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Multivariate realized volatility: an
analysis via shrinkage methods
for Brazilian market data
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Department of Economics, FEARP - Faculty of Economics, Business Administration and Accounting at

Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil

Introduction: Realized volatility analysis of assets in the Brazilian market within a

multivariate framework is the focus of this study. Despite the success of volatility

models in univariate scenarios, challenges arise due to increasing dimensionality

of covariance matrices and lower asset liquidity in emerging markets.

Methods: In this study, we utilize intraday stock trading data from the Brazilian

Market to compute daily covariance matrices using various specifications. To

mitigate dimensionality issues in covariance matrix estimation, we implement

penalization restrictions on coe�cients through regressions with shrinkage

techniques using Ridge, LASSO, or Elastic Net estimators. These techniques are

employed to capture the dynamics of covariance matrices.

Results: Comparison of covariance construction models is performed using the

Model Confidence Set (MCS) algorithm, which selects the best models based

on their predictive performance. The findings indicate that the method used for

estimating the covariance matrix significantly impacts the selection of the best

models. Additionally, it is observed that more liquid sectors demonstrate greater

intra-sectoral dynamics.

Discussion: While the results benefit from shrinkage techniques, the high

correlation between assets presents challenges in capturing stock or sector

idiosyncrasies. This suggests the need for further exploration and refinement of

methods to better capture the complexities of volatility dynamics in emerging

markets like Brazil.

KEYWORDS

realized volatility, shrinkage, high-frequency data, penalized estimation, LASSO, Ridge,

Elastic Net

1 Introduction

Understanding volatility has become fundamental for option pricing, portfolio

selection and risk management. Historically, the Finance and Econometrics literature has

concentrated efforts and developed the most diverse methodologies in the construction of

better measures for this purpose. However, two problems are intrinsic to the discussion:

the fact that true volatility cannot be observed and needs to be estimated [1] and the

dimensionality problem of the multivariate realized variance matrix [2, 3].

The evolution of portfolio selection theory has underscored the necessity for more

efficient and robust methods in estimating the CovarianceMatrix [3], proving fundamental

in comprehending the dynamics governing asset return behavior. Concurrently,

technological advancements and the growth of the financial market have facilitated the

creation of more companies and an influx of data. Practices developed at the intersection of

statistics and computing, particularly involving large databases, have become indispensable

components in financial applications. This signifies a paradigm shift in information

management and alters our understanding of the decision-making process: volatility is

now perceived as dynamic and less parsimonious, deviating from suggestions in earlier

literature [3, 4].
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The availability of high-frequency data enables the construction

of the realized covariance matrix, serving as a proxy for the latent

true volatility [5]. Notably, there is a dearth of literature addressing

this issue using penalty methods specifically tailored for data from

emerging markets, characterized by lower liquidity (e.g., [6, 7]) and

making the usual estimation of the variance matrix carried out

in higher dimensions more difficult. Moreover, the incorporation

of penalties allows us to tackle the dimensionality problem, a

significant impediment in multivariate volatility literature due to

computational complexity.

The objective of this study is to estimate multivariate

volatility models utilizing high-frequency data from the Brazilian

market, employing shrinkage methods from the Machine Learning

literature (e.g., [3, 8, 9]). We introduced a flexible algorithm for

estimating the covariance matrix, deliberately avoiding the use of

sample covariance. Additionally, the most suitable regularization

approach, whether ℓ1, ℓ2, or a combination of both norms,

is selected based on predictive performance, using the Model

Confidence Set (MCS) mechanism, proposed in Hansen et al. [10].

Through the proposed exercise, we aim to investigate how

volatilities are governed in a multivariate context for the most

liquid assets on the Brazilian stock exchange, employing a

computationally efficient methodology. Additionally, the study

seeks to determine whether a specific sector of the economy is

correlated with others. Questions regarding whether asset variances

are influenced by past dynamics or spillover-type effects, and

whether there exist disparities in the dynamics of variance and

covariance, will be explored. It is crucial to highlight that despite

challenges posed by issues such as market microstructure noise and

the structure of our data, the primary objective of this work is to

estimate the covariance matrix for a substantial volume of assets.

The structure of the work is divided into five sections, starting

with this introduction. Section 2 provides a literature review, while

Section 3 outlines the methodology. The empirical analysis is

presented in Section 4, and the study concludes with Section 5.

