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This study primarily seeks to expand upon these developments by encompassing

neutral di�erential equations of mixed type, incorporating both delay and

advanced terms, particularly in the case of the canonical operator. The presented

results are derived from the application of the comparison method, Riccati

transformation, and integral averaging technique. These methodologies lead

to substantial improvements and extensions of existing results found in the

literature. Additionally, illustrative examples are provided to demonstrate the

practical implications of the developed criteria.
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1 Introduction

In recent years, scholars have shown a growing interest in studying the oscillatory

behavior of solutions to second-order differential and dynamic equations. This attention

is motivated by the significance of such behavior in real-life applications, such as steam

turbine regulation, neural networks, and governing equations which describe the temporal

variation of hormones; see [1–9]. Moreover, there exist numerous sophisticated equations

that serve as applications or direct representations of problems reliant on both present

and future rates of change for further applications in science and technology; see [10].

An advanced argument is characterized by its ability to characterize the impact of a

hypothetical future acts. It is commonly observed in phenomena such as population

dynamics and economic difficulties.

In this study, we discuss the oscillatory behavior of second-order non-linear neutral

differential equations with mixed non-linear neutral terms of the form

(

a(ζ )8α

(

z′(ζ )
))′

+ q(ζ )8γ (x(σ (ζ )))+ r(ζ )8β (x(ϕ(ζ ))) = 0, ζ ≥ ζ0 > 0, (1)

and

z(ζ ) = 8η(x(ζ ))+ p1(ζ )8λ(x(τ1(ζ )))+ εp2(ζ )8ν(x(τ2(ζ ))),

where 8∗(s) = |s|∗−1 for ∗ > 0 and ε = ±1. Throughout this article, we assume that the

following hypotheses hold
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(H1) α, η, λ, ν, γ and β are ratios of odd positive integers;

(H2) a, p1, p2, q and r ∈ C
(

[ζ0,∞), (0,∞)
)

, Equation (1) is in

canonical form, i.e.,

∫ ∞

ζ0

a−1/α(s)ds = ∞; (2)

(H3) τ1, τ2, σ , ζ ∈ C
(

[ζ0,∞),R
)

such that σ (ζ ) ≤ ζ , τ ′1, τ
′
2 > 0

and ϕ(ζ ) ≥ ζ with

lim
ζ→∞

τ1(ζ ) = lim
ζ→∞

τ2(ζ ) = lim
ζ→∞

σ (ζ ) = ∞.

By a solution of Equation (1), we mean a non-trivial function

x ∈ C
(

[Tx,∞),R
)

, Tx ≥ ζ0, which has the properties z ∈

C1
(

[Tx,∞),R
)

, a(z′)α ∈ C
(

[Tx,∞),R
)

and satisfies Equation (1)

on [Tx,∞). Our attention is restricted to those solutions x(ζ ) of

Equation (1) satisfying sup
{
∣

∣x(ζ )
∣

∣ : ζ ≥ T
}

> 0 for all T ≥ Tx. We

assume that Equation (1) possesses such a solution. A solution of

Equation (1) is called oscillatory if it has arbitrarily large zeros on

[Tx,∞); otherwise, it is termed non-oscillatory. Equation (1) is said

to be oscillatory if all solutions are oscillatory.

The literature extensively addresses the oscillation and

asymptotic behavior of solutions across various classes of delay

and advanced differential equations. Recently, Tunç and Özdemir

[11] introduced novel sufficient conditions for solutions to second-

order half-linear differential equations.

(

a(ζ )
((

x(ζ ) + p1(ζ )x(g1(ζ ))+ p2(ζ )x(g2(ζ ))
)′)α

)

+ q(ζ )xα
(

h(ζ )
)

= 0,

where g1(ζ ) < ζ , g2(ζ ) > ζ , p1(ζ ) ≥ 0 and p2(ζ ) ≥ 1, p2(ζ ) 6≡

1 for large ζ . In the study by Agwa et al. [12], developed new

oscillation criteria for the second-order non-linear neutral dynamic

equation with mixed arguments

(

a(ζ )
( (

x(ζ )+ p1(ζ )x
(

τ1(ζ )
)

+ p2(ζ )x
(

τ2(ζ )
))1 )α

)1

+ f
(

ζ , x
(

σ (ζ )
) )

+ g
(

ζ , x
(

ϕ(ζ )
) )

= 0,

in the canonical and non-canonical cases. In the study by Moaaz

et al. [9], investigated the oscillatory and asymptotic properties of a

specific class of delay differential equations of mixed neutral type

(

a(ζ )
(

(x(ζ )+ p1(ζ )x(τ1(ζ ))+ p2(ζ )x(τ2(ζ )))
′
)α
)

+q(ζ )xα
(

σ (ζ )
)

+ r(ζ )xα
(

ϕ(ζ )
)

= 0.

with the non-canonical operator.

Very recently, in the study by Grace et al. [13], introduced novel

criteria for the oscillation of second-order non-linear differential

equations featuring mixed non-linear neutral terms and mixed

deviating arguments

(

a(ζ )
(

(x(ζ )+ p1(ζ )x
λ(τ1(ζ ))− p2(ζ )x

ν(τ2(ζ ))
)′
)α
)

+q(ζ )xα
(

σ (ζ )
)

+ r(ζ )xα
(

ϕ(ζ )
)

= 0.

Upon reviewing the literature, it becomes evident that

numerous results pertain to the oscillation of second-order

differential equations with linear neutral terms. In contrast, there

is a paucity of articles dedicated to exploring differential equations

featuring sublinear or superlinear neutral terms, as evidenced in

the studies by Agarwal et al. [14], Bohner et al. [15], Džurina

et al. [16], Grace et al. [17], Lin and Tang [18], and Muhib et al.

[19]. Furthermore, there is a notable scarcity of results concerning

equations incorporating both sublinear and superlinear neutral

terms. Motivated by this gap, this study aims to establish oscillation

criteria for a specific class of second-order mixed functional

differential equations (Equation 1) characterized by sublinear and

superlinear neutral terms under the conditions where either ε =

−1 or ε = +1, η differs from 1. To the best of our knowledge, there

does not appear to be any oscillation results for Equation (1) when

η 6= 1. Additionally, it is worth noting that the findings presented

in this study are novel even in the linear case.

2 Preliminaries

In discussing oscillation results for Equation (1), we assume

that any functional inequality holds for all large ζ . To lay the

groundwork for our key results, we first define a few lemmas. To

keep things simple, we will use these symbols

A(ζ , ζ1) =

∫ ζ

ζ1

a−1/α(s)ds, R1 =
(1− λ)p1/(1−λ)

1 (ζ )

λλ/(λ−1)
,

R2 =
(ν − 1)

νν/(ν−1)
p
1/(1−ν)
2 (ζ ), ρ′

+ = max{ρ′, 0}

δi(ζ ) =

{

τ−1
(i+1)/2(τ(5−i)/2(τ

−1
(i+1)/2(ζ ))), i = 1, 3

τ−1
i/2 (τ

−1
i/2 (ζ )), i = 2, 4

, δ5 = τ−1
2 (τ−1

1 (ζ )),

S1 =

η
λ
A
(

δ2(ζ )), ζ3
)

A
(

τ−1
1 (ζ ), ζ3

)

p
η/λ
1 (δ2(ζ ))

+

ν
λ
p2(τ

−1
1 (ζ ))A

(

δ1(ζ ), ζ3
)

A
(

τ−1
1 (ζ ), ζ3

)

p
ν/λ
1 (δ1(ζ ))

+
( 1− η

λ

c∗p
η/λ
1 (δ2(ζ ))

+
(1− ν

λ
)p2(τ

−1
1 (ζ ))

c∗p
ν/λ
1 (δ1(ζ ))

)

S2 =

η
ν

p
η/ν
2 (δ4(ζ ))

+

λ
ν
p1(τ

−1
2 (ζ ))

p
λ/ν
2 (δ3(ζ ))

+
(1− η

ν
)

c∗p
η/ν
2 (δ4(ζ ))

+
(1− λ

ν
)p1(τ

−1
2 (ζ ))

c∗p
λ/ν
2 (δ3(ζ ))

S3 =

η
ν

p
η/ν
2 (δ5(ζ ))

−

ν
λ
p2(τ

−1
1 (ζ ))A

(

δ1(ζ ), ζ3
)

p
ν/λ
1 (δ1(ζ ))A

(

τ−1
1 (ζ ), ζ3

)

+
(1− η

ν
)

c∗p
η/ν
2 (δ5(ζ ))

−
(1− ν

λ
)p2(τ

−1
1 (ζ ))

c∗p
ν/λ
1 (δ1(ζ ))

, c∗ > 0, ζ3 ∈ [ζ0,∞).

