ϕ1(x, 0).

Under assumptions h2–h5, the classical solution u ∈

C2+α,
2+α
2 ν(�̄T) of Equations 1.1, 1.2 satisfies the estimate

‖u‖
H

ν,2
p (�T )

+ ‖u‖
C
α, αν2 (�̄T )

+

M
∑

i=1

‖D
νi
t u‖Lp(�T )

+

N
∑

j=1

‖D
µj

t u‖Lp(�T ) ≤ C{‖g‖Lp(�T ) + ‖u0‖
W

2− 2
pν ,p(�)

+
∣

∣ϕ
∣

∣},

where

∣

∣ϕ
∣

∣ =















‖ϕ1‖
H

ν(1− 1
2p ),2−

1
p

p (∂�T )

in theDBC case,

‖ϕ2‖
H

ν( 12−
1
2p ),1−

1
p

p (∂�T )

in the 3BC case.

Here, the generic constant C is independent of the right-hand sides

in Equations 1.1, 1.2.

Our next result connects with a priori estimates in the fractional

Hölder space to the function u satisfying the family of equations for

each λ ∈ [0, 1]:

Dtu− L1u−K ∗ L2u+ λf (u) = g(x, t) in �T (5.1)

and homogeneous conditions Equation 1.2.

Lemma 5.2. Let assumptions of Theorem 3.1 hold, and

ϕ1,ϕ2, u0 ≡ 0.

We assume also u ∈ C2+α,
2+α
2 ν(�̄T) be solution to Equations 5.1,

1.2. Then, for any λ ∈ [0, 1], there are the following estimates:

‖u‖C(�̄T )
≤ C[1+ ‖g‖C(�̄T )

], (5.2)

‖u‖
C
2+α, 2+α2 ν0 (�̄T )

+
∑M

i=1 ‖D
νi
t u‖Cα,

να
2 (�̄T )

+
∑N

j=1 ‖D
µj

t u‖
C
α, να2 (�̄T )

≤ C[1+ ‖g‖
C
α, να2 (�̄T )

]. (5.3)

The positive constant C is independent of λ and the right-hand

sides of Equations 5.1, 1.2 and depends only on T and the structural

parameters in the model.

First of all, we notice that estimate Equation 5.3 in this claim is

verified with the standard Schauder technique and by means of

([10], Theorem 4.1) and bound Equation 5.2 in this art.

We focus on the proof of Equation 5.2 if DBC holds, the

case of 3BC is analyzed by collecting the similar arguments with

techniques leading to ([15], Lemma 5.3). We preliminary observe

that verification of Equation 5.2 in the case of the absence of

D
µj

t (γju), j = 1, 2, ...,N, (i.e.,N = 0) is simpler and recasts the main

steps (with minor changes) in arguments related with N ≥ 1. Thus,

here, we assume the presence of at least one fractional derivative

D
µj

t (γju) in the operator Dtu. Then, we will exploit the following

strategy. Keeping in mind assumption h3, the homogeneous initial

condition and relation Equation 4.1, we rewrite Dtu in the more

suitable form:

Dtu =1 Dtu+2 Dtu, 1Dtu = ∂νt (ρ0u)+
∑M

i=1 ∂
νi
t (ρiu),

2Dtu =
∑N

j=1
∂
∂t (Nj ∗ (γju)), (5.4)

where

Nj = Nj(t; ν,µj) = ω1−ν(t)− ω1−µj (t).

Appealing to (ii) in Proposition 4.2, we introduce

T∗
j = T∗(µj) > 0, j = 1, 2, ...,N,
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such that the functionNj is strictly positive for all t ∈ [0,T∗
j ].

After that, for each fixed T0 :

0 < T0 < min
{

T,T∗
1 , ...,T

∗
N , (νµ

−1
1 Ŵ(1+ ν − µ1))

1
ν−µ1 , ...,

(νµ−1
N Ŵ(1+ ν − µN))

1
ν−µN

}

, (5.5)

we obtain the estimates

‖u‖C(�̄T0
) ≤ C[1+ ‖g‖C(�̄T0

)] ≤ C[1+ ‖g‖C(�̄T )
] (5.6)

with the positive constant being independent of λ and T0.

