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Compartmental models are widely used in mathematical epidemiology to

describe the dynamics of infectious diseases or in mathematical models of

population genetics. In this study, we study a time-dependent Susceptible-

Infectious-Susceptible (SIS) Partial Di�erential Equation (PDE)model that is based

on a di�usion-drift approximation of a probability density from a well-known

discrete-time Markov chain model. This SIS-PDE model is conservative due to

the degeneracy of the di�usion term at the origin. The main results of this

article are the qualitative behavior of weak solutions, the dependence of the

local asymptotic property of these solutions on initial data, and the existence of

Dirac delta function type solutions. Moreover, we study the long-term behavior

of solutions and confirm our analysis with numerical computations.

KEYWORDS

epidemic modeling, degenerate di�erential equations, SIS-PDE model, weak solutions,
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1 Introduction

Despite undeniable, vast modern improvements in the development of highly

efficient antibiotics and vaccines, infectious diseases still contribute significantly to deaths

worldwide. The earlier recognized diseases such as cholera or plague still sometimes

pose problems in underdeveloped countries, even erupting occasionally in epidemics.

In developed countries, new diseases are emerging, such as the case of AIDS (1981) or

hepatitis C and E (1989–1990). New variants are constantly surfacing, such as recent bird

flu (SARS) epidemic in Asia, the very dangerous Ebola virus in Africa, and the recent

worldwide spread of COVID-19. Overall, infectious diseases continue to be one of themost

significant and challenging health problems.

Modeling of epidemiological phenomena has a very long history. The first model for

smallpox was formulated by Daniel Bernoulli in 1760. A large number of models have been

constructed and analyzed from the early 20th century in response to epidemics of various

infectious diseases [see for example [1–6] (and references therein)]. Compartmental

models are well established as mathematical modeling techniques. It is often applied to the

mathematical modeling of infectious diseases. In this type of modeling, the population is

subdivided into compartments or categories such as susceptible, infectious, and recovered

in the widely used SIR model or susceptible, infectious, and susceptible like in SIS

epidemiological scheme. Here, we are interested in analyzing the SIS model that provides
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the simplest description of the dynamics of a disease that is contact-

transmitted and that does not lead to immunity like it is the case

for COVID-19. Discrete-time Markov chain-type SIS models are

considered to be a classical approach in modern mathematical

modeling in epidemiology. The most recent development in

mathematical epidemiology is based on the introduction of

continuous modeling based on partial differential equations like in

[7, 8].

In our study, for T > 0 and � = (0, 1), �T = � × (0,T),

we study a time-dependent Susceptible-Infectious-Susceptible (SIS)

model derived in the study mentioned in the reference [9], which

is a generalized PDE version of a Kimura model [see [10]] in the

unknown function p : = p(x, t): �̄T → R:

∂p

∂t
=

1

2N

∂2

∂x2
(f (x)p)−

∂

∂x
(g(x)p) in �T , (1.1)

coupled with the boundary condition

1

2N

[

(1− R0)p(1, t)+
∂

∂x
p(1, t)

]

+ p(1, t) = 0, t ∈ [0,T], (1.2)

and initial data

p(x, 0) = p0(x) in �̄. (1.3)

Here, x ∈ �̄ represents the fraction of infected, N is the size of

the population of interest, p is the probability to find a fraction x at

time t in a population of sizeN, andR0 > 0 is the basic reproductive

factor.

f (x) : = x(R0(1− x)+ 1) and g(x) : = x(R0(1− x)− 1)

are connected with variance and the mean of the change of x in

the frame of Kimura model. Note that (1.1) is parabolic equation

with non-negative characteristic form, and it is degenerated on the

boundary of the domain at x = 0. The corresponding Fichera

function for (1.1) [see e. g. [11, (1.1.3), p.17]] is b(x, t) = 1
2N (f

′(x)−
2Ng(x)) = R0+1

2N > 0 on {x = 0} × {t > 0}. Hence, according to

[11, 12], the problem (1.1–1.3) is well-posed without any boundary

conditions at x = 0 for all t > 0. Reduced number of boundary

conditions required for well-posedness of degenerated problems

is a well-known phenomenon, and some interesting examples are

shown in the study mentioned in the reference [13, 14]. Imposing

zero boundary condition at x = 0 makes the problem to be over-

determined, and because some weak solutions have this property,

the set of solutions for the over-determined problem will not be

empty.