Lemma 1. Baculíková [20] and Philos [21] Let q1 :[ζ0,∞) →

(0,∞), g1 :[ζ0,∞) → R and f :R → R are continuous functions,

f is non-decreasing with xf (x) > 0 for x 6= 0 and g1(ζ ) → ∞ as

ζ → ∞. If
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(i) The first-order delay differential inequality (i.e., g1(ζ ) ≤ ζ )

y′1(ζ )+ q1(ζ )f (y1(g1(ζ ))) ≤ 0

has an eventually positive solution, so does the corresponding

delay differential equation.

(ii) The first-order advanced differential inequality (i.e.,

g1(ζ ) ≥ ζ )

y′1(ζ )− q1(ζ )f (y1(g1(ζ ))) ≥ 0

has an eventually positive solution, so does the corresponding

advanced differential equation.

Lemma 2. Hardy et al. [22] If X,Y ≥ 0, then

Xξ + (ξ − 1)Yξ − ξXYξ−1 ≥ 0, for ξ > 1 (3)

and

Xξ − (1− ξ )Yξ − ξXYξ−1 ≤ 0, for 0 < ξ < 1, (4)

where equalities hold if and only if X = Y .

Lemma 3. Hardy et al. [22] If B, L be non-negative numbers and if

m, n > 1 are real numbers such that 1
n + 1

m = 1, then

BL ≤
1

n
Bn +

1

m
Lm.

Equality holds if and only if Bn = Lm.

Lemma 4. Bohner et al. [23] LetG(U) = AU−B(U−R)
µ+1
µ , where

B > 0, A and B are constants, µ is a ratio of odd positive integers.

Then, G attains its maximum value at U∗ = R+ (µA/((µ+ 1)B)µ)

and

max
U∈R

G(U) = G(U∗) = AR+
µµ

(µ + 1)µ+1

Aµ+1

Bµ
. (5)

3 The case ε = −1

In this section, we investigate the oscillatory characteristics of

solutions to Equation (1) under the conditions where ε = −1,

τ1(ζ ) = τ2(ζ ) = τ (ζ ), and either of the following conditions is

satisfied either λ < 1 and ν > 1, or λ < ν ≤ 1.

Theorem 1. Suppose τ1(ζ ) = τ2(ζ ) = τ (ζ ), λ < 1, ν > 1, and

conditions (H1)-(H3) are satisfied. Additionally, assume that

lim
ζ→∞

[

R1(ζ )+ R2(ζ )
]

= 0, (6)

and there exists a non-decreasing function ̺(ζ ) ∈ C
(

[ζ0,∞),R
)

such that

τ−1(σ (ζ )) ≤ ̺(ζ ) ≤ ζ , τ−1(ϕ(ζ )) ≥ ζ and τ−1(ϕ(̺(̺(ζ )))) ≥ ζ ,

(7)

for ζ ≥ ζ0. If there exist constant c2 ∈ (0, 1) such that the first-order

differential equations

̥
′(ζ )+ c

γ
2 q(ζ )A

γ /η(σ (ζ ), ζ2)̥
γ /αη(σ (ζ )) = 0, (8)

�′(ζ )+ q(ζ )

(

A(̺(ζ ), τ−1(σ (ζ )))

p2(τ−1(σ (ζ )))

)γ /ν

�γ /αν(̺(ζ )) = 0, (9)

z̄′(ζ )−

(

1

a(ζ )

∫ ζ

̺(ζ )

r(s)

p
β/ν
2 (τ−1(ϕ(s)))

ds

)1/α

z̄β/να(τ−1(ϕ(̺(ζ )))) = 0

(10)

are oscillatory for sufficiently large ζ2 > ζ1 ≥ ζ0, then every

solution of Equation (1) is oscillatory.

Proof. Consider a non-oscillatory solution x(ζ ) of Equation (1).

Without loss of generality, let us assume that x(ζ ) is eventually

positive with limζ→∞ x(ζ ) 6= 0 for ζ ≥ ζ0. Hence, x(ζ ) > 0,

x(τ (ζ )) > 0, x(σ (ζ )) > 0, and x(ϕ(ζ )) > 0 for ζ ≥ ζ1 ≥ ζ0. It

is worth noting that the proof for the case where x(ζ ) is eventually

negative follows a similar path and is therefore omitted. Now, from

Equation (1), it can be inferred that

(

a(ζ )
(

z′(ζ )
)α)′

= −q(ζ )xγ (σ (ζ ))− r(ζ )xβ (ϕ(ζ )) < 0.

Thus,
(

a(ζ )
(

z′(ζ )
)α)

is decreasing and eventually of one sign.

In other words, there exists ζ2 ≥ ζ1 such that z′(ζ ) > 0 or

z′(ζ ) < 0 for ζ ≥ ζ2. Therefore, we will distinguish the following

four cases:

Case(I): z(ζ ) > 0 and z′(ζ ) < 0,

Case(II): z(ζ ) > 0 and z′(ζ ) > 0,

Case(III): z(ζ ) < 0 and z′(ζ ) > 0,

Case(IV): z(ζ ) < 0 and z′(ζ ) < 0.

Initially, let us examine Case (I). Depending on the fact that

z′(ζ ) < 0 and
(

a(ζ )
(

z′(ζ )
)α)′

< 0, in accordance with Equation

(2), we conclude that limζ→∞ z(ζ ) = −∞, contradicting the

established condition z(ζ ) > 0. Therefore, Case (I) is deemed

impossible. For the second case, based on the definition of z(ζ ), we

have

z(ζ ) = xη(ζ )− p2(ζ )x
ν(τ (ζ ))+ p1(ζ )x

λ(τ (ζ )). (11)

Utilizing inequality (5) with U = xη(ζ ), A = 1, B = p2(ζ ),

R = xη(ζ )− x(τ (ζ )), and µ = 1
ν−1 , we deduce

xη(ζ )− p2(ζ )x
ν(τ (ζ )) ≤ xη(ζ )− x(τ (ζ ))

+

(

1
ν−1

)1/(ν−1)

p
1/(ν−1)
2 (ζ )

(

ν
ν−1

)ν/(ν−1)

≤ xη(ζ )− x(τ (ζ ))+
(ν − 1)

νν/(ν−1)
p
1/(1−ν)
2 (ζ ).

This with Equation (11) leads to

xη(ζ ) ≥ z(ζ )+ x(τ (ζ ))− p1(ζ )x
λ(τ (ζ ))−

(ν − 1)

νν/(ν−1)
p
1/(1−ν)
2 (ζ ).

(12)

Applying the inequality (4) to
[

p1(ζ )xλ(τ (ζ ))− x(τ (ζ ))
]

with

ξ = λ, X = x(τ (ζ )) and Y = 1

(λp1(ζ ))
1/(λ−1) , we obtain

p1(ζ )x
λ(τ (ζ ))− x(τ (ζ )) = p1(ζ )

[

xλ(τ (ζ ))−
λ

λp1(ζ )
x(τ (ζ ))

]

≤
(1− λ)p1/(1−λ)

1 (ζ )

λλ/(λ−1)
.
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It is deduced from Equation (12) that

xη(ζ ) ≥ z(ζ )−
(ν − 1)

νν/(ν−1)
p
1/(1−ν)
2 (ζ )−

(1− λ)

λλ/(λ−1)
p
1/(1−λ)
1 (ζ )

=

(

1−
(R1(ζ )+ R2(ζ ))

z(ζ )

)

z(ζ ).

As z(ζ ) is positive and increasing, there exists a constant c > 0,

ensuring z(ζ ) ≥ c for ζ ≥ ζ2. This implies

xη(ζ ) ≥

(

1−

(

R1(ζ )+ R2(ζ )
)

c

)

z(ζ ). (13)

Therefore, based on Equations (6, 13), a constant c1 ∈ (0, 1)

exists, such that

x(ζ ) ≥ c
1/η
1 z1/η(ζ ) = c2z

1/η(ζ ); c2 = c
1/η
1 for ζ ≥ ζ3 ≥ ζ2.