Then, we discuss the extension of these bounds to the interval

(T0,T] and reach the estimate Equation 5.2. It is worth noting

that this step is absent in the case of N = 0, due to the proof

of Equation 5.6 and consequently Equation 5.2 are carried out

immediately on the entire time interval [0,T].

Step 1: Verification of Equation 5.6. Here, we focus on the

obtaining of Equation 5.6 if h3(i) holds, the case of h3(ii) is analyzed

with the similar arguments and is left to the interested readers.

Let K̄ be the conjugate kernel to K, its properties are described

in ([15], Proposition 4.4), in particular,

‖K̄‖
C
1
([0,T])

≤ C‖K‖
C
1
([0,T])

(1+ e
T‖K‖

C
1
([0,T]) ). (5.7)

Setting

L0 =

n
∑

ij=1

∂

∂xi

(

aij(x, t)
∂

∂xj

)

, w̄ = −L0u,

w = −λf (u)+ g −Dtu+ (L1 − L0)u+K ∗ (L2 − L0)u,

and exploiting [15, Proposition 4.4] and Proposition 4.1, we rewrite

Equation 5.1 in more suitable form

1Dtu+2 Dtu− L0u =

7
∑

l=1

Fl, (5.8)

where

F1 = −λf (u)+ K̄ ∗ f (u)+ g − K̄ ∗ g, F2 = (L1 − L0)u,

F3 = −K̄ ∗ (L1 − L0)u, F4 = K̄ ∗ (L2 − L0)u,

F5 = K̄(0)(ω1−ν ∗ (ρu))+ K̄
′
∗ ω1−ν ∗ (ρu),

F6 = −

N
∑

j=1

[K̄(0)(ω1−µj ∗ (γju))+ K̄
′
∗ ω1−µj ∗ (γju)],

F7 =

M
∑

j=1

[K̄(0)(ω1−νi ∗ (ρiu))+ K̄
′
∗ ω1−νi ∗ (ρiu)].

After that, multiplying equality (Equation 5.8) by pup−1 with

p = 2m, m ≥ 1, and then integrating over �, we end up with the

inequality (after standard technical calculations with exploiting h2)

∫

�

pup−1(x, τ )1Dτudx+

∫

�

pup−1(x, τ )2Dτudx

+ p(p− 1)δ2

∫

�

up−2(x, τ )|∇u(x, τ )|2dx

≤

7
∑

l=1

∫

�

pup−1(x, τ )Fldx.

It is worth noting that in the case of h3(ii), one should multiply

Equation 5.8 by p(ρ0u)
p−1.

Computing the fractional integral Iνt of both sides in this

inequality, we arrive at the bound

R0,1(t)+R0,2(t)+p(p−1)δ2I
ν
t

(∫

�

up−2|∇u|2dx

)

(t) ≤

7
∑

l=1

Rl(t),

(5.9)

where we put

R0,1(t) = Iνt

(∫

�

pup−1
1Dτudx

)

(t),

R0,2(t) = Iνt

(∫

�

pup−1
2Dτudx

)

(t),

Rl(t) = Iνt

(∫

�

Flpu
p−1dx

)

(t), l = 1, ..., 7.

At this point, we evaluate each termRl,R0,1, andR0,2.

• First, we notice that the termsRl, l = 1, 2, 3, 4, are evaluated with

the arguments providing the estimates of Dl, l = 1, 2, 3, 4, in ([11],

Section 7.1). Thus, we immediately have

4
∑

l=1

|Rl(t)| ≤ Cp[1+ ‖g‖
p

C([0,T0])
]+

p(p− 1)δ2

2
Iνt

∫

�

up−2|∇u|2dx,

where the positive C is independent of λ, p, and T0, and depends

only on the structural parameters of the model.

• Coming to Rl, l = 5, 6, 7, we pre-observe that R6 and R7 are

evaluated with the same arguments which provide the bound of

R5. Hence, here, we tackle onlyR5. Applying the Young inequality

to the function u(x, s)up−1(x, τ ) and then employing Proposition

4.1, estimate Equation 5.7, and assumptions h3 and h5, we get the

inequality

7
∑

l=5

|Rl(t)| ≤ CpIνt

( ∫

�

|u|pdx

)

(t)

with the positive constant C depending only on T, and the norms

of γj, ρi, ρ,K, and being independent of p, T0, and λ.