It is worth noting that processes defined by similar models were

studied by Feller in the early 1950s and used to great effect by

Kimura, et al. in the 1960s and 70s to give quantitative answers

to a wide range of questions in population genetics. However,

rigorous analysis of the analytic properties of these equations is

only the focus of applied mathematicians. The study of initial

or/and initial-boundary value problems for degenerated equations,

including Kimura-type operators, has a long history. Here, we do

not provide a complete survey of the published results pertaining

to these degenerated equations. Instead, we survey some of them

for the benefit of the interested reader. Indeed, the investigation of

elliptic and parabolic problems, leading to degenerated equations

containing operators such as

L : = a(x)

n
∑

ij=1

aij(x)
∂2

∂xi∂xj
+

n
∑

i=1

bi(x)
∂

∂xi

with a(x) ≈ |x|α , α > 0, and aij and satisfying ellipticity conditions,

are extensively studied by many authors with various analytical

approaches [see e.g. [11, 12, 15–26]] including stochastic calculus

[27–35].

Under suitable assumptions on the asymptotic behavior of

the operator’s coefficients at the boundary of the domain, the

uniqueness of bounded and unbounded solutions, as well as

solutions belonging to the weighted Sobolev spaces, was shown

in the study mentioned in the reference [12, 20, 22–24, 36]

without prescribing any boundary conditions at the origin. The

qualitative properties of the corresponding solutions, including the

maximum principle and the Harnack inequality, are discussed in

the study mentioned in the reference [31–33, 37–39] (see also

references therein). Local asymptotic behavior of solutions for

different types of degenerate equations was rigorously studied in the

study mentioned in the reference [40–42]. We also refer the reader

to the study mentioned in the reference [30–32, 34, 43], where

the theories of existence and uniqueness of solutions to stochastic

differential equations with degenerate diffusion coefficients are de-

veloped. Additionally, the well-posedness of the related problems

in the case of α = 1 is discussed in the study mentioned in the

reference [27–29]. It is worth noting that degenerate diffusion is

examined in the context of measure-valued process [see [44–46]]

via the semigroup techniques [47–49].

Finally, for the well-posedness of parabolic degenerate

problems, we refer to the study mentioned in the reference [15, 16,

18, 21, 25, 26, 35, 50–52], where the existence of weak and classical

solutions is established for different values of α > 0. Previous

researchers such as Chen andWeth-Wadman [53] and Epstein and

Mazzeo [31] restricted their attention to the solutions with the best

possible regularity properties, which leads to considerable simpli-

fications and limitations. For real applications, it is important to

consider solutions with more complicated behavior, which is the

goal of our study.

The outline of the study is as follows: in Section 2, we

show the existence of stationary solutions, analyze the dependence

of their asymptotic behavior, near the origin, on initial data,

confirm numerically their meta-stability, and analyze convergence;

in Section 3, we analyze particular classical and weak solutions. We

used COMSOL Multiphysics R© software to perform the numerical

simulations [54].

2 Weak solutions: convergence to
steady state and asymptotic behavior
as t → +∞

Throughout the whole article, we encounter the usual spaces

W1,p(�), Lp(�), and L2ω(�). It is worth noting that the last class is
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a weighted space L2 with a weight ω and the induced norm

‖v‖L2ω(�) =
( ∫

�

ω(x)v2(x) dx

)1/2

.

Moreover, we use the notations H1(�) and H1
0(�) forW

1,2(�)

andW1,2
0 (�), respectively.

In this section, as it is mentioned in the introduction, we discuss

the long-term behavior of a weak solution to problem (1.1–1.3). To

that end, we first construct the explicit stationary solution Ps : =
Ps(x): �̄ → R related to (1.1-1.3), and then, we examine a set of

initial data which provide the convergence of the weak solution as

T → +∞. In particular, we consider a case of convergent p(x, t) to

Ps(x).