(14)

Combining Equation (14) with Equation (1), we get

(

a(ζ )
(

z′(ζ )
)α)′

≤ −c
γ
2 q(ζ )z

γ /η(σ (ζ ))− c
β
2 r(ζ )z

β/η(ϕ(ζ )). (15)

Consequently, since z(ζ ) is increasing,

z(ζ ) ≥

∫ ζ

ζ3

a1/α(s)z′(s)

a1/α(s)
ds ≥ A(ζ , ζ3)(a

1/α(ζ )z′(ζ )). (16)

This with Equation (15) leads to

(

a(ζ )
(

z′(ζ )
)α)′

+ c
γ
2 q(ζ )A

γ /η(σ (ζ ), ζ3)

(a(σ (ζ ))(z′(σ (ζ )))α)γ /αη ≤ 0.

Letting̥(ζ ) : = a(ζ )
(

z′(ζ )
)α
, we have

̥
′(ζ )+ c

γ
2 q(ζ )A

γ /η(σ (ζ ), ζ3)̥
γ /αη(σ (ζ )) ≤ 0. (17)

By applying Lemma 1 (i), the differential Equation (8)

associated with the inequality (17) reveals the existence of a positive

solution, leading to a contradiction.

Now, suppose the case (III) holds, we have z(ζ ) < 0 and

z′(ζ ) > 0. Let

z̄(ζ ) = −z(ζ ) = −xη(ζ )− p1(ζ )x
λ(τ (ζ ))

+p2(ζ )x
ν(τ (ζ )) ≤ p2(ζ )x

ν(τ (ζ )),

it follows that

x(ζ ) ≥

(

z̄(τ−1(ζ ))

p2(τ−1(ζ ))

)1/ν

. (18)

It can be inferred from Equation (1) that

(

a(ζ )
(

z̄′(ζ )
)α)′

= q(ζ )xγ (σ (ζ ))+ r(ζ )xβ (ϕ(ζ )) ≥ q(ζ )xγ (σ (ζ ))

≥ q(ζ )

(

z̄(τ−1(σ (ζ )))

p2(τ−1(σ (ζ )))

)γ /ν

. (19)

Since z̄′(ζ ) < 0, we have

z̄(m)− z̄(n) = −

∫ n

m

(a(s)(z̄′(s))α)1/α

a1/α(s)
ds ≥ A(n,m)(−a1/α(n)z̄′(n)),

ζ2 ≤ m ≤ n.

Lettingm = τ−1(σ (ζ )) and n = ̺(ζ ), we conclude

z̄(τ−1(σ (ζ ))) ≥ A(̺(ζ ), τ−1(σ (ζ )))(−a1/α(̺(ζ ))z̄′(̺(ζ ))). (20)

Combining Equations (19, 20) yields

(

a(ζ )
(

z̄′(ζ )
)α)′

≥ −q(ζ )

(

A(̺(ζ ), τ−1(σ (ζ )))

p2(τ−1(σ (ζ )))

)γ /ν

(a(̺(ζ ))(z̄′(̺(ζ )))α)γ /αν .

That is as follows:

�′(ζ )+ q(ζ )

(

A(̺(ζ ), τ−1(σ (ζ )))

p2(τ−1(σ (ζ )))

)γ /ν

�γ /αν(̺(ζ )) ≤ 0, (21)

where �′(ζ ) : =
(

a(ζ )
(

z̄′(ζ )
)α)

. By applying Lemma 1 (i), we

conclude that the Equation (9) corresponding to the inequality (21)

also possesses a positive solution, leading to a contradiction.

Ultimately, examine the case (IV) wherein z(ζ ) < 0 and z′(ζ ) <

0. As in the preceding case, let us take z̄(ζ ) = −z(ζ ). Utilizing

Equation (18) in conjunction with Equation (1), we obtain

(

a(ζ )
(

z̄′(ζ )
)α)′

= q(ζ )xγ (σ (ζ ))+ r(ζ )xβ (ϕ(ζ ))

≥ q(ζ )

(

z̄(τ−1(σ (ζ )))

p2(τ−1(σ (ζ )))

)γ /ν

+ r(ζ )

(

z̄(τ−1(ϕ(ζ )))

p2(τ−1(ϕ(ζ )))

)β/ν

≥ r(ζ )

(

z̄(τ−1(ϕ(ζ )))

p2(τ−1(ϕ(ζ )))

)β/ν

.

Integrating from ̺(ζ ) to ζ , we get

z̄′(ζ ) ≥

(

1

a(ζ )

∫ ζ

̺(ζ )

r(s)

p
β/ν
2 (τ−1(ϕ(s)))

ds

)1/α

z̄β/να(τ−1(ϕ(̺(ζ )))),

(22)

which has a positive solution z̄(ζ ). It follows from Lemma 1 (ii) that

the Equation 10 corresponds the inequality (22) also has a positive

solution. This completes the proof.

Corollary 1. Assume that τ1(ζ ) = τ2(ζ ) = τ (ζ ), λ < 1, ν > 1,

and (H1)-(H3) hold. Furthermore, assume that Equation (6) holds

and there exists a non-decreasing function ̺(ζ ) ∈ C
(

[ζ0,∞),R
)

satisfies Equation (7). If

lim
ζ→∞

∫ ζ

ζ0

q(s)Aγ /η(σ (s), s3)ds = ∞ for γ < αη,

lim
ζ→∞

∫ ζ

ζ0

q(s)

(

A(̺(s), τ−1(σ (s)))

p2(τ−1(σ (s)))

)γ /ν

ds = ∞ for γ < αν,

and

lim
ζ→∞

∫ ζ

ζ0

(

1

a(s)

∫ s

̺(s)

r(u)

p
β/ν
2 (τ−1(ϕ(u)))

du

)1/α

ds = ∞ for β > αν

hold for sufficiently large ζ2 > ζ1 ≥ ζ0, then every solution of

Equation (1) is oscillatory.

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2024.1384559
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Hassan et al. 10.3389/fams.2024.1384559

Theorem 2. Assume that τ1(ζ ) = τ2(ζ ) = τ (ζ ), λ < 1,

ν > 1, β > αη, and (H1)-(H3) hold. Furthermore, assume

that Equation (6) holds and there exists a non-decreasing function

̺(ζ ) ∈ C
(

[ζ0,∞),R
)

satisfies Equation (7). If there exist function

ρ(ζ ) ∈ C1
(

[ζ0,∞), (0,∞)
)

and c∗ > 0 such that

lim sup
ζ→∞

∫ ζ

ζ0

[

c
β
2 r(s)ρ(s)−

( αηa1/α(s)

βc
β/(ηα−1)
∗ ρ(s)

)α( ρ′
+(s)

(α + 1)

)α+1]

ds = ∞,

(23)

and the differential equations (9) and (10) are oscillatory for

sufficiently large ζ1 ≥ ζ0, then every solution of Equation (1) is

oscillatory.

Proof. Let x(ζ ) be a non-oscillatory solution of Equation (1).

Following the same proof of Theorem 1, we arrive at Equation (16).

Define the Riccati transformation by

ω(ζ ) = ρ(ζ )
a(ζ )

(

z′(ζ )
)α

zβ/η(ζ )
, ζ ≥ ζ0. (24)

Then, ω(ζ ) > 0 and

ω′(ζ ) =
ρ′(ζ )

ρ(ζ )
ω(ζ )+ ρ(ζ )

(

a(ζ )
(

z′(ζ )
)α)′

zβ/η(ζ )

− ρ(ζ )
a(ζ )

(

z′(ζ )
)α β

η
zβ/η−1(ζ )z′(ζ )

z2β/η(ζ )

=
ρ′(ζ )

ρ(ζ )
ω(ζ )+ ρ(ζ )

(

a(ζ )
(

z′(ζ )
)α)′

zβ/η(ζ )
−

β

η

z′(ζ )

z(ζ )
ω(ζ ).

Using the monotonicity of z(ζ ) with Equations (15, 16),

we get

ω′(ζ ) ≤
ρ′(ζ )

ρ(ζ )
ω(ζ )− c

β
2 r(ζ )ρ(ζ )−

β

η

z′(ζ )

z(ζ )
ω(ζ ).

≤
ρ′(ζ )

ρ(ζ )
ω(ζ )− c

β
2 r(ζ )ρ(ζ )−

β

η

zβ/(ηα)−1(ζ )

ρ1/α(ζ )a1/α(ζ )
ω(α+1)/α(ζ ).