• Now, we are left to evaluateR0,1 andR0,2. First, denoting

ρθ =

{

ρ0, if θ = 0,

ρi, if θi = νi, i = 1, 2, ...,M,

and performing technical calculations and using Propositions 4.2,

4.3, the homogeneous initial condition to u and assumption h3, we

end up with the inequalities

∫

�

pup−1∂θt (ρθu)dx ≥

∫

�

ρ
1−p
θ ∂θt (ρθu)

pdx,
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Iνt

( ∫

�

ρ
1−p
θ ∂θt (ρ

p
θu

p)dx

)

(t)

≥























∫

�
ρθu

pdx− ν
∫

�
I1t (W(ρ

1−p
θ )ρ

p
θu

p)(t)dx,

if θ = ν,

Iν−θt (
∫

�
ρθu

pdx)(t)− θ
∫

�
I1+ν−θt (W(ρ

1−p
θ )ρ

p
θu

p)(t)dx,

if θ = νi, i = 1, ...,M

≥















∫

�
ρ0u

pdx, if θ = ν,

Iν−θt (
∫

�
ρθu

pdx)(t), if θ = νi, i = 1, ...,M.

Here, to reach the last inequalities, we appeal to the definition

ofW and to assumption h3(i) (meaning the non-negativity of ∂ρθ
∂t )

and taking into account the non-negativity of (ρθu)
p (since p =

2m).

Bearing inmind these inequalities and the non-negativity of the

term Iν−θt (
∫

�
ρθu

pdx)(t), we arrive at the desired bound

R0,1(t) ≥

∫

�

ρ0(x, t)u
p(x, t)dx.

Concerning the term R0,2(t), we will use the analogous

arguments. Namely, Proposition 4.2 provides the estimate

∫

�

pup−1 ∂

∂t
(Nj ∗ γju)dx ≥

∫

�

γ
1−p
j

∂

∂t
(Nj ∗ (γju)

p)dx.

Then, collecting this bound with Proposition 4.3 arrives at

inequalities:

Iνt

( ∫

�

pup−1 ∂

∂t
(Nj ∗ γju)dx

)

(t)

≥ Iνt

(∫

�

γ
1−p
j ∂νt (γju)

pdx

)

(t)− Iνt

( ∫

�

γ
1−p
j ∂

µj

t (γju)
pdx

)

(t)

=

∫

�

γj(x, t)u
p(x, t)dx− I

ν−µj

t

( ∫

�

γju
pdx

)

(t)

+

(

νI1t − µjI
1+ν−µj

t

)( ∫

�

W(−γ
1−p
j )γ

p
j u

pdx

)

(t). (5.10)

First, we notice that h3(i) provides the non-negativity of

W(−γ
1−p
j ). Hence, ([12], Corollary 5.4) (where we put w =

W(−γ
1−p
j )γ

p
j u

p) tells us that

(

νI1t − µjI
1+ν−µj

t

)(∫

ω

W(−γ
1−p
j )γ

p
j u

pdx

)

(t) ≥ 0.

After that, this bound and Equation 5.10 lead to the inequality

Iνt

(

∫

�
pup−1 ∂

∂t (Nj ∗ γju)dx

)

(t) ≥
∫

�
γj(x, t)u

p(x, t)dx

−I
ν−µj

t

(

∫

�
γju

pdx

)

(t),

which in turn leads to the inequality

R0,2(t) ≥

∫

�

N
∑

j=1

γj(x, t)u
p(x, t)dx−

N
∑

j=1

I
ν−µj

t

( ∫

�

γju
pdx

)

(t).

At last, collecting all estimates of Rl, R0,1, R0,2 with

Equation 5.9, and taking into account the representation of ρ(x, t)

in the case of N ≥ 1, we arrive at the bound

∫

�

ρ(x, t)up(x, t)dx+
p(p− 1)δ2

2
Iνt

(∫

�

up−2|∇u|2dx

)

(t)

≤

N
∑

j=1

I
ν−µj

t

(∫

�

γju
pdx

)

(t)

+ Cp(1+ ‖g‖
p

C(�̄T0
)
)+ CpIνt

( ∫

�

updx

)

(t)

with C being independent of p,T0, and λ.