2 Literature review

The literature review seeks to connect seminal works on

covariance matrix utilization and estimation in finance, alongside

primary references on conditional variance and realized variance

models. Drawing from the finance literature, we revisit the

seminal work of Markowitz [11], which laid the groundwork for

estimating variance and covariance matrices between assets. After

we delve into the volatility models introduced by Bollerslev [12],

examining the maturity of this field, the performance of univariate

models, and the practical challenges encountered in multivariate

models. Additionally, we explore an extensive literature on the

estimation of high-dimensional covariance matrices. Lastly, we

discuss the work of Fleming et al. [13], which provides economic

justification for utilizing high-frequency data, and Ledoit and

Wolf [3] which reviews the use of shrinkage methods in realized

variance estimation.

Markowitz’s [11] contribution revolves around portfolio

selection. The study analytically demonstrates that the risk of a

portfolio is not solely determined by the average of individual

risks; rather, it necessitates consideration of the correlation between

assets. This foundational work systematized the understanding of

diversification behavior among economic agents. At the time of

its publication, asset risk was measured by the standard deviation

of its return. In this theory, asset returns are treated as random

variables, and the investor’s objective is to optimally allocate

weights to each asset. Within this theoretical framework, the

optimal choice is determined by a vector of weights that minimizes

portfolio variance.

Let ri be the rate of return associated with asset i, where

i = 1, . . . , n. The vector of returns is denoted by z, such that z

is a n × 1 vector. Additionally, let’s assume µi = E(ri), m =
(µ1,µ2, . . . ,µn)

′ and cov(z) = 6. If w = (w1,w2, . . . ,wn)
′ is the

set of weights associated with the portfolio, then the rate of return

r =
∑n

i=1 riwi is, analogously, a random variable with mean m′w
and variance w′6w. Let µb be the investor’s baseline rate of return,

then an optimal portfolio is any combination of assets that solves

the following problem:

min
w

{

w′6w
}

s.t. :

m′w ≥ µb

e′w = 1

In this context, e represents a vector of dimensions n× 1, with

all elements set to 1. The significance of this theoretical framework

is noteworthy, as it laid the foundation for measuring the volatility

of an asset. Subsequently, the construction of covariance matrices

and the study of correlations have become pivotal in portfolio

construction, risk management, and option pricing.

A limitation in applying the Markowitz method is its

static nature, as it is usually estimated using unconditional

covariance. However, a stylized fact in financial series is the

presence of conditional variance structures. Engle [14] presents the

seminal work on estimating variance through the Autoregressive

Conditional Heteroscedasticity (ARCH) model. This marks the

inception of models designed for volatility estimation, motivated

by empirical observations of financial series properties. Notably, the

model emphasizes the greater importance of modeling the variance

autocorrelation structure compared to the average dependence

structure. The model’s specification is given by:

yt = ut

ut ∼ N (0; σ 2
t )

σ 2
t = α0 +

q
∑

i=1

αju
2
t−j

In this formulation, ut represents a disturbance term, and

σ 2
t denotes the return variance conditioned on past information.

The parameter α0 is an intercept and parameters αj measures de

dependence of conditional variance on past squared returns. The

emergence of the ARCH model aimed to introduce a new class of

stochastic processes with zero mean, serially non-autocorrelated,

and non-constant conditional variances when conditioned on past

information. The suggested estimationmethod for this model is the

maximum likelihood method.

Despite the effectiveness and simplicity of the ARCH(q) model,

it exhibits a variance memory that extends up to lag q. This implies
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that a process demonstrating higher memory in variance would

necessitate the estimation of a larger model. A natural solution to

this challenge was to specify the model with lags of the variance

itself:

σ 2
t = α0 +

q
∑

i=1

αiu
2
t−i +

p
∑

i=1

βiσ
2
t−i

This solution was proposed by Bollerslev [12], introducing

a generalized ARCH(p) specification known as the Generalized

Autoregressive Conditional Heteroskedasticity - GARCH(p, q)

model with the new parameters βi measuring the dependence

of conditional volatility on past values of itself. Subsequent

developments in the literature focused on adapting this model,

leading to the establishment of a family of GARCHmodels [15].