2.1 Existence of a steady state

First, we start with getting an analytical formula for a stationary

solution for (1.1):

1

2N

d

dx

( d

dx
(f (x)Ps)− 2Ng(x)Ps

)

= 0 in �, (2.1)

coupled with the boundary condition:

d

dx
Ps(1) = −(2N − R0 + 1)Ps(1). (2.2)

Integrating (2.1) in x and taking into account (2.2), we get

d

dx
(f (x)Ps) = 2Ng(x)Ps.

It is apparent that this equation has a general solution

f (x)Ps(x) = C F(x), (2.3)

where

F(x) : = e
2N

x
∫

0

g(s)
f (s)

ds

= e2Nx
(R0(1−x)+1

R0+1

)
4N
R0 if R0 > 0,

and F(x) = e−2Nx if R0 = 0,

C : = lim
x→0

f (x)Ps(x).

As a result, we obtain the explicit form of the classical stationary

solution to (1.1–1.3)

Ps(x) = C

ω(x)
where ω(x) : = f (x)

F(x)
. (2.4)

Observe that the changing-sign convection term for R0 = 2

equals zero at x = 0.5, leading to a wave-like solution that moves

toward this point, forming a meta-stable steady-state shape. This

illustrates that the solution’s short-term behavior is driven by the

convection, as shown in Figures 1, 2. It takes a long-time for meta-

stable steady state (a wave-like solution that slowly changes its

shape) to move mass toward the origin. These long-term dynamics

are due to a slow diffusion effect, and eventually, the solution

blows up at the origin, which is indeed the case for two different

sets of parameter values, as shown in Figures 3, 4. All numerical

simulations show high accuracy of the mass conservation property

even for long-term computations, which suggests the existence of a

solution of Delta function type that acts as a global attractor in this

dynamical system.

2.2 Long-term behavior of a weak solution

Assuming that ω(x) is defined by Equation (2.4) and that

N > 1, R0 > 0 and 0 6 p0(x) ∈ L2ω(�).

We define a weak solution of (1.1–1.3) in the following sense:

Definition 2.1. A non-negative function p(x, t) ∈ C([0,T]; L2ω(�))
is a weak solution of problem (1.1)–(1.3) for any T > 0 if

pt ∈ L2(0,T; (H1(�))′), (ω(x)p)x ∈ L2(�T),

and p satisfies (1.1) in the sense

T
∫

0

〈∂p

∂t
,ψ

〉

(H1)′ ,H1
dt +

∫∫

�T

(

1

2N

∂(f (x)p)

∂x
− g(x)p

)

∂ψ

∂x
dxdt = 0

for all ψ ∈ L2(0,T;H1(�)), and ψ(0, t) = 0 for all t ∈ [0,T].

Here, 〈u, v〉(H1)′ ,H1 is a dual pair of elements u ∈ (H1)′ and v ∈ H1.

Now, we are ready to state our first main result related to the

asymptotic behavior of a weak solution to (1.1–1.3).

Theorem 1. (i) Let 0 6 p0(x) ∈ L2ω(�) and lim
x→0

ω(x)p(x, t) = 0, a

weak solution p(x, t) satisfies the relation

ω
1
2 (x)p(x, t) → 0 strongly in L2(�) as t → +∞.

Moreover, if (ω(x)p0(x))x ∈ L2(�), ω(x)p(x, t) ∈
C([0,+∞);H1(�)), and there is convergence

ω(x)p(x, t) → 0 strongly in H1(�) as t → +∞. (2.5)

(ii) Let ω
1
2 (x)p0(x) ∈ L2ω(�), if p(x, t) is a weak solution to (1.1–

1.3) and lim
x→0

ω(x)p(x, t) = C > 0, where C is the same constant as

in Equation (2.3), there exists a constant C1 > 0, depending on R0
and N, such that

‖ω(x)p(x, t)− C‖L2(�) 6 C1‖ω(x)p0(x)− C‖L2(�) for all t > 0.

(2.6)

Moreover, if ω(x)(ω(x)p0(x))x ∈ L2(�), there exist a constant

C1 > 0 and a time T∗ > 0, depending on R0 and N, such that

‖ω(x)
∂

∂x
(ω(x)p(x, t))‖L2(�) 6 C2‖ω(x)p0(x)−C‖L2(�) for all t > T∗.