Then, keeping in mind the restriction on ρ (see h3) to handle

the first term in the left-hand side, and exploiting the easily verified

relation

|∇up/2|2 ≤ p(p− 1)up−2|∇u|2

to manage the second term there, we have

∫

�

up(x, t)dx+ Iνt

(∫

�

|∇up/2|2dx

)

(t)

≤ Cmax
j
‖γj‖C(�̄T )

N
∑

j=1

I
ν−µj

t

( ∫

�

updx

)

(t)

+ Cp[1+ ‖g‖
p

C(�̄T0
)
]+ CpIνt

(∫

�

updx

)

(t). (5.11)

To handle the last term in the right-hand side, we employ the

first interpolation inequality in ([15], Proposition 4.6) with ε =
1

2Cp(p−1)
. Thus, we get

∫

�

up(x, t)dx+ Iνt

(∫

�

|∇up/2|2dx

)

(t) ≤ Cp[1+ ‖g‖
p

C(�̄T0
)
]

+ [Cp(p− 1)]
n+2
2

∥

∥

∥

∥

∫

�

up/2dx

∥

∥

∥

∥

2

C([0,T0])
+ C

N
∑

j=1

I
ν−µj

t

( ∫

�

updx

)

(t).

Finally, taking advantage of the easily verified estimate

ων−µj (t) ≤
Ŵ(ν − µN)

Ŵ(ν − µj)
TµN−µjων−µN (t),

j = 1, 2, ...,N − 1, t ∈ [0,T],

we deduce

∫

�

up(x, t)dx ≤ Cp[1+ ‖g‖
p

C(�̄T0
)
]

+[Cp(p− 1)]
n+2
2

∥

∥

∥

∥

∫

�
up/2dx

∥

∥

∥

∥

2

C([0,T0])

+C∗I
ν−µN
t

(

∫

�
updx

)

(t), (5.12)

where

C∗ = C

[

1+

N−1
∑

j=1

Ŵ(ν − µN)

Ŵ(ν − µj)
TµN−µj

]

being independent of T0, p, and λ.
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To control the last term in the right-hand side, we apply

the Gronwall-type inequality [15, Proposition 4.3] and then use

formula (3.7.43) in [19]. Thus, we have

C∗I
ν−µN
t

( ∫

�

updx

)

(t) ≤ C∗AI
ν−µN
t (Eν−µN (C

∗tν−µN ))(t)

= A[Eν−µN (C
∗tν−µN )− 1]

≤ A[Eν−µN (C
∗Tν−µN )− 1]

for all t ∈ [0,T],

where we put

A = Cp[1+ ‖g‖
p

C(�̄T0
)
]+ [Cp(p− 1)]

n+2
2

∥

∥

∥

∥

∫

�

up/2dx

∥

∥

∥

∥

2

C([0,T0])
,

and Eθ (t) =
∑+∞

k=0
zk

Ŵ(kθ+1)
is the classical Mittag-Leffler function

of the order θ .

Taking into account this estimate to evaluate the last term in the

right-hand side of Equation 5.12, we achieve

∫

�

up(x, t)dx ≤ AEν−µN (C
∗Tν−µN ).

In fine, denoting

B = 4CEν−µN (C
∗Tν−µN ), Am = sup

t∈[0,T0]

(∫

�

updx

)1/p

with p = 2m,

we derive the bound

Am ≤ Bm2−m
[1+ ‖g‖C(�̄T0

)]+ Bmn2−m
Am−1. (5.13)

Then, two possibilities occur:

(i) either max{Am−1, 1+ ‖g‖C(�̄T0
)} = 1+ ‖g‖C(�̄T0

),

(ii) or max{Am−1, 1+ ‖g‖C(�̄T0
)} = Am−1.

Clearly, in the case of (i), passing to the limit as m → +∞ in

Equation 5.13, we end up with the desired estimate for t ∈ [0,T0].

If (ii) holds, then the standard technical calculations arrive at

the inequality

Am ≤ [Bm2−m
+ Bnm2−m

]Am−1 < C

m
∏

k=1

[B+ Bn]k2
−k
A1

< C exp

{

| ln[B+ Bn]|

+∞
∑

k=1

kn

2k

}

A1.