In Bollerslev et al. [16], a paradigm shift occurs with the

restructuring of the Capital Asset Pricing Model (CAPM) in the

conditional volatility context. In the original CAPM, asset prices

are linked to return uncertainty, and the premium to incentivize

investors is proportionate to non-diversifiable risk, measured

by the covariance of the asset’s return with the return of the

market portfolio. Analyzing US government bond and equity data,

Bollerslev et al. [16] show that the conditional covariance is found

to be slightly time-varying and a significant determinant of the risk

premium. Additionally, the implicit betas are also observed to be

time-variant.

Hansen and Lunde [17] subsequently confirm the viability

of GARCH(1, 1) by estimating 330 alternative models. They

demonstrate, using data on American exchange rates and stock

returns from International Business Machines Corporation (IBM),

the model’s superior predictive capacity and its parsimonious,

computationally efficient structure. However, the natural extension

of these models the multivariate version did not gain the same

reputation due to a practical setback: multivariate volatility models

face computational challenges stemming from the dimensional

problem, later formalized in the literature as the curse of

dimensionality. The models suggested by the literature are

presented in Martin et al. [18].

The multivariate extension of volatility models encounters

two fundamental problems: (i) the covariance matrix between

assets must be positive definite, and (ii) the number of

unknown parameters governing variances and covariances grows

exponentially with the model size (number of series). The four

principal GARCHmultivariate models [19] are:

• The VECH model, a generalization of GARCH(p, q) for the

multivariate universe.

• The BEKK model [20], which reduces the dimension

computed in VECH and imposes the mathematical restriction

that the covariance matrix be positive definite.

• The DCC model [21], which further reduces the size of BEKK

models, making the use of larger dimensions more feasible.

• TheDECOmodel [22], which simplifies the DCC specification

by constraining contemporary correlations to be numerically

identical.

Another way to model variance is through the formulation

derived from continuous-time stochastic processes, using the

concept of Realized Variance (RV) [4, 23–25]. Realized variance is a

measure of the variation in asset prices observed over a given time

period. It is computed as the sum of squared high-frequency returns

over that period. This measure is popular because it uses intraday

data, providing more accurate estimates of volatility compared to

traditional daily measures.

The connection between realized variance and continuous-

time stochastic processes arises when we consider the limit as the

sampling frequency of returns approaches infinity. In this limit,

realized variance can be related to the integral of the instantaneous

variance process over time. This concept naturally extends to the

multivariate case, giving rise to the concept of realized covariances.

However, the same estimation difficulty exists when the number of

assets is high, analogous to the estimation problem of multivariate

GARCHmodels, as discussed in Bollerslev et al. [2].

In the empirical literature, substantial efforts have been

dedicated to resolving the dimensional problem, with numerous

works focused on the estimation of high-dimensional covariance

matrices. Some of the noteworthy contributions include refs. [26–

29]. Among these, two works stand out as significant references:

Medeiros et al. [30] and Alves et al. [31].

In Medeiros et al. [30], the authors addressed the modeling

and prediction of high-dimensional covariance matrices using data

from 30 assets in the Dow Jones. They employed a penalized VAR

estimation, considering Least Absolute Shrinkage and Selection

Operator (LASSO) type estimators to mitigate the dimensional

problem. A survey on the use of shrinkage methods is this class

of problems can be found in Ledoit and Wolf [3]. Medeiros et al.

[30] show that the covariance matrix could be predicted nearly

as accurately as when the true dynamics governing the series are

known. The data, aggregated daily at 5-min intervals, spans from

2006 to 2012.

Addressing the dimensional problem more comprehensively,

Alves et al. [31] extended the exercise to all 500 assets of the

S&P 500 on a daily basis. The approach involved estimating a

sparse covariance matrix based on a factor decomposition at the

company level (size, market value, profit generation) and sectoral

restrictions on the residual covariance matrix. The restricted model

was estimated using the Vector Heterogeneous Autoregressive

model (VHAR), penalizing variable selection through LASSO. This

exercise led to improved estimates of minimum variance portfolios.