Numerical simulations in Figures 5, 6 illustrate the convergence

result in Equation (2.6).

Note that Theorem 1 describes a behavior of a weak solution to

direct well-posed problem (1.1)–(1.3), depending on the different

types of behavior ω(x)p(x, t) at x = 0, taking into account two

explicit solutions: steady state (subsection 2.1) and Fourier series

solutions (subsection 3.1). In other words, our main result has a

conditional characteristic via inserting additional assumptions on

the term ω(x)p(x, t) as x → 0 in the statement of the Theorem 1

but not to the statement of the problem (1.1)–(1.3). In the context

of infectious disease spreading dynamic, Theorem 1 says that a

different regularity of the initial data at x = 0 leads to a different

rate of the disease extinction, i. e., more regular initial data give us

faster decay of infection.
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FIGURE 1

These two pictures illustrate the dominant behavior of convection in the short-term t ∈ [0, 0.1]. (Left) Convection moves the solutions toward the

steady state from the right side to the left one for R0 = 2 and N = 200, (Right) convection moves the solutions toward the steady state from the left

side to the right one for the same parameter values. The initial data are plotted with a dashed line.

FIGURE 2

These two pictures illustrate t ∈ [0, 0.1] short-term dynamics for R0 = 2 and N = 100 (Left) and t ∈ [0, 2000] long-term dynamics with blow up at the

origin (Right). The initial data are plotted with a dashed line.

FIGURE 3

These two pictures illustrate the dominant behavior of convection in the short-term t ∈ [0, 0.1]. (Left) Convection moves solutions toward the origin,

here R0 = 0.5 and N = 100 and where solutions blow up. (Right) Convection again moves solutions toward the origin, here R0 = 1 and N = 100 and

where solutions blow up. The initial data are plotted with a dashed line.

Remark 2.1. In this study, we do not discuss the existence and

uniqueness of weak solutions vanishing at the origin. As for these

issues, we refer the interested readers to Section 7 in the study

mentione4d in the reference [51], where the related questions are

analyzed.

Remark 2.2. In particular, Theorem 1 provides the following

properties:

(i) (2.5) implies

∫

�

p(x, t) dx → 0 as t → +∞,

where we deduce that lim
t→+∞

p(x, t) = 0 a. e. x ∈ �̄;
(ii) (2.6) gives the stability of the steady state Ps.

Proof of Theorem 1. Introducing a new function z : = ω(x)p(x, t)

and rewriting problem (1.1)–(1.3) in the more suitable form:















ω−1(x) ∂z
∂t =

1
2N

∂
∂x

(

F(x) ∂z
∂x

)

, (x, t) ∈ �T ,
∂z
∂x |x=1 = 0 and z|x=0 = 0, t ∈ [0,T],

z(x, 0) = z0(x) : = ω(x)p0(x), x ∈ �̄.
(2.7)

Note that if z|x=0 = C > 0, we can define a new

function z̃ = z − C, and we reduce the case to a problem
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FIGURE 4

These two pictures illustrate the dominant behavior of convection in the short term t ∈ [0, 0.1]. (Left) Convection moves solutions toward the origin,

here R0 = 0 and N = 100, where the solutions blow up. (Right) Convection again moves solutions toward the origin, here R0 = 0 and N = 200, where

the solutions blow up. The initial data are plotted with a dashed line.

FIGURE 5

These two pictures illustrate convergence of weighted L2-norm of p(x, t) to a constant for R0 = 0 and N = 100, C = 4.3 ∗ 10−5 (left) and R0 = 0 and

N = 200, C = 1.7 ∗ 10−4 (right).