Letting m → +∞ in this estimates and bearing in mind the

convergence of the series, we have

‖u‖C(�̄T0
) ≤ CA1,

where the positive constant C is independent of T0 and λ.

Finally, to manage the term A1, we first put p = 2 in

Equation 5.11 and then apply Gronwall inequality [15, Proposition

4.3], where we set k = ων(t)+Cmax
j
‖γj‖C(�̄T

∑N
j=1 ων−µj (t). Thus,

we end up with bound Equation 5.6 and as a consequence with

Equation 5.3 where T = T0.

Step 2: Extension of Equation 5.6 to the whole time interval.

Actually, we only need in the technique which allows us to

extend Equation 5.6 to the interval [T0, 3T0/2]. Then, repeating this

procedure a finite number of times, we exhaust the entire [T0,T]

and hence complete the proof of Equation 5.2.

Denoting

8(x, t) =

{

−λf (u)+ g(x, t), if (x, t) ∈ �̄T0/2,

[−λf (u)+ g(x, t)]|t=T0/2, if x ∈ �̄, t > T0/2,

we designate U(x, t) as a solution to the linear problem















DtU− L1U−K ∗ L2U = 8(x, t) in �3T0/2,

U(x, 0) = 0 in �̄,

U(x, t) = 0 on ∂�3T0/2.

(5.14)

Thanks to Equations 5.3, 5.6 (with T = T0) and assumptions

h6, h7.I, we get

‖8‖
C
α,
αν0
2 (�̄3T0/2

)

≤ C[‖u‖C(�̄T0
) + 1+ ‖g‖

C
α, αν2 (�̄T0

)
] ≤ C[1+ ‖g‖

C
α, αν2 (�̄T0

)
],

‖8‖C(�̄3T0/2
) ≤ C[1+ ‖g‖C(�̄T0

)],

8(x, 0) = 0 if x ∈ ∂�,

(5.15)

where the positive value C is independent of T0, λ and the right-

hand side of Equation 5.14.

Keeping in mind these properties of 8, we can apply [10,

Theorem 4.1] to Equation 5.14 and obtain the unique classical

solution U satisfying the following relations:

‖U‖
C
2+α, 2+α2 ν

(�̄3T0/2
)
+

N
∑

i=1

‖D
νi
t U‖C

α, αν2 (�̄3T0/2
)

+

M
∑

j=1

‖D
µj

t U‖
C
α, αν2 (�̄3T0/2

)

≤ C[1+ ‖g‖
C
α, αν2 (�̄T0

)
],

‖U‖C(�̄3T0/2
) ≤ C[1+ ‖g‖C(�̄T0

)],

U(x, t) = u(x, t) if (x, t) ∈ �̄T0/2.

In fine, we introduce new unknown function

v(x, t) = u(x, t)− U(x, t)

solving the problem















Dtv− L1v−K ∗ L2v = −λf ⋆(v)+ g⋆(x, t) in �3T0/2,

v(x, 0) = 0 in �̄,

v(x, t) = 0 on ∂�3T0/2.

(5.16)

Here, we set

f ⋆(v) = f (v+ U), g⋆(x, t) = g(x, t)−8(x, t).
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By virtue of Equation 5.15 and representation of the right-hand

sides in Equation 5.16, we deduce that f ∗(v) has all properties of

f (u), and

g∗ − λf ∗ = 0 if x ∈ �̄, t ∈ [0,T0/2],

‖g∗‖
C
α, αν2 (�̄3T0/2

)
≤ C[1+ ‖g‖

C
α, αν2 (�̄T0

)
],

‖g∗‖C(�̄3T0/2
) ≤ C[1+ ‖g‖C(�̄T0

)],

where the constant C is independent of λ and T0.

Finally, introducing the new time-variable

σ = t −
T0

2
, σ ∈

[

−
T0

2
,T0

]

,

and repeating arguments of the end of Section 6.3 in [10], we arrive

at the problem















Dσ v̄− L1v̄−K ∗ L2v̄ = −λf̄ ⋆(v̄)+ ḡ⋆ in �T0 ,

v̄(x, 0) = 0 in �̄,

v̄(x, σ ) = 0 on ∂�T0 ,

(5.17)

besides,

v̄(x, σ ) = 0 if σ ∈

[

−
T0

2
, 0

]

, x ∈ �̄.