Following the factor model [32], the excess return on an asset i,

ri,t , satisfies:

ri,t = βi1,tf1,t + · · · + βiK,tfK,t + εi,t

Here, f1,t , . . . , fK,t denote the excess returns of K factors,

βik,t , k = 1, . . . ,K, represent the marginal effects, and εi,t is the

error term. For the active N, the set of equations can be expressed

in matrix format as rt = B′
tft + εt . It is assumed that E(εt|ft) =

0. The factors utilized are linear combinations of assets, forming

short- and long-term stock portfolios based on idiosyncratic and

sectoral characteristics.

The authors initiate by decomposing the covariance matrix into

two components: a matrix of factors and a second residual matrix.
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Let 6t be the realized covariance matrix of returns at time t, i.e.,

6t = cov(rt). Building on the earlier considerations, this can be

expressed as:

6t = cov(B′
tft)+ cov(εt)

= B′
t6f,tBt + 6ε,t

In a theoretical and practical context, Ledoit and Wolf [33]

highlighted the risks associated with using the sample covariance

matrix for portfolio optimization. The estimation errors in the

sample covariance matrix are more likely to disrupt the mean-

variance optimizer. They propose replacing the sample covariance

matrix with a transformation known as shrinkage. This approach

computes estimates that moderate extreme values toward central

values, systematically reducing estimation errors where they have a

more significant impact. Statistically, this is achieved through the

challenge of determining the intensity of shrinkage, the rationale

for which is presented in the paper.

Finally, Fleming et al. [13] provides justification for utilizing

high-frequency data. Drawing from recent literature, they

empirically investigate whether there are precision gains in daily

volatility estimates from intraday data. The authors analyze the

economic value of realized volatility in an investor decision-

making context. The results indicate substantial improvements

when replacing daily data estimates with intraday data estimates: a

risk-averse investor would be willing to pay 50 to 200 basis points

per year to capture the gains observed in portfolio performance.

Furthermore, these gains are found to be robust even when

accounting for transaction costs.

3 Methodology

As in Medeiros et al. [30] and Alves et al. [31], we represent

the covariance matrix at time instant t as 6t . Each entry of the

matrix is potentially a function of past entries, and we express 6t

as a function of 6t−1, . . . ,6t−p. Formally:

yt = ω +
p

∑

i=1

β iyt−i + ǫt (1)

yt = vech(6t), where vech(·) is the vectorization operation,

transforming 6t into a column vector of unique entries. β i, i =
1, . . . , p, is the matrix that captures the dynamics between 6t and

its past, ǫt is an error term and ω is a vector of constants. It is,

therefore, an Autoregressive Vector structure, of order p - VAR(p).

For a covariance matrix of n assets, there will be n(n + 1)/2

distinct entries. A VAR(p) process in this case would imply a total

of n(n+1)(p+1)/2 parameters. In other words, both in calculating

the matrix and in specifying the VAR, there would be issues with

dimensionality, as in both exercises, the number of parameters

grows exponentially. Additionally, this configuration results in a

greater number of potential predictors than observations—high

dimensionality. Tibshirani et al. [34] demonstrate that in this

scenario, traditional estimation via OLS implies overfitting, and

there is a specification error as the solution will not be unique.

In Laurini and Ohashi [35], there is a discussion regarding the

limitations of using the sample covariance matrix for dependent

processes. In intraday scenarios, the return series tend to be more

dependent compared to larger temporal aggregations. Additionally,

due to market microstructure noise, the observed price is not the

true price, introducing measurement error. Assuming that Pt is the

intraday price of a generic asset:

Pt = PVt + ηt

PVt is the true price value and ηt is the measurement error. Note

that:

Pt − Pt−1 = PVt + ηt − Pt−1

1Pt = PVt + ηt − PVt−1 − ηt−1

= 1PVt + ηt − ηt−1

The first difference in the series generates MA(1) type

contamination.

Our work aims to address challenges in both stages of the

analysis: the need to calculate 6t prior to estimation, and the

subsequent estimation process itself. As demonstrated, relying on

the sample covariance for these tasks may not be optimal. We

propose a flexible framework that allows for the specification of

various alternatives to sample covariance when handling data.

We later formalize an equation-by-equation estimation approach

for Equation (1), particularly suitable for high dimensions, using

traditional models from the Machine Learning literature [8, 9, 36].

As discussed in Ledoit and Wolf [33], the use of sample

covariance can be detrimental for portfolio optimization purposes.