FIGURE 6

These two pictures illustrate convergence of weighted L2-norm of p(x, t) for R0 = 0.5 and N = 100, C = 4.2 ∗ 10−5 (left) and R0 = 2 and N = 200,

C = 1.6 ∗ 10−4 (right).

similar to Equation (2.7). Since the approximation approach is well

developed for this type of problem, to avoid technical details, we

proceed with formal computations. Our formal computations can

be rigorously justified by introducing a sequence of approximate

solutions with extra regularity property, taking advantage of the

standard approximation arguments, and passing to the limit in the

final estimates. The weak solution will be obtained as a limit as

ε → 0 of smooth solutions for the corresponding approximating

problems. For any ε > 0, we consider the approximating problems

of Equation (2.7), where instead of ω(x) and z0(x), we take

ωε(x) = f (x)+ε
F(x)

and zε,0(x) ∈ C∞(�̄) such that zε,0(x) →
z0(x) strongly in H1(�) as ε → 0. As these approximating

problems are uniformly parabolic, by general PDE theory for the

second order parabolic equations (see, e.g. [55]), we find a solution

zε(x, t) ∈ C∞(�T). By going through all routine calculations

for zε , and then passing to the limit with respect to ε → 0,

we arrive at the required estimates for the corresponding limit

solution z.
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We now verify claim (i) of Theorem 1. To this end, multiplying

the equation in (2.7) by z(x, t) and integrating over�, we obtain as

follows:

1

2

d

dt

∫

�

ω−1(x)z2 dx+ 1
2N

∫

�

F(x)

(

∂z

∂x

)2

dx =
1

2N
F(x)z

∂z

∂x

∣

∣

∣

1

0
= 0.

(2.8)

Next, we take advantage of Hardy inequality [56, p. 22, (1.25)

with p = q = 2]

∫

�

ω−1(x)z2 dx 6 CH(R0)

∫

�

F(x)

(

∂z

∂x

)2

dx

with z(0) = 0. Here, the constant CH(R0) satisfies the inequalities:

A(R0) 6 CH(R0) 6 4A(R0) with A(R0) =

sup
r∈(0,1)

(

r
∫

0

dx
F(x)

)(

1
∫

r

dx
ω(x)

)

.

Note that

(

r
∫

0

dx
F(x)

)(

1
∫

r

dx
ω(x)

)

=
(

r
∫

0

e−2Nx(R0(1− x)+ 1)
− 4N

R0 dx
)

(

1
∫

r

x−1e2Nx(R0(1− x)+ 1)
4N
R0

−1
dx

)

6

r−1e2N
(

r
∫

0

(R0(1− x)+ 1)
− 4N

R0 dx
)(

1
∫

r

(R0(1− x)+ 1)
4N
R0

−1
dx

)

6 e2N(R0(1− r)+ 1)
− 4N

R0

(

1
∫

r

(R0(1− x)+ 1)
4N
R0

−1
dx

)

6 e2N ,

where it follows that A(R0) 6 e2N . Thus, statement (2.8) along with

Hardy inequality, see [9], leads to the relation

∫

�

ω−1(x)z2(x, t) dx 6 e
− t

NCH (R0)
∫

�

ω−1(x)z20(x) dx → 0 as t →

+∞.

Multiplying the equation in (2.7) by −ω(x) ∂
∂x

(

F(x) ∂z
∂x

)

and

integrating over�, we obtain the equation

1
2
d
dt

∫

�

F(x)

(

∂z
∂x

)2

dx+ 1
2N

∫

�

ω(x)

(

∂
∂x

(

F(x) ∂z
∂x

)

)2

dx

= F(x) ∂z
∂t
∂z
∂x

∣

∣

∣

1

0
,

which implies

1

2

d

dt

∫

�

F(x)

(

∂z

∂x

)2

dx+
1

2N

∫

�

ω(x)

(

∂

∂x

(

F(x)
∂z

∂x

)

)2

dx = 0.

To handle the second term in the left-hand side of this equality,

we apply to v = F(x) ∂z
∂x the following inequality:

∫

�

v2

F(x)
dx 6 CP(R0)

∫

�

ω(x)
(

∂v
∂x

)2
dx with v(1) = 0,

where CP(R0) =
∫

�

1
F(x)

( 1
∫

x

dy
ω(y)

)

dx.

Hence, we end up with the relation

∫

�

F(x)

(

∂z

∂x

)2

dx 6 e
− t

NCP (R0)

∫

�

F(x)

(

∂z0

∂x

)2

dx → 0 as t → +∞.