Here, we put

v̄(x, σ ) = v(x, σ + T0/2), ḡ∗(x, σ ) = g∗(x, σ + T0/2),

f̄ ∗(v̄) = f ∗(v)|t=σ+T0/2,

and we call Lk, Dσ the operators Lk and Dσ , respectively, with

the bar coefficients. It is easy to check that the coefficients of these

operators and the functions ḡ∗ and f̄ ∗ meet the requirements of

Lemma 5.2. Then, arguing as Step 1, we end up with estimates

Equations 5.2, 5.3, 5.6 to the function v. Collecting the obtained

results with the properties of the function U, we extend the desired

estimates to the whole segment [0, 3T0/2]. This completes the proof

of Lemma 5.2

Remark 5.1. Collecting estimate Equation 5.2 with Lemma

5.1 provides the following a priori estimate to solution

of Equation 5.1 satisfying homogeneous boundary and

initial conditions:

‖u‖
H

ν,2
p (�T )

+ ‖u‖
C
α, αν2 (�̄T )

+

M
∑

i=1

‖D
νi
t u‖Lp(�T )

+

N
∑

j=1

‖D
µj

t u‖Lp(�T )

≤ C[1+ ‖g‖Lp(�T ) + ‖g‖C(�̄T )
]

with C being independent of λ.

6 Proof of Theorems 3.1, 3.2

Here, we will exploit the continuation approach based on the a

priori estimates in the fractional Hölder spaces. It is worth noting

that this technique has been utilized in [11] to prove the well-

posedness of Equations 1.1, 1.2 with two-term fractional derivatives

in the operator Equation 1.3 in the DBC case. Hence, in our

arguments, we focus on only main difficulties connected with

multi-term fractional derivatives in Equation 1.3.

Concerning the proof of Theorem 3.2, we will exploit the

technique leading to Theorem 4.4. in [12]. This approach includes

a priori estimates of Equations 1.1, 1.2 in the fractional Sobolev

spaces and the construction of the corresponding solutions via

consideration of approximated problems.

6.1 Conclusion of the proof of Theorem 3.1

First, we prove Theorem 3.1 in the case of homogeneous

boundary and initial conditions and then we remove this

restriction.

To this end, we rely on the so-called continuation arguments.

For λ ∈ [0, 1], we consider the family of problem















Dtu− L1u−K ∗ L2u+ λf (u) = g(x, t) in �T ,

u(x, 0) = 0 in �̄,

u(x, t) = 0 or Mu+K1 ∗Mu− c0u = 0 on ∂�T .

(6.1)

Denoting 3 as the set of those λ for which Equation 6.1

is solvable on [0,T]. Obviously, if λ = 0, then Equation 6.1

transforms to the linear problem analyzed in [10]. Hence,

assumptions h1–h6 allow us to apply Theorem 4.1 and Remark 4.4

from [10] and obtain the global classical solvability. Thus, 0 ∈ 3.

Then, we are left to examine if the set 3 is open and closed at the

same time. To this end, exploiting Lemmas 5.1, 5.2 (in particular,

the estimate of ‖u‖
C
α,αν/2

(�̄T )
via ‖g‖C(�̄T )

) and recasting step-by-

step the arguments of ([15], Section 5.2), we complete the proof

of Theorem 3.1 in the case of homogeneous initial and boundary

conditions.

To remove this restriction, we consider the following linear

problem with the unknown function w = w(x, t)























Dtw− L1w−K ∗ L2w = g(x, t)− f (u0) in �T ,

w(x, 0) = u0(x) in �̄,

w(x, t) = ϕ1(x, t) or Mw+K1 ∗Mw− c0w = ϕ2(x, t)

on ∂�T .