This stylized fact is documented in Jobson and Korkie [37]. The

conventional approach of collecting historical return data and

generating the sample covariance matrix is sensitive to the number

of assets, leading to substantial estimation errors. This implies

that larger prediction errors in extreme coefficients of the matrix

result in larger values, influencing optimization problems with

greater weights on these coefficients. This phenomenon is known

as error-maximization, as discussed in Michaud [38].

In Fan et al. [39], a comprehensive review of methods for

estimating high-dimensional covariance and precision matrices is

presented. Similar to the numerical problem mentioned earlier,

high-dimensional matrices become singular, making them non-

invertible. The aggregation of estimation errors in high dimensions

has significant impacts on accuracy. Motivated by these challenges,

the authors categorize estimation strategies. Modern practice

involves consistent estimations based on regularization, assuming

the matrix of interest is sparse.

For this estimation, an ℓ1 penalty is applied to the maximum

likelihood function. In such an approach, a non-convex penalty

can be imposed to reduce bias. On the other hand, there is a

complementary literature based on approaches related to the rank

of the matrix. These methods make the data distribution more

flexible for a non-Gaussian scenario with heavy tails, common

in financial series. However, sparsity is not always empirically

reasonable, especially in economic data. To address this, the class of

models based on conditional sparsity is considered, where common

factors are used, and it is assumed that the covariance matrix of the

remaining components is sparse.
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To allow flexibility, we will leverage [40]. This library provides

various methods for calculating 6t . In addition to avoiding the use

of sample covariance, employing multiple methods can enhance

robustness in estimations. The following describes the structures

we will employ:

• Matrix of type ewma: We compute the covariance matrix

based on Exponential Weighting Moving Average (EWMA),

documented in the traditional RiskMetrics methodology [41].

Formally, the covariance matrix is denoted by the matrix and

a constant 0 < λ < 1, such that:

6t+1 = λ6t + (1− λ)rtr
′
t .

Considering a sample ofN assets, rt is a vectorN×1 of returns

at time t. By convention we adopt λ = 0.94.

• Matrix of type color: The color matrix estimation strategy

involves a weighted average of the sample covariance matrix

and a shrinkage target. In this specific approach, the shrinkage

target is characterized by a constant correlation structure

between pairs. This method is introduced and defined in

Ledoit and Wolf [33].

Let S be the sample covariance matrix and F be a

structured estimator. The idea is to propose a convex

combination δF + (1 − δ)S, such that 0 < δ < 1. It is a

shrinkage technique in that we “shrink” S in the direction of

F. δ is known as shrinkage constant. To introduce F, we will

have the following notation, as in the original work: let yit ,

1 ≤ i ≤ N, 1 ≤ t ≤ T. The analysis will assume that returns

are independent and identically distributed over time and with

finite fourth moments. Here, ȳi = T−1
∑T

i=1 yit . Define that

6 is the true covariance matrix and S is the sample covariance

matrix. We will have that σij represents the inputs of 6 and

that sij represents the inputs of S. The population and sample

correlations are, respectively:

ρi,j6 =
σij

√
σiiσjj

ρi,jS =
sij

√
siisjj

Additionally, we can take the average of such

measurements:

ρ̄6 = 2

(N − 1)N

N−1
∑

i=1

N
∑

j=i+1

ρi,j6

ρ̄S =
2

(N − 1)N

N−1
∑

i=1

N
∑

j=i+1

ρi,jS

The matrix F, defined as shrinkage target, will have

diagonal and off-diagonal input, respectively:

fii = sii

fij = ρ̄S
√

siisjj

Finally, we find δ from an optimization problem. Here,

the loss function to be optimized is intuitive and does not

require the inverse of S: it is the quadratic distance between

the true covariance matrix and the estimated one, based on the

Frobenius norm. The Frobenius norm of a symmetric matrix

N × N of entries zij is defined by ||Z||2 =
∑N

i=1

∑N
j=1 z

2
ij. The

objective is to find the shrinkage constant that minimizes the

expected value below:

δ̂∗ = argmin{E(||δF + (1− δ)S− 6||)2}

• Matrix of type large: this is the estimator proposed in

Ledoit and Wolf [42]. Here, we have that the shrinkage target

is given by a one-factor model. The factor is equal to the

cross-sectional average of all variables. The weight, also called

shrinkage intensity, is chosen based on the minimization of

the quadratic loss, measured by the Frobenius norm. This is a

method more suitable for high dimensions and, additionally,

it is well conditioned in the sense that the inversion is

guaranteed (non-singular matrix) and we are not induced into

estimation errors. This is a regularization in the eigenvalues of

the matrix in such a way that the eigenvalues are forced toward

more central values. Here, the objective is to find

6∗ = ρ1I+ ρ2S

which minimizes E

(

||6∗ − 6||2
)

. I is the identity matrix,

S = XX′/n is the sample covariance matrix, where

X is a p × n matrix of n independent and identically

distributed observations with zero mean and variance 6. In

the original work, under finite samples, the authors formulate

the following problem:

min
ρ1 ,ρ2

E

(

||6∗ − 6||2
)

s.t. :6∗ = ρ1I+ ρ2S

The solution is given by:

6∗ = β2

δ2
µI+ α2

δ2
S

E

(

||6∗ − 6||2
)

= α2β2

δ2

µ = 〈6, I〉
α2 = ||6 − µI||2

β2 = E

(

||S− 6||2
)

δ2 = E

(

||S− µI||2
)

Our approach to estimate Equation (1) involves an equation-

by-equation estimation using the library developed by Friedman

et al. [43]. In contrast to the methodologies proposed in our

reference works [30, 31], our strategy establishes a flexible

structure. This structure, based on the predictive performance

of a model class, dynamically determines whether the estimation

should be conducted via Ridge Regression [44], LASSO [45], or

Elastic Net [46].

The flexibility of our approach allows us to adapt the estimation

technique to the characteristics of each equation, optimizing the

trade-off between model complexity and predictive accuracy. By
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incorporating Ridge, LASSO, or Elastic Net regularization, our

methodology aims to enhance the robustness and accuracy of the

covariance matrix estimation for each individual equation within

the multivariate context.

Let yi be an element of 6t and xi be the set that contains the

lagged 6t . The estimation strategy consists of solving:

min
β0 ,β

{

1

N

N
∑

i=1

wil(yi,β0+β
′
xi)+λ

[

(1−α)||β||22/2+α||β||1
]

}

(2)

This is a General Linear Model with a penalized maximum

likelihood structure. In Equation (2), N is the number of temporal

observations, λ is a tuning parameter and l(·) is the contribution of

observation i to the log function. likelihood. Here, 0 ≤ α ≤ 1, such

that we will have a LASSO type specification if α = 1, Ridge for

α = 0 and Elastic Net for 0 < α < 1.

The Ridge mechanism is unique in that it does not perform

variable selection; a set of correlated covariates will have

numerically close coefficients. This estimator has a closed-form

solution, as it involves solving a quadratic programming problem.

In LASSO, there is the possibility of variable selection, reducing the

dimensionality of the problem. On the other hand, Elastic Net is a

hybrid structure, incorporating both ℓ1 regularization from LASSO

and ℓ2 regularization from Ridge Regression. The algorithms in the

glmnet library use cyclic coordinate descent, which successively

optimizes the objective function over each parameter with fixed

others and switches repeatedly until convergence. The package also

makes use of strict rules for efficiently restricting the active set.

Our starting point involves a specification assuming Gaussian

errors. This formulates our problem as:

min
β0 ,β

{

1

2N

N
∑

i=1

(yi−β0− x′i)
2+λ

[

(1−α)||β||22/2+α||β||1
]

}

(3)

λ ≥ 0 is traditionally found by cross-validation. However, we did

not choose to solve the problem in this way. The use of cross-

validation is not recommended in problems involving time series,

due to the dependency structure. Therefore, we will start with an

adaptation of the library and find λ using an information criterion.

Three criteria are used in the literature:

AIC = 2k− 2 ln L̂

BIC = k ln n− 2 ln L̂

HQ = −2L̂+ 2k ln (ln n)

Where n is the number of observations, k is the number of

parameters and L̂ is the maximum value of the likelihood function.

In Hamilton [47] we find the following relationship, for n ≥ 16:

BIC ≤ HQ ≤ AIC

In other words, HQ is an intermediate information criterion,

while AIC is the most flexible and BIC is the most rigorous, that is,

it penalizes the inclusion of variables in the model more severely.