(2.9)

As a result, we obtain the following convergence:

z(x, t) → 0 strongly in H1(�) as t → +∞

provided the following inequality holds:

∫

�

(

ω−1(x)z20(x)+ F(x)

(

∂z0

∂x

)2)

dx < +∞.

As a simple consequence of this fact and the convergence of

(2.9), we obtain an upper bound on z(x, t):

z(x, t) 6 x
1
2 e

− t
2NCP (R0)

(

∫

�

F(x)

(

∂z0

∂x

)2

dx
)

1
2
,

which, in turn, provides the desired relation

p(x, t) 6 x
1
2

ω(x)
e
− t

2NCP (R0)

(

∫

�

F(x)

(

∂z0

∂x

)2

dx
)

1
2
.

We now proceed by showing that statement (ii) of Theorem 1

is in fact valid. We multiply (2.7) by ω(x)ψ(x)z(x, t) and integrate

over� to obtain

1

2

d

dt

∫

�

ψ(x)z2 dx+
1

2N

∫

�

f (x)ψ(x)

(

∂z

∂x

)2

dx =

1

2N

(

f (x)ψ(x)z
∂z

∂x
−

1

2
(ω(x)ψ(x))′F(x)z2

)
∣

∣

∣

∣

1

0

+
1

4N

∫

�

z2
∂

∂x

(

F(x)
∂

∂x

(

ω(x)ψ(x)

))

dx.

Then, choosing here

ψ(x) = ω−1(x)

x
∫

0

dy
F(y)

= F(x)
f (x)

x
∫

0

dy
F(y)

→ 1
1+R0

as x → 0,

we arrive at the equality

d

dt

∫

�

ψ(x)z2 dx+
1

N

∫

�

f (x)ψ(x)

(

∂z

∂x

)2

dx+
1

2N
z2(1, t) = 0,

(2.10)
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where
∫

�

ψ(x)z2 dx 6

∫

�

ψ(x)z20(x) dx.

Thus, we easily conclude that

∫

�

z2(x, t) dx 6 C1

∫

�

z20(x) dx for all t > 0,

where 0 < C1 = supψ(x)
infψ(x)

< +∞. Now, multiplying the equation in

(2.7) by−ω(x)φ(x) ∂
∂x

(

F(x) ∂z
∂x

)

and integrating over�, we obtain

1

2

d

dt

∫

�

φ(x)F(x)

(

∂z

∂x

)2

dx+
1

2N

∫

�

ω(x)φ(x)

(

∂

∂x

(

F(x)
∂z

∂x

))2

dx

=
(

φ(x)F(x)
∂z

∂t

∂z

∂x
−

1

4N
ω(x)φ′(x)F2(x)

(

∂z

∂x

)2)∣

∣

∣

∣

1

0

+
1

4N

∫

�

(ω(x)φ′(x))′F2(x)

(

∂z

∂x

)2

dx.

Now, consider φ(x) such that (ω(x)φ′(x))′F2(x) = 2f (x)ψ(x),

i. e.,

φ(x) = 2

x
∫

0

1
ω(y)

(

y
∫

0

1
F(v)

(

v
∫

0

ds
F(s)

)

dv
)

dy ∼ x2

2(R0+1)
as x → 0,

we have

d
dt

∫

�

φ(x)F(x)

(

∂z
∂x

)2

dx+ 1
N

∫

�

ω(x)φ(x)

(

∂
∂x

(

F(x) ∂z
∂x

))2

dx

= 1
N

∫

�

f (x)ψ(x)

(

∂z
∂x

)2

dx.