Applying ([15], Remark 3.1) and ([10], Remark 4.4) arrives

at the one-valued classical solvability of this linear problem and,

besides, at the bound

‖w‖
C
2+α, 2+α2 ν

(�̄T )
+

M
∑

i=1

‖D
νi
t w‖Cα,

να
2 (�̄T )

+

N
∑

j=1

‖D
µj

t w‖
C
α, να2 (�̄T )

≤ CG(u0, g,ϕ),
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where

G(u0, g,ϕ) = 1+ ‖g‖
C
α, να2 (�̄T )

+ ‖u0‖C2+α
(�̄)

+
∣

∣ϕ
∣

∣

C,

∣

∣ϕ
∣

∣

C =







‖ϕ1‖
C
2+α, 2+α2 ν

(∂�T )
inDBC case,

‖ϕ2‖
C
1+α, 1+α2 ν

(∂�T )
in 3BC case.

Here, we exploited assumption h7 and ([15], Remark 3.1) to

handle the term ‖f ‖
C
α, να2 (�̄T )

.

After that, we look for a solution to the original problem

Equations 1.1, 1.2 in the form

u(x, t) = w(x, t)+W(x, t),

where the new unknown function W solves the problem

Equation 6.1 with λ = 1 and the new right-hand sides:

f̄ (W) = f (W + w)− f (w), ḡ = f (u0)− f (w).

Remark 6.1. Assumption h4 and the estimate of w provide the

inequality

‖ḡ‖
C
α, να2 (�̄T )

≤ CG(u0, g,ϕ).

In addition, the function f̄ (W) satisfies assumption h7 with the

constant depending only on L or Li and G(u0, g,ϕ). Moreover, the

straightforward calculations and the definition of w arrive at the

relations

ḡ(x, 0) = 0 for each x ∈ �̄, f̄ (0) = 0 for each (x, t) ∈ �̄T .

The last equalities in Remark 6.1 tell us that the consistency

conditions in the non-linear problem for the function W are

satisfied. In summary, we reduce problem Equation 1.1, 1.2 to

Equation 6.1 with the right-hand sides satisfying the assumptions

of Theorem 3.1. Hence, this completes the proof of this theorem in

the general case.

6.2 Proof of Theorem 3.2

Actually, the verification of Theorem 3.2 is a simple

consequence of Theorem 3.1 and a priori estimates obtained in

Section 5 and repeats the arguments leading to ([12], Theorem

4.4). Indeed, thanks to Theorem 3.1 in the case of homogeneous

initial and boundary conditions in Equation 1.2, we construct an

approximate solution un. Then, exploiting uniform estimates in

Lemma 5.1 and Remark 5.1 and passing to the limit via standard

arguments, we obtain a strong solution to Equations 1.1, 1.2

satisfying the regularity stated in Theorem 3.2. Finally, to reach

the uniqueness of this solution, we assume the existence of two

solutions u1 and u2 satisfying Equations 1.1, 1.2 with the same

right-hand sides. Clearly, the difference ū = u1 − u2 solves the

problem Equation 6.1 with λ = 1, g = 0 and f (ū) = f (u1)− f (u2),

where

|f (ū)| ≤ C|u1 − u2|, C =

{

L, if h7.I holds,

|f ′(ξ )|, if h7.II holds,

where ξ is a middle point lying between u1 and u2.

Finally, recasting the arguments leading to the estimate

Equation 5.2, we obtain the equality

ū = 0, (x, t) ∈ �̄T ,

which finishes the verification of Theorem 3.2.

7 Conclusion

In this study, we propose a technique to study the well-

posedness (for each fixed T) of initial-boundary value problems

to semilinear multi-term time-fractional diffusion equations with

memory. The particular case of the problems analyzed models

the oxygen transport through capillaries [6]. The introduction

of fractional calculus in the model of the evolution of the

oxygen density is well-presented with some interesting details. Our

approach is particularly efficient when the multi-term derivatives

can be represented in the form ∂
∂t (N∗ρu) with a some non-positive

kernelN and given coefficient ρ = ρ(x, t).

Our analytical technique and ideas can be incorporated to study

the corresponding inverse problems concerning the reconstruction

of unknown parameters (e.g., the time lag in concentration of

oxygen along capillaries; the order of oxygen subdiffusion; and so

on). Moreover, our investigation can be employed to analyze the

corresponding initial-boundary value problems to fully non-linear

equations containing a term ∂
∂t (N ∗ f (u)) and to the equations with

degenerate coefficients in the fractional operator. These issues will

be addressed with a possible further research.
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