In our exercise we chose the Hannan-Quinn (HQ) criterion. This

adaptation is implemented in the function ic.glmnet.1

As previously stated:

1 Available at https://github.com/gabrielrvsc/HDeconometrics.

• If α = 0, we solve the following problem:

min
β0 ,β

{

1

2N

N
∑

i=1

(yi − β0 − x′i)
2 + λ||β||22/2

}

This is the structure of a Ridge Regression. Note that if

λ = 0, we would be in a traditional Least Squares problem.

Additionally, it is possible to demonstrate that if β̂ solves the

above problem, then limλ→∞ β̂ = 0.

• If α = 1, we solve the following problem:

min
β0 ,β

{

1

2N

N
∑

i=1

(yi − β0 − x′i)
2 + λ||β||1

}

This is the structure of the LASSO method, which is a

shrinkage method. When we are faced with a scenario of high

values, we can select variables via LASSO and, additionally,

produce sparse solutions. In other words, it is possible to

perform a dimension reduction in the problem, finding a

matrix of coefficients that uses fewer features (predictors) than

a traditional Least Squares solution or via Ridge. Finally, as we

can see in Tibshirani et al. [34], in finite samples we have good

performance and avoid the classic trade-off problem of bias

and variance.

• If 0 < α < 1, we solve the following problem:

min
β0 ,β

{

1

2N

N
∑

i=1

(yi − β0 − x′i)
2 + λ

[

(1− α)||β||22/2+ α||β||1
]

}

This is the structure of Elastic Net, according to Zou and

Hastie [46]. This is a hybrid formulation, in which both ℓ1

and ℓ2 penalties are computed. This format is beneficial and

appears in the literature as an answer to some theoretical

limitations that are a consequence of LASSO: (i) LASSO

in a high-dimensional scenario, that is, more predictors (k)

than observations (n), has the ability to select a maximum

of n variables, (ii) for variables that, in pairs, are highly

correlated, LASSO will only select one of them and (iii) in

high dimension, for highly correlated features, the predictive

performance in Ridge Regression is superior to LASSO.

Since our structure is flexible, we will require a method of

choosing the model based on some criteria. In this work we will

propose the Model Confidence Set (MCS) algorithm, proposed in

Hansen et al. [10]. The idea is to start from a discrete grid, such

that αgrid = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. That is,

we will, by equation, estimate (Equation 3), take a α ∈ αgrid and

evaluate the “winning”model based on predictive performance.We

separated 20% of the sample to establish a training set and test set.

That is, 20% of the data was excluded from the sample to compute

the predictive performance.

MCS involves building a set of models such that the best model,

from a predictive point of view, is an element of this set given a

level of confidence. It is an algorithm that sequentially tests the null

hypothesis that the models have identical accuracy. Based on an

elimination criterion, it selects the best model or set of models. It

is, therefore, an inferential way of selecting models, as it is based

on global methods, unlike evaluating specific measurements. To
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FIGURE 1

The graphs groups the sample by transaction time and counts

missing data. (A) Here the sample is complete, from 10:00 to 16:55.

(B) Here we have the filtered sample, from 10:15 to 16:40.

TABLE 1 Sample classified by economic sector.

Sector Assets (%)

Financial 10 20%

Cyclical consumption 9 18%

Basic materials 8 16%

Industrial goods 7 14%

Public utility 5 10%

Oil, gas and biofuels 4 8%

Non-cyclical consumption 4 8%

Communications 2 4%

Health 1 2%

The classification by sector is provided by B3 itself.

implement MCS we will rely on Bernardi and Catania [48]. Let Yt

be our time series at time instant t and Ŷi,t be the fit of model i, at t.