The above equality, along with (2.10), leads to

d
dt

∫

�

(

φ(x)F(x)

(

∂z
∂x

)2

+ ψ(x)z2
)

dx+ 1
N

∫

�

ω(x)φ(x)

(

∂
∂x

(

F(x) ∂z
∂x

))2

dx+ 1
2N z

2(1, t) = 0. (2.11)

Now, applying to v = F(x) ∂z
∂x , the following estimate

∫

�

φ(x)

F(x)
v2 dx 6 CP(R0)

∫

�

ω(x)φ(x)

(

∂v

∂x

)2

dx with v(1) = 0,

where

CP(R0) =
∫

�

φ(x)
F(x)

(

1
∫

x

dy
ω(y)φ(y)

)

dx,

to (2.11) and conclude that

∫

�

φ(x)F(x)

(

∂z
∂x

)2

dx 6 e
− t

NCP (R0)
∫

�

φ(x)F(x)

(

∂z0
∂x

)2

dx

+
∫

�

ψ(x)z20(x) dx,

where

∫

�

ω2(x)

(

∂z
∂x

)2

dx 6
sup

(

φ(x)F(x)

ω2(x)

)

inf
(

φ(x)F(x)

ω2(x)

) e
− t

NCP (R0)
∫

�

ω2(x)

(

∂z0
∂x

)2

dx

+ supψ(x)

inf
(

φ(x)F(x)

ω2(x)

)

∫

�

z20(x) dx.

As a result, there exists a time T∗ > 0 such that

∫

�

ω2(x)

(

∂z

∂x

)2

dx 6 C2

∫

�

z20(x) dx for all t > T∗

provided the following inequality holds:

∫

�

(

ψ(x)z20(x)+ φ(x)F(x)
(

∂z0

∂x

)2)

dx < +∞.

This completes the proof of assertion (ii) and, as a consequence,

of Theorem 1.

3 Solutions in weighted L
2-space

In this section, we will illustrate an application of Theorem 1 by

constructing solutions, using the spectral decomposition method,

in a weighted L2-space. First, we analyze classical solutions to

problem (2.7), and then, we discuss some classes of weak solutions.

3.1 Fourier series solutions in a weighted
space

Introducing a new variable

s =
√
2N

x
∫

0

dy

f
1
2 (y)

,

and denoting by

l(s) : =
√
2N

g(x)

f
1
2 (x)

=
√

2N
R0

sin
(

1
2

√

R0
2N s

)[

R0−1−(R0+1) sin2
(

1
2

√

R0
2N s

)]

| cos
(

1
2

√

R0
2N s

)

|
,

s1 : = 2
√

2N
R0

arcsin
(

√

R0
R0+1

)

,

we rewrite problem (2.7) in the form as follows:

{

∂z
∂t =

∂2z
∂s2

+ l(s) ∂z
∂s , s ∈ (0, s1), t ∈ (0,T),

z(0, t) = 0, ∂z
∂s (s1, t) = 0, t ∈ [0,T].

(3.1)

It is worth noting that to establish (3.1), we have made use of

the following simple and verifiable relations:

s =















2
√

2N
R0

arcsin
(

√

R0
R0+1x

1
2
)

if R0 > 0,

2
√
2Nx

1
2 if R0 = 0,
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or as consequence

x =















R0+1
R0

sin2
(

1
2

√

R0
2N s

)

if R0 > 0,

1
8N s

2 if R0 = 0.

Separating variables in (3.1):

z(s, t) = T(t)S(s),

leads to the problems

T′(t)
T(t)

= S′′(s)+l(s)S′(s)
S(s)

= −λ,

where

T′(t) = −λT(t),

S′′(s)+ l(s)S′(s) = −λS(s) (3.2)

with

S(0) = 0, S′(s1) = 0.

Now, multiplying (3.2) by p(s) : = e

s
∫

0

l(y) dy

, we immediately

obtain the equation

−(p(s)S′(s))′ = λp(s)S(s).

Then, setting

U(s) = p
1
2 (s)S(s) q(s) = (p

1
2 (s))′′

p
1
2 (s)

= 1
2

(

l′(s)+ 1
2 l
2(s)

)

,

we arrive at the classical Sturm–Liouville problem with the

continuous potential q(s)

{

−U ′′(s)+ q(s)U(s) = λU(s), s ∈ (0, s1),

U(0) = 0, U ′(s1) = 0.
(3.3)

From here, we rely on standard computational methods to

obtain the following asymptotic behavior of eigenvalues and

eigenfunctions to problem 3.3:

λk ∼ ( πs1 )
2
(

k+ 1
2

)2
, Uk(s) ∼ sin

(

π
s1
(k+ 1

2 )s
)

,

or returning to (3.2):

λk ∼ ( πs1 )
2
(

k+ 1
2

)2
, Sk(s) ∼ e

− 1
2

s
∫

0

l(y) dy

sin
(

π
s1
(k+ 1

2 )s
)

.