Given that z(ζ ) > 0 and z′(ζ ) > 0, it follows that there exists

a positive constant c∗ > 0 such that z(ζ ) ≥ c∗ for ζ ≥ ζ2.

Consequently, we have

ω′(ζ ) ≤
ρ′
+(ζ )

ρ(ζ )
ω(ζ )−c

β
2 r(ζ )ρ(ζ )−

β

η

c
β/(ηα−1)
∗

ρ1/α(ζ )a1/α(ζ )
ω(α+1)/α(ζ ).

Applying the inequality (5), we get

ω′(ζ ) ≤
(αηρ1/α(ζ )a1/α(ζ )

βc
β/(ηα−1)
∗

)α( ρ′
+(ζ )

(α + 1)ρ(ζ )

)α+1
− c

β
2 r(ζ )ρ(ζ ).

Integrating from (ζ3 > ζ2) to ζ , we obtain

∫ ζ

ζ3

[

c
β
2 r(s)ρ(s)−

( αηa1/α(s)

βc
β/(ηα−1)
∗ ρ(s)

)α( ρ′
+(s)

(α + 1)

)α+1]

ds ≤ ω(ζ3).

This contradiction contradicts Equation (23). By completing

the proof for the two cases (III) and (IV) in a manner similar

to the proof of Theorem 1, we arrive at the conclusion of

the theorem.

Theorem 3. Assume that τ1(ζ ) = τ2(ζ ) = τ (ζ ), λ < ν ≤ 1,

and (H1)-(H3) are satisfied. Additionally, assume that all other

conditions of Theorem 1 are met, replacing Equation (6) with

lim
ζ→∞

(

ν − λ

λ
p
ν/(ν−λ)
1 (ζ )pλ/(λ−ν)

2 (ζ )

)

= 0, (25)

then the conclusion of Theorem 1remains valid.

Proof. Let x(ζ ) be a non-oscillatory solution of Equation (1). For

convenience, assume, without loss of generality, that x(ζ ) becomes

eventually positive. Consequently, there exists ζ1 ≥ ζ0 such that

x(ζ ) > 0, x(τ (ζ )) > 0, x(σ (ζ )) > 0, and x(ϕ(ζ )) > 0 for ζ ≥ ζ1.

Employing a similar approach as in the proof of Theorem 1, we

analyze the four cases (I)–(IV) for z(ζ ).

Firstly, consider case (I). As demonstrated in the proof of case

(I) for Theorem 1, it is evident that this case is not feasible.

Next, let us examine case (II). Expressing
[

p1(ζ )xλ(τ (ζ ))− p2(ζ )xν(τ (ζ ))
]

in the form

p1(ζ )x
λ(τ (ζ ))− p2(ζ )x

ν(τ (ζ ))

=
ν

λ
p2(ζ )

[

xλ(τ (ζ ))
λ

ν

p1(ζ )

p2(ζ )
−

λ

ν

(

xλ(τ (ζ ))
)ν/λ

]

.

Applying inequality (3) with n = ν
λ
, B = xλ(τ (ζ )), L = λ

ν

p1(ζ )
p2(ζ )

andm = ν
ν−λ

, we get

p1(ζ )x
λ(τ (ζ ))− p2(ζ )x

ν(τ (ζ )) ≤
ν

λ
p2(ζ )

[ν − λ

ν

](λ

ν

p1(ζ )

p2(ζ )

)ν/(ν−λ)

=
ν − λ

λ
p
ν/(ν−λ)
1 (ζ )pλ/(λ−ν)

2 (ζ ).

It follows from definition of z(ζ ) that

x(ζ ) ≥

(

1−
ν − λ

λ

p
ν/(ν−λ)
1 (ζ )pλ/(λ−ν)

2 (ζ )

z(ζ )

)1/η

z1/η(ζ ).

Therefore, considering Equation (25) and the positivity and

increasing nature of z(ζ ), it follows that there exists a constant

c3 ∈ (0, 1) such that

x(ζ ) ≥ c
1/η
3 z1/η(ζ ). (26)

Concluding the proof in a manner similar to the proof of

Theorem 1, replacing Equation (14) with Equation (26), leading to

the conclusion of the theorem.

Remark 1. The outcomes of Corollary 1 and Theorem 2 can

be directly applied to Theorem 3, replacing Equation (6) with

Equation (25) and considering λ < ν ≤ 1 instead of λ < 1, ν > 1.

4 The case ε = +1

In this section, we investigate the oscillatory behavior of

solutions to Equation (1) under the conditions ε = +1, τ1(ζ ) ≤ ζ ,

and τ2(ζ ) ≥ ζ . Specifically, we consider cases where either of the

following three conditions holds ν < λ with η < λ, or λ < ν with

η < ν, or η < ν < λ.
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Theorem 4. Assume that τ1(ζ ) ≤ ζ , τ2(ζ ) ≥ ζ , ν < λ, η < λ,

and conditions (H1)-(H3) are satisfied. Additionally, suppose that

for any c∗ > 0

lim
ζ→∞

S1(ζ ) = 0. (27)

If there exists a number k3 ∈ (0, 1) such that the first-order

delay differential equation

̥
′(ζ )+ k

γ /λ
3

q(ζ )Aγ /λ
(

σ (ζ ), ζ3
)

p
γ /λ
1 (τ−1

1 (σ (ζ )))
̥

γ /αλ(σ (ζ )) = 0 (28)

is oscillatory for sufficiently large ζ2 > ζ1 ≥ ζ0, then every solution

of Equation (1) is oscillatory.

Proof. Let x(ζ ) be a non-oscillatory solution of Equation (1).

Without loss of generality, assume that x(ζ ) is eventually positive

for ζ ≥ ζ0. Therefore, there exists ζ1 ≥ ζ0 such that x(ζ ) > 0,

x(τ1(ζ )) > 0, x(τ2(ζ )) > 0, x(σ (ζ )) > 0, and x(ϕ(ζ )) > 0 for

ζ ≥ ζ1. It follows that z(ζ ) > 0 for ζ ≥ ζ1, which means that

cases (III) and (IV) mentioned before in the proof of Theorem 1

are impossible here. Consequently, we shall study the two cases,

namely, case (I) and case (II) in detail.

From Equation (1), we have Equation (15). First, suppose that

case (II) holds. Since z′(ζ ) < 0 and
(

a(ζ )
(

z′(ζ )
)α)′

< 0, according

to Equation (2), z(ζ ) must be negative, which contradicts the

positivity of z(ζ ), making this case impossible.

Now, consider the possibility that case (II) holds. In this case,

we have z′(ζ ) > 0 for ζ ≥ ζ1. From the definition of z(ζ ), we have

xλ(τ1(ζ )) =
1

p1(ζ )

[

z(ζ )− xη(ζ )− p2(ζ )x
ν(τ2(ζ ))

]

.

It follows that

xλ(ζ ) =
1

p1(τ
−1
1 (ζ ))

[

z(τ−1
1 (ζ ))− xη(τ−1

1 (ζ ))

−p2(τ
−1
1 (ζ ))xν(τ2(τ

−1
1 (ζ )))

]

. (29)

Hence,

xν(τ2(τ
−1
1 (ζ ))) =

1

p
ν
λ
1 (δ1(ζ ))

[

z(δ1(ζ ))− xη(δ1(ζ ))

−p2(δ1(ζ ))x
ν(τ2(δ1(ζ )))

]ν/λ
(30)

and

xη(τ−1
1 (ζ )) =

1

p
η/λ
1 (δ2(ζ ))

[

z(δ2(ζ ))− xη(δ2(ζ ))

−p2(δ2(ζ ))x
ν(τ2(δ2(ζ )))

]η/λ
. (31)

Combining Equations (30, 31) with Equation (29), we get

xλ(ζ ) =
1

p1(τ
−1
1 (ζ ))

[z(τ−1
1 (ζ ))−

1

p
η/λ
1 (δ2(ζ ))

[

z(δ2(ζ ))

−xη(δ2(ζ ))− p2(δ2(ζ ))x
ν(τ2(δ2(ζ )))

]η/λ

−
p2(τ

−1
1 (ζ ))

p
ν/λ
1 (δ1(ζ ))

[

z(δ1(ζ ))− xη(δ1(ζ ))

−p2(δ1(ζ ))x
ν(τ2(δ1(ζ )))

]ν/λ
].