The first step is to define a loss function ℓi,t that is associated with

the ith model, such that:

ℓi,t = ℓ(Yt , Ŷi,t)

The procedure is started from a set M = M̂0 of models of

dimensionm. For a given level of confidence we will have the return

of a smaller set, M̂∗, which is the Superior Set of Models (SSM),

of dimension m∗ leqm. We can find in SSM a set of equivalent

models, such that the ideal scenario is m∗ = 1. Let’s define as dij,t
the difference between ℓ(·) evaluated in models i and j:

dij,t = ℓi,t − ℓj,t

i, j = 1, . . . ,m

t = 1, . . . , n

Assume that

di,t =
1

(m− 1)

∑

j∈M
dij,t

is the loss associated with model i relative to any other model j at

time t. The hypothesis of equality of accuracy can be formulated by:

H0 :E(di) = 0, ∀i, i = 1, . . . ,m

HA :E(di) 6= 0, ∃i, i = 1, . . . ,m

Here, E(di) is assumed to be finite and not time-dependent. To

continue the test, two statistics are constructed:

tij =
d̄ij

√

ˆvar(d̄ij)

ti =
d̄i

√

ˆvar(d̄i)

Where d̄i = (m − 1)−1
∑

j∈M d̄ij is the loss of the ith

model compared to the loss average between M models; d̄ij =
m−1

∑m
t=1 dij,t measures the sample loss between the ith and jth

model, hatvar(d̄i) and ˆvar(d̄ij) are bootstrap estimates of the

variances of d̄i and d̄ij, respectively. Two statistics are computed

to test the null hypothesis of equal predictive capacity: TR,M and

Tmax,M , where:

TR,M = max{|tij|}
Tmax,M = max{ti}

The algorithm is based on the following elimination rule:

eR,M = argmax
i

{

sup
d̄ij

√

ˆvar(d̄ij)

}

emax,M = argmax
i∈M

{

d̄i

ˆvar(d̄i)

}

If we are unable to reject H0, the algorithm ends and we

conclude that all models belong to the MCS. In the opposite

direction, we eliminate the model with the worst performance and

the algorithm restarts execution with M − 1 models. To execute

the algorithm in our exercise, we are considering a modular loss

matrix, that is: let σ̂t+1 be our prediction one step ahead of the

standard deviation of a generic asset and let σt+1 be the observed

one-step-ahead standard deviation. The loss matrix will calculate,

by observation, |σ̂t+1 − σt+1|. Functions of this type are less

sensitive to outliers. Additionally, we have a significance level of

20%, the TR statistic and 2,000 replications per bootstrap. The
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chosen significance level of 20% allows us to construct a final

set of models while simultaneously considering the potential for

model elimination and more rigorous statistical requirements for

eliminations. More stringent significance thresholds, such as the

usual 5% or 10% criteria, lead to model confidence sets with a much

larger number of models, due to the greater statistical evidence

required for each individual elimination. This value allows for a

greater potential for reduction in the formation of the final set of

models, but still maintaining the need for strong statistical evidence

to define the elimination of a model. As an example, the value of

20% is the default choice when implementing the test in the MCS

library for the R programming language.

4 Empirical application

4.1 Data

We utilized intraday trading data for assets listed on B3 (Brasil,

Bolsa e Balcão), Brazil’s official stock exchange. For data collection,

we relied on the library developed by Perlin and Ramos [49]. Trade

data is commonly used in the literature, obviating the need to

construct order books for the proposed analysis. The research spans

from 07/02/2018 to 02/05/2020 (393 days), with prices aggregated

every 5 min. The selected transactions are within the time range of

10:15 to 16:40. This timeframe aligns with B3’s trading hours, which

run from 10:00 to 16:55, marking the trading cutoff. Between 16:55

and 17:00, the closing call period occurs, during which not all B3

shares are necessarily available for the closing auction.

This sampling approach, with a 15-min interval after the initial

period and 15 min before the final period, offers the advantage

of containing a reduced amount of missing data. Opening and

closing periods tend to pose more data completeness challenges,

as illustrated in Figure 1A. This figure presents a simple count,

grouping the database by transaction time and summing up the

amount of missing data. Figure 1B shows the count filtering the

data from opening and closing times (10:15 to 16:40).

We sorted our database based on trading volume and selected

the 50most traded assets over the entire period. Despite continuous

development, the Brazilian capital market still faces challenges

related to liquidity. Liquidity issues become evident when working

with the complete database, revealing anomalies in assets with very

low trading volumes. Even with the application of interpolation

or more advanced techniques to handle missing data, addressing

low-liquidity assets proves to be problematic. The Table 1 shows a

sector-wise overview of the assets in our sample.

Our sample excludes Exchange Traded Funds (