Thus, problem (3.1) has a particular solution

z(s, t) =
+∞
∑

k=0

cke
−λktSk(s),

which, in turn, means

z(x, t) =
+∞
∑

k=0

cke
−λktϕk(x),

where

λk ∼ π2

N

(

k+ 1
2

)2
, ϕk(x) ∼ e−N

3
2 x sin

(

π(k+ 1
2 )

arcsin
(
√

R0
R0+1 x

1
2
)

arcsin
(
√

R0
R0+1

)

)

.

Finally, keeping in mind the relation z(x, t) = ω(x)p(x, t), we

deduce the formal solution

p(x, t) = 1
ω(x)

+∞
∑

k=0

cke
−λktϕk(x)

that is a weak solution in a weighted L2-space in the sense of the

Definition 2.1. It is worth noting that the asymptotic behavior of

the solution C1√
xeC2 t

as x → 0+ is in agreement with Theorem 1 (i).

3.2 The Dirac delta function solutions

In this section, we show that Dirac delta function type solutions

belong to our class of weak solutions. The main problem here

is that, with zero on the boundary, the integral
∫ a
0 f (z)δ(z)dz is

a priori not well defined (over-determined ill-posed problem was

previously considered in the study mentioned in the reference

[9]). Now, we denote positive and non-negative cut of functions

by f (x)χ{x>0} and f (x)χ{x>0}, respectively. This corresponds to

integrating δ function against the function f (x)χ{x>0} (or possibly

f (x)χ{x>0}), which is not continuous at the origin x = 0, where

the support of the Dirac delta function lies. With the Dirac delta

function at the boundary of the integration, only formal expressions

could be found in the literature:
∫ a
0 f (z)δ(z)dz =

∫ 0
−a f (z)δ(z)dz =

1
2 f (0). This is the justification for choosing a symmetrization

method by considering a problem of extended domain [−1, 1] for

our Dirac delta function type solutions. Now, we look for a solution

to a symmetrically extended problem (1.1)–(1.3) on the interval

(−1, 1) in the form of p(x, t) = η(t)δ0(x), where δ0(x) is the Dirac

delta function concentrated at the origin.

Multiplying symmetrized Equation (1.1) by φ(x) ∈ C2[−1, 1]

with compact support and φ(0) 6= 0, after integrating by parts in

QT : = (−1, 1)× (0,T), we have

∫∫

QT

∂p

∂t
φ(x) dxdt =

1

2N

∫∫

QT

(

f̃ (x)pφ′′(x)+ 2Ng̃(x)pφ′(x)
)

dxdt,

where f̃ and g̃ are even continuation of f and g, respectively. Taking

p(x, t) = η(t)δ0(x) in the last equality, we deduce that

(η(T)− η(0))φ(0) = ( 1
2N f (0)φ

′′(0)+ g(0)φ′(0))

T
∫

0

η(t) dt = 0.

Due to the inequality φ(0) 6= 0, we have

η(T) = η(0) = M > 0.

As a result, symmetrized Equation (1.1) has the following

solution:

p(x, t) = Mδ0(x) for all (x, t) ∈ (−1, 1)× (0,+∞).
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FIGURE 7

These two pictures illustrate the existence of the Dirac delta function type solutions for symmetrized problems with R0 = 0 and N = 10. The initial

data are plotted with a dashed line.

Convergence of a weak solution to the Dirac delta function

is shown in Figure 7. It is interesting to mention that a non-

smooth change of variables y = 2
√
x (for the case R0 = 0) will

remove the degeneracy from the equation. However, the whole

long-term dynamics will not be recovered in terms of y as a

global attractor-type solution. Cet that satisfies no-flux boundary

conditions in terms of variable y will not be satisfying no-flux

boundary conditions in terms of variable x. Although Cet solves

the original problem with Neumann boundary conditions (which

make the original problem ill-posed), it is unstable. Indeed, a

slight perturbation will drive the dynamics toward the Dirac delta

function.
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