Applying inequality (4) with Y = 1, we get

xλ(ζ )

≥
1

p1(τ
−1
1 (ζ ))

[

z(τ−1
1 (ζ ))−

1− η
λ

p
η/λ
1 (δ2(ζ ))

−
(1− ν

λ
)p2(τ

−1
1 (ζ ))

p
ν/λ
1 (δ1(ζ ))

−

η
λ

p
η/λ
1 (δ2(ζ ))

[

z(δ2(ζ ))− xη(δ2(ζ ))− p2(δ2(ζ ))x
ν(τ2(δ2(ζ )))

]

−

ν
λ
p2(τ

−1
1 (ζ ))

p
ν/λ
1 (δ1(ζ ))

[

z(δ1(ζ ))− xη(δ1(ζ ))− p2(δ1(ζ ))x
ν(τ2(δ1(ζ )))

]

]

≥
1

p1(τ
−1
1 (ζ ))

[

z(τ−1
1 (ζ ))−

η
λ
z(δ2(ζ ))

p
η/λ
1 (δ2(ζ ))

−

ν
λ
p2(τ

−1
1 (ζ ))z(δ1(ζ ))

p
ν/λ
1 (δ1(ζ ))

−
( 1− η

λ

p
η/λ
1 (δ2(ζ ))

+
(1− ν

λ
)p2(τ

−1
1 (ζ ))

p
ν/λ
1 (δ1(ζ ))

)]

. (32)

Given Equation (16), which implies that z(ζ )
A(ζ ,ζ3)

is decreasing,

we can deduce that δ2(ζ ) ≥ τ1−1(ζ ) and δ1(ζ ) ≥ τ2(τ
−1
1 (ζ )) ≥

τ−1
1 (ζ ). Therefore, we have

z(δ2(ζ )) ≤
A
(

δ2(ζ ), ζ3
)

A
(

τ−1
1 (ζ ), ζ3

) z(τ−1
1 (ζ )) and

z(δ1(ζ )) ≤
A
(

δ1(ζ )), ζ3
)

A
(

τ−1
1 (ζ ), t3

) z(τ−1
1 (ζ )).

Hence, Equation (32) takes the form

xλ(ζ ) ≥
z(τ−1

1 (ζ ))

p1(τ
−1
1 (ζ ))

[

1−
η
λ
A
(

δ2(ζ )), ζ3
)

A
(

τ−1
1 (ζ ), ζ3

)

p
η/λ
1 (δ2(ζ ))

−

ν
λ
p2(τ

−1
1 (ζ ))A

(

δ1(ζ ), ζ3
)

A
(

τ−1
1 (ζ ), ζ3

)

p
ν/λ
1 (δ1(ζ ))

−
( 1− η

λ

p
η/λ
1 (δ2(ζ ))

+
(1− ν

λ
)p2(τ

−1
1 (ζ ))

p
ν/λ
1 (δ1(ζ ))

) 1

z(τ−1
1 (ζ ))

]

.

By virtue of the positivity and increasing fact of z(ζ ), there a

constant c∗ > 0 such that z(ζ ) ≥ c∗ for ζ ≥ ζ4 ≥ ζ3 and

consequently, we have

xλ(ζ ) ≥
z(τ−1

1 (ζ ))

p1(τ
−1
1 (ζ ))

[

1−
η
λ
A
(

δ2(ζ )), ζ3
)

A
(

τ−1
1 (ζ ), ζ3

)

p
η/λ
1 (δ2(ζ ))

−

ν
λ
p2(τ

−1
1 (ζ ))A

(

δ1(ζ ), ζ3
)

A
(

τ−1
1 (ζ ), ζ3

)

p
ν/λ
1 (δ1(ζ ))

−
( 1− η

λ

c∗p
η/λ
1 (δ2(ζ ))

+
(1− ν

λ
)p2(τ

−1
1 (ζ ))

c∗p
ν/λ
1 (δ1(ζ ))

)]

.

It follows from Equation (27) that there exists a constant c4 ∈

(0, 1) such that

x(ζ ) ≥
c
1/λ
4 z1/λ(τ−1

1 (ζ ))

p
1/λ
1 (τ−1

1 (ζ ))
for ζ ≥ ζ4. (33)
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This with Equation (15) leads to

(

a(ζ )
(

z′(ζ )
)α)′

≤ −c
γ /λ
4 q(ζ )

zγ /λ(τ−1
1 (σ (ζ )))

p
γ /λ
1 (τ−1

1 (σ (ζ )))

− c
β/λ
4 r(ζ )

zβ/λ(τ−1
1 (ϕ(ζ )))

p
β/λ
1 (τ−1

1 (ϕ(ζ )))

≤− c
γ /λ
4 q(ζ )

zγ /λ(τ−1
1 (σ (ζ )))

p
γ /λ
1 (τ−1

1 (σ (ζ )))
. (34)

Given that z(ζ ) is an increasing function and τ−1
1 (σ (ζ )) ≥

σ (ζ ), we can conclude that z(τ−1
1 (σ (ζ ))) ≥ z(σ (ζ )). Hence,

Equation (34) takes the form

(

a(ζ )
(

z′(ζ )
)α)′

≤ −c
γ /λ
4 q(ζ )

zγ /λ(σ (ζ ))

p
γ /λ
1 (τ−1

1 (σ (ζ )))
. (35)

Since
(

a(ζ )
(

z′(ζ )
)α)′

is positive and decreasing, a conclusion

analogous to the proof of Theorem 1 leads us to Equation (16). By

substituting Equation (16) into Equation (35), we obtain

̥
′(ζ )+ c

γ /λ
4

q(ζ )Aγ /λ
(

σ (ζ ), ζ3
)

p
γ /λ
1 (τ−1

1 (σ (ζ )))
̥

γ /αλ(σ (ζ )) ≤ 0, (36)

where ̥(ζ ) : = a(ζ )
(

z′(ζ )
)α
. According to Lemma 2 (i), the

differential equation (27) associated with the inequality (36) also

possesses a positive solution. However, this contradicts our earlier

assertion. As a result, the proof is completed.

Theorem 5. Assume that τ1(ζ ) ≤ ζ , τ2(ζ ) ≥ ζ , λ < ν, η < ν, and

conditions (H1)-(H3) are satisfied. Additionally, suppose that

lim
t→∞

S2(ζ ) = 0. (37)

If there exists a number k4 ∈ (0, 1) such that the first-order

delay differential equation

̥
′(ζ )+ c

γ /ν
5

q(ζ )Aγ /ν
(

τ−1
2 (σ (ζ )), ζ3

)

p
γ /ν
2 (τ−1

2 (σ (ζ )))
̥

γ /αλ(σ (ζ )) = 0, (38)

is oscillatory for sufficiently large ζ2 > ζ1 ≥ ζ0, then every solution

of Equation (1) is also oscillatory.

Proof. Let x(ζ ) be a non-oscillatory solution of Equation (1).

Following the approach outlined in the proof of Theorem 4, we

deduce that the possible case for z(ζ ) is z(ζ ) > 0, z′(ζ ) > 0 and

(a(ζ )(z′(ζ ))α)′ < 0 holds for ζ ≥ ζ1 ≥ ζ0. From the definition of

z(ζ ), we have

xν(τ2(ζ )) =
1

p2(ζ )

[

z(ζ )− xη(ζ )− p1(ζ )x
λ(τ1(ζ ))

]

,

It follows that

xν(ζ ) =
1

p2(τ
−1
2 (ζ ))

[

z(τ−1
2 (ζ ))− xη(τ−1

2 (ζ ))

−p1(τ
−1
2 (ζ ))xλ(τ1(τ

−1
2 (ζ )))

]

. (39)

Hence,

xλ(τ1(τ
−1
2 (ζ ))) =

1

p
λ/ν
2 (δ3(ζ ))

[

z(δ3(ζ ))− xη(δ3(ζ ))

−p1(δ3(ζ ))x
λ(τ1(δ3(ζ )))

]λ/ν
, (40)

and

x(τ−1
2 (ζ )) =

1

p
η/ν
2 (δ4(ζ ))

[

z(δ4(ζ ))

−xη(δ4(ζ ))− p1(δ4(ζ ))x
λ(τ1(δ4(ζ )))

]η/ν
. (41)

Combining Equations (40, 41) with Equation (39), we get

xν(ζ ) =
1

p2(τ
−1
2 (ζ ))

[z(τ−1
2 (ζ ))−

1

p
η/ν
2 (δ4(ζ ))

[

z(δ4(ζ ))

−xη(δ4(ζ ))− p1(δ4(ζ ))x
λ(τ1(δ4(ζ )))

]η/ν

−
p1(τ

−1
2 (ζ ))

p
λ/ν
2 (δ3(ζ ))

[

z(δ3(ζ ))− xη(δ3(ζ ))

−p1(δ3(ζ ))x
λ(τ1(δ3(ζ )))

]λ/ν
].

Applying inequality (4) with Y = 1, we get

xν(ζ ) ≥
1

p2(τ
−1
2 (ζ ))

[z(τ−1
2 (ζ ))

−

η
ν

p
η/ν
2 (δ4(ζ ))

[

z(δ4(ζ ))− xη(δ4(ζ ))

−p1(δ4(ζ ))x
λ(τ1(δ4(ζ )))

]

−

λ
ν
p1(τ

−1
2 (ζ ))

p
λ/ν
2 (δ3(ζ ))

[

z(δ3(ζ ))− xη(δ3(ζ ))

−p1(δ3(ζ ))x
λ(τ1(δ3(ζ )))

]

−
(1− η

ν
)

p
η/ν
2 (δ4(ζ ))

−
(1− λ

ν
)p1(τ

−1
2 (ζ ))

p
λ/ν
2 (δ3(ζ ))

]

≥
1

p2(τ
−1
2 (ζ ))

[z(τ−1
2 (ζ ))−

η
ν
z(δ4(ζ ))

p
η/ν
2 (δ4(ζ ))

−

λ
ν
p1(τ

−1
2 (ζ ))z(δ3(ζ ))

p
λ/ν
2 (δ3(ζ ))

−
(1− η

ν
)

p
η/ν
2 (δ4(ζ ))

−
(1− λ

ν
)p1(τ

−1
2 (ζ ))

p
λ/ν
2 (δ3(ζ ))

]. (42)

Since z(ζ )
A(ζ ,ζ3)

is decreasing, δ4(ζ ) ≥ τ−1
2 (ζ ) and δ3(ζ ) ≥

τ1(τ
−1
2 (ζ )) ≥ τ−1

2 (ζ ), we have z(δ4(ζ )) ≤ z(τ−1
2 (ζ )) and

z(δ3(ζ )) ≤ z(τ−1
2 (ζ )). Hence, Equation (42) takes the form

xν(ζ ) ≥
z(τ−1

2 (ζ ))

p2(τ
−1
2 (ζ ))

[

1−
(

η
ν

p
η/ν
2 (δ4(ζ ))

+

λ
ν
p1(τ

−1
2 (ζ ))

p
λ/ν
2 (δ3(ζ ))

+
( (1− η

ν
)

p
η/ν
2 (δ4(ζ ))

−
(1− λ

ν
)p1(τ

−1
2 (ζ ))

p
λ/ν
2 (δ3(ζ ))

) 1

z(τ−1
2 (ζ ))

)]

.

By virtue of the positivity and increasing fact of z(ζ ), there a

constant c∗ > 0 such that z(ζ ) ≥ c∗ for ζ ≥ ζ4 ≥ ζ3 and
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consequently, we have

xν(ζ ) ≥
z(τ−1

2 (ζ ))

p2(τ
−1
2 (ζ ))

[

1− (
η
ν

p
η/ν
2 (δ4(ζ ))

+

λ
ν
p1(τ

−1
2 (ζ ))

p
λ/ν
2 (δ3(ζ ))

+
(1− η

ν
)

c∗p
η/ν
2 (δ4(ζ ))

−
(1− λ

ν
)p1(τ

−1
2 (ζ ))

c∗p
λ/ν
2 (δ3(ζ ))

)
]

.

It follows from Equation (37) that there exists a constant c5 ∈

(0, 1) such that

x(ζ ) ≥
c
1/ν
5 z1/ν(τ−1

2 (ζ ))

p
1/ν
2 (τ−1

2 (ζ ))
.

This with Equation (15) leads to

(

a(ζ )
(

z′(ζ )
)α)′

≤ −c
γ /ν
4 q(ζ )

zγ /ν(τ−1
2 (σ (ζ )))

p
γ /ν
2 (τ−1

2 (σ (ζ )))

− c
β
ν

4 r(ζ )
zβ/ν(τ−1

2 (ϕ(ζ )))

p
β/ν
2 (τ−1

2 (ϕ(ζ )))

≤− c
γ /ν
4 q(ζ )

zγ /ν(τ−1
2 (σ (ζ )))

p
γ /ν
2 (τ−1

2 (σ (ζ )))
. (43)

Since
(

a(ζ )
(

z′(ζ )
)α)′

is positive and decreasing, a conclusion

analogous to the proof of Theorem 1 leads us to Equation (16). By

substituting Equation (16) into Equation (43), we obtain

̥
′(ζ )+ c

γ /ν
5

q(ζ )Aγ /ν
(

τ−1
2 (σ (ζ )), ζ3

)

p
γ /ν
2 (τ−1

2 (σ (ζ )))
̥

γ /αλ(σ (ζ )) ≤ 0, (44)

where ̥(ζ ) : = a(ζ )
(

z′(ζ )
)α
. According to Lemma 2 (i), the

differential equation (37) associated with the inequality (44) also

possesses a positive solution. However, this contradicts our earlier

assertion. As a result, the proof is completed.

Theorem 6. Assume that τ1(ζ ) ≤ ζ , τ2(ζ ) ≥ ζ , η < ν < λ, and

conditions (H1)-(H3) are satisfied. Additionally, suppose that

lim
ζ→∞

S3(ζ ) = 0. (45)

If there exists a number k3 ∈ (0, 1) such that the first-order

delay differential equation (28) is oscillatory for sufficiently large

ζ2 > ζ1 ≥ ζ0, then every solution of Equation (1) is also oscillatory.

Proof. Let x(ζ ) be a non-oscillatory solution of Equation (1).

Following the approach outlined in the proof of Theorem 4, we

deduce that the possible case for z(ζ ) is z(ζ ) > 0, z′(ζ ) > 0 and

(a(ζ )(z′(ζ ))α)′ < 0 holds for ζ ≥ ζ1 ≥ ζ0. From the definition of

z(ζ ), we have Equation (29). Hence,

xη(τ−1
1 (ζ )) =

1

p
η/ν
2 (δ5(ζ ))

[

z(δ5(ζ ))− xη(δ5(ζ ))

−p1(δ5(ζ ))x
λ(τ1(δ5(ζ )))

]η/ν
, (46)

and

xν(τ2(τ
−1
1 (ζ ))) =

1

p
ν/λ
1 (δ1(ζ ))

[

z(δ1(ζ ))− xη(δ1(ζ ))

−p2(δ1(ζ ))x
ν(τ2(δ1(ζ )))

]ν/λ
. (47)

Combining Equations (46, 47) with Equation (29), we get

xλ(ζ ) =
z(τ−1

1 (ζ ))

p1(τ
−1
1 (ζ ))

−
1

p1(τ
−1
1 (ζ ))

[

[

z(δ5(ζ ))− xη(δ5(ζ ))− p1(δ5(ζ ))xλ(τ1(δ5(ζ )))
]η/ν

p
η/ν
2 (δ5(ζ ))

]

−
p2(τ

−1
1 (ζ ))

p1(τ
−1
1 (ζ ))

[

[

z(δ1(ζ ))− xη(δ1(ζ ))− p2(δ1(ζ ))xν (τ2(δ1(ζ )))
]ν/λ

p
ν/λ
1 (δ1(ζ ))

]

.

Applying the inequality (4) with Y = 1, we obtain

xλ(ζ ) =
z(τ−1

1 (ζ ))

p1(τ
−1
1 (ζ ))

−

η
ν
z(δ5(ζ ))

p1(τ
−1
1 (ζ ))pη/ν

2 (δ5(ζ ))

−

ν
λ
p2(τ

−1
1 (ζ ))z(δ1(ζ ))

p1(τ
−1
1 (ζ ))pν/λ

1 (δ1(ζ ))

−
(1− η

ν
)

p1(τ
−1
1 (ζ ))pη/ν

2 (δ5(ζ ))
−

(1− ν
λ
)p2(τ

−1
1 (ζ ))

p1(τ
−1
1 (ζ ))pν/λ

1 (δ1(ζ ))
.

(48)

Since z(ζ )
A(ζ ,ζ3)

is decreasing, δ5(ζ ) ≥ τ−1
1 (ζ ) and δ1(ζ ) ≥ τ−1

1 (ζ ),

we have z(δ5(ζ )) ≤ z(τ−1
1 (ζ )) and z(δ1(ζ )) ≤

A(δ1(ζ ),ζ3)
A(τ−1

1 (ζ ),ζ3)
z(τ−1

1 (ζ )).

Hence, Equation (48) takes the form

xλ(ζ ) =
z(τ−1

1 (ζ ))

p1(τ
−1
1 (ζ ))

[

1−
η
ν

p
η/ν
2 (δ5(ζ ))

−

ν
λ
p2(τ

−1
1 (ζ ))A

(

δ1(ζ ), ζ3
)

p
ν/λ
1 (δ1(ζ ))A

(

τ−1
1 (ζ ), ζ3

)

− (
(1− η

ν
)

p
η/ν
2 (δ5(ζ ))

+
(1− ν

λ
)p2(τ

−1
1 (ζ ))

p
ν/λ
1 (δ1(ζ ))

)
1

z(τ−1
1 (ζ ))

]

≥
z(τ−1

1 (ζ ))

p1(τ
−1
1 (ζ ))

[

1−
η
ν

p
η/ν
2 (δ5(ζ ))

−

ν
λ
p2(τ

−1
1 (ζ ))A

(

δ1(ζ ), ζ3
)

p
ν/λ
1 (δ1(ζ ))A

(

τ−1
1 (ζ ), ζ3

)

−
(1− η

ν
)

c∗p
η/ν
2 (δ5(ζ ))

−
(1− ν

λ
)p2(τ

−1
1 (ζ ))

c∗p
ν/λ
1 (δ1(ζ ))

]

for ζ ≥ ζ4 ≥ ζ3. Now from Equation (45), it follows that there

exists a constant c6 ∈ (0, 1) such that

x(ζ ) ≥
c
1/λ
6 z1/λ(τ−1

1 (ζ ))

p
1/λ
1 (τ−1

1 (ζ ))
for ζ ≥ ζ4 (49)

Completing the proof following the steps outlined in the proof

of Theorem 4 and substituting Equation (33) with Equation (49),

we arrive at the same conclusion as stated in the theorem. This

completes the proof.

Corollary 2. Assume that all the hypotheses of Theorem 4 are

satisfied, with the modification that the condition

lim
ζ→∞

∫ ζ

ζ0

q(s)Aγ /λ
(

σ (s), ζ1
)

p
γ /λ
1 (τ−1

1 (σ (s)))
ds = ∞ for γ < αλ

is used instead of the condition in Equation (28), and then, the

conclusion of Theorem 4 holds.

Corollary 3. Assume that all the hypotheses of Theorem 5 are

satisfied, with the modification that the condition

lim
ζ→∞

∫ ζ

ζ0

q(s)Aγ /ν
(

τ−1
2 (σ (s)), ζ1

)

p
γ /ν
2 (τ−1

2 (σ (s)))
ds = ∞ for γ < αν
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is used instead of the condition in Equation (38), and then, the

conclusion of Theorem 5 holds.

Now, we consider the following special case of Equation (1). We

consider η = λ = ν = 1 and α = β = γ with p2(ζ ) ≥ 0 and

p1(ζ ) ≥ 1 eventually, namely

(

a(ζ )
(

(x(ζ )+ p1(ζ )x(τ1(ζ ))+ x(τ2(ζ )))
′
)α)′

+q(ζ )xα(σ (ζ ))+ r(ζ )xα(ϕ(ζ )) = 0, ζ ≥ ζ0 > 0, (50)

For the sake of notation, we define:

φ(ζ ) =
1

p1(τ
−1
1 (ζ ))

[

1−
A
(

δ2(ζ )), ζ3
)

A
(

τ−1
1 (ζ ), ζ3

)

p1(δ2(ζ ))

−
p2(τ

−1
1 (ζ ))A

(

δ1(ζ ), ζ3
)

A
(

τ−1
1 (ζ ), ζ3

)

p1(δ1(ζ ))

]

.

Theorem 7. Suppose that conditions (H1)- (H3) hold. If there

exists a positive function ρ ∈ C1([ζ0,∞),R) such that

lim sup
ζ→∞

∫ ζ

ζ1

(

ρ(s)r(s)φα(τ−1
1 (ϕ(s)))−

a(s)(ρ′+(s))α+1

(α + 1)α+1ρα(s)

)

ds = ∞,

(51)

then Equation (50) is oscillatory.

Proof. Let x(ζ ) be a non-oscillatory solution of Equation (50).

Employing a procedure akin to the proof of Theorem 4 with η =

λ = ν = 1, Equation (32)can be expressed as follows:

x(ζ ) ≥
z(τ−1

1 (ζ ))

p1(τ
−1
1 (ζ ))

[

1−
A
(

δ2(ζ )), ζ3
)

A
(

τ−1
1 (ζ ), ζ3

)

p1(δ2(ζ ))

−
p2(τ

−1
1 (ζ ))A

(

δ1(ζ ), ζ3
)

A
(

τ−1
1 (ζ ), ζ3

)

p1(δ1(ζ ))

]

: = φ(ζ )z(τ−1
1 (ζ )).

Let us redefine the Riccati substitution ω according to Equation

(24), setting α = β and η = 1, yielding

ω′(ζ ) =
ρ′(ζ )

ρ(ζ )
ω(ζ )+ ρ(ζ )

(

a(ζ )
(

z′(ζ )
)α)′

zα(ζ )
−

z′(ζ )

z(ζ )
ω(ζ ).

Utilizing the monotonicity properties of z(ζ ) with Equation

(16), we get

ω′(ζ ) ≤
ρ′(ζ )

ρ(ζ )
ω(ζ )− ρ(ζ )r(ζ )φα(τ−1

1 (ϕ(ζ )))
zα(τ−1

1 (ϕ(ζ )))

zα(ζ )

−
α

ρ1/α(ζ )a1/α(ζ )
ω(α+1)/α(ζ )

≤
ρ′(ζ )

ρ(ζ )
ω(ζ )− ρ(ζ )r(ζ )φα(τ−1

1 (ϕ(ζ )))

−
α

ρ1/α(ζ )a1/α(ζ )
ω(α+1)/α(ζ ).

Applying the inequality (5), we get

ω′(ζ ) ≤
a(ζ )(ρ′+(ζ ))α+1

(α + 1)α+1ρα(ζ )
− ρ(ζ )r(ζ )φα(τ−1

1 (ϕ(ζ ))).

Integrating from ζ1 to ζ , we get

∫ ζ

ζ1

(

ρ(s)r(s)φα(τ−1
1 (ϕ(s)))−

a(s)(ρ′+(s))α+1

(α + 1)α+1ρα(s)

)

ds ≤ ω(ζ1).

This contradicts Equation (51) and concludes the proof.

Example 1. Consider the second-order differential equation:

(

((

x2(ζ )+
1

ζ
x1/2(ζ/2)− ζ 2x(ζ/2)

)′)2
)′

+q0x
3(ζ/6)+ r0x

5(12ζ ) = 0, ζ ≥ 1 (52)

Here, a(ζ ) = 1, η = 2, p1(ζ ) = 1
ζ
, λ = 1

2 , τ1(ζ ) = τ2(ζ ) =

τ (ζ ) = ζ
2 , ε = −1, p2(ζ ) = ζ 2, ν = 2, α = 2, q(ζ ) = q0, γ = 2,

σ (ζ ) = ζ/6, r(ζ ) = r0, β = 5 and ϕ(ζ ) = 12ζ . It is clear that
∫∞

ζ0
a−1/α(s)ds = ∞ and

lim
ζ→∞

[

R1(ζ )+ R2(ζ )
]

= lim
ζ→∞

[ 1

4ζ 2
−

1

4ζ 2

]

= 0.

Choose ̺(ζ ) = ζ
2 , where τ−1(σ (ζ )) ≤ ̺(ζ ) ≤ ζ , τ−1(ϕ(ζ )) ≥

ζ and τ−1(ϕ(̺(̺(ζ )))) ≥ ζ , and consequently, we have

lim
ζ→∞

∫ ζ

ζ0

q(s)Aγ /η(s, s1)ds = lim
ζ→∞

∫ ζ

ζ0

q0(s
3/2 − s

3/2
1 )ds = ∞,

lim
ζ→∞

∫ ζ

ζ0

q(s)

(

A(̺(s), τ−1(σ (s)))

p2(τ−1(σ (s)))

)γ /ν

ds

= lim
ζ→∞

∫ ζ

ζ0

q0

(

s/6

s2/8

)
3
2

ds = ∞

and

lim
ζ→∞

∫ ζ

ζ0

(

1

a(s)

∫ s

̺(s)

r(u)

p
β/ν
2 (τ−1(ϕ(u)))

du

)1/α

ds

= lim
ζ→∞

∫ ζ

ζ0

(∫ s

s/2

r0

(24u)5
du

)1/2

ds = ∞.

Therefore, all the assumptions stated in Corollary 1 are satisfied,

indicating that every solution x(ζ ) to Equation (52) exhibits

oscillatory behavior.

Example 2. Consider the second-order differential equation

(

ζ
(

x(ζ )+ ζ
1
10 x1/5(ζ/3)− ζ 1/3x1/3(ζ/3)

)′
)′

+ζ 2x(ζ/5)+ ζ 5x5(4ζ ) = 0, ζ ≥ 1. (53)

Here, a(ζ ) = ζ 2, η = 1, p1(ζ ) = ζ 1/10, λ = 1
5 , τ1(ζ ) = τ2(ζ ) =

τ (ζ ) =
ζ
3 , ε = −1, p2(ζ ) = ζ 1/3, ν = 1/3, α = 1, q(ζ ) = ζ 2,

γ = 1, σ (ζ ) = ζ/5, r(ζ ) = ζ 5, β = 5 and ϕ(ζ ) = 4ζ . It is clear

that
∫∞

ζ0
a−1/α(s)ds = ∞ and condition (25) becomes

lim
ζ→∞

(

ν − λ

λ
p
ν/(ν−λ)
1 (ζ )p

λ
λ−ν

2 (ζ )

)

= lim
ζ→∞

(

1/3− 1/5

1/5
(ζ 1/10)

1/3
1/3−1/5 (ζ 1/3)

1/5
1/5−1/3

)

= 0.
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Choose ̺(ζ ) = 4ζ
5 , where τ−1(σ (ζ )) ≤ ̺(ζ ) ≤ ζ , τ−1(ϕ(ζ )) ≥

ζ and τ−1(ϕ(̺(̺(ζ )))) ≥ ζ , consequently we have

lim
ζ→∞

∫ ζ

ζ0

q(s)Aγ /η(s, s1)ds = lim
ζ→∞

∫ ζ

ζ0

s2 ln(s)ds = ∞,

lim
ζ→∞

∫ ζ

ζ0

q(s)

(

A(̺(s), τ−1(σ (s)))

p2(τ−1(σ (s)))

)γ /ν

ds

= lim
ζ→∞

∫ ζ

ζ0

s2
(

ln(4s/5)− ln(3s/5)

(3s/5)1/3

)3

ds = ∞,

and

lim
ζ→∞

∫ ζ

ζ0

(

1

a(s)

∫ s

̺(s)

r(u)

p
β/ν
2 (τ−1(ϕ(u)))

du

)1/α

ds

= lim
ζ→∞

∫ ζ

ζ0

(

1

u

∫ s

4s/5

u5

(12u)5
du

)

ds = ∞.

It is evident that the requirements outlined in Corollary 1,

transferred to Theorem 1 by substituting Equation (25) in place

of Equation (6) and λ < ν ≤ 1 instead of λ < 1, ν >

1, are fulfilled. Consequently, each solution to Equation (53)

demonstrates oscillatory behavior.

Remark 2. Note that oscillation results presented in the study by

Grace et al. [13] fail to apply to the Equation (53), where 0 < λ, ν <

1 and γ 6= β unlike in the study by Grace et al. [13].

Example 3. Consider the second-order differential equation

(

ζ 3
((

x1/5(ζ )+ ζ 5x5(ζ/2)+
1

ζ
x1/3(3ζ )

)′)5
)′

+ ζ 2x3(ζ/3)

+
1

ζ 2
x3(2ζ ) = 0, ζ ≥ 1. (54)

Here, a(ζ ) = ζ 3, η = 1/5, p1(ζ ) = ζ 5, λ = 5, τ1(ζ ) =

ζ/2, τ2(ζ ) = 3ζ , ε = 1, p2(ζ ) =
1
ζ
, ν = 1/3, α = 5, q(ζ ) = ζ 2,

γ = 3, σ (ζ ) = ζ/3, r(ζ ) = 1
ζ 2
, β = 3 and ϕ(ζ ) = 2ζ . It is clear

that
∫∞

ζ0
a−1/α(s)ds = ∞ and lim

ζ→∞
S1(ζ ) = 0. Since

A(ζ , ζ1) =

∫ ζ

ζ1

(s3)−1/5ds =
5

2
(ζ 2/5 − ζ

2/5
1 ),

we observe that

lim
ζ→∞

∫ ζ

ζ0

q(s)Aγ /λ
(

σ (s), ζ1
)

p
γ /λ
1 (τ−1

1 (σ (s)))
ds =

(

5

2

)3/5

lim
ζ→∞

∫ ζ

ζ0

s2((s/3)2/5 − s
2/5
1 )

3
5

(2s/3)3
ds = ∞.

According to Corollary 2, every solution of Equation (54) is

oscillatory.

Example 4. Consider the second-order differential equation

(

ζ

((

x3(ζ )+
1

ζ
x(ζ/4)+ 5ζx4(6ζ )

)′)3
)′

+ ζx3/2(ζ/3)

+
1

ζ
x5(2ζ ) = 0, ζ ≥ 1.

Here, a(ζ ) = ζ , η = 1/5, p1(ζ ) = ζ 5, λ = 5, τ1(ζ ) =

ζ/2, τ2(ζ ) = 3ζ , ε = 1, p2(ζ ) = 1
ζ
, ν = 4, α = 5, q(ζ ) = ζ ,

γ = 3/2, σ (ζ ) = ζ/3, r(ζ ) = 1
ζ
, β = 5 and ϕ(ζ ) = 2ζ . It is clear

that
∫∞

ζ0
a−1/α(s)ds = ∞ and lim

ζ→∞
S2(ζ ) = 0. Since

A(ζ , ζ1) =

∫ ζ

ζ1

(s)−1/3ds =
3

2
(ζ 2/3 − ζ

2/3
1 ),

we observed that

lim
ζ→∞

∫ ζ

ζ0

q(s)Aγ /ν
(

τ−1
2 (σ (s)), ζ1

)

p
γ /ν
2 (τ−1

2 (σ (s)))
ds

= lim
ζ→∞

∫ ζ

ζ0

s
(

3
2 ((s/18)

2/3 − s
2/3
1 )

)3/8

(s/18)
3
8

ds = ∞.

According to Corollary 3, every solution of Equation (54) is

oscillatory.

Example 5. Consider the neutral differential equation

(x(ζ )+ ζx(ζ − 2π)+ x(ζ + π))′′ + 2x
(

ζ −
π

2

)

+ζx(ζ + 2π) = 0, ζ ≥ 5. (55)

Here, we have η = λ = ν = α = β = γ = 1, a(ζ ) = 1,

p1(ζ ) = ζ , p2(ζ ) = 1 τ1(ζ ) = ζ − 2π , τ2(ζ ) = ζ + π , q(ζ ) = 2,

r(ζ ) = ζ , σ (ζ ) = ζ − π
2 and ϕ(ζ ) = ζ + 2π . It is clear that

A(ζ , ζ0) = ζ−5 and φ(ζ ) > 0. Setting ρ(ζ ) = 1, it becomes evident

that condition (51) is satisfied. Thus, according to Theorem 7, every

solution of Equation (55) is oscillatory. Indeed, x(ζ ) = sin(ζ ) is

such a solution.

Remark 3. It is important to note that the oscillation results

outlined in the study by Thandapani et al. [24] and Thandapani

and Rama [25] can not directly apply to Equation (55) primarily

because α = β = γ in Equation (55), whereas in the study

by Thandapani et al. [24] and Thandapani and Rama [25], this

condition does not hold.

5 Conclusion and discussion

The findings of this study are showcased in a fundamentally

innovative and broadly applicable manner. These findings not

only enrich but also complement the current literature study, as

referenced in the studies by Agarwal et al. [14], Bohner et al. [15],

Džurina et al. [16], Grace et al. [17], Lin and Tang [18], and Muhib

et al. [19]. Furthermore, Equation (1) represents a more general

formulation, where ε can take values of either −1 or 1, and (α, β ,

and γ ) are distinct, with η differing from 1.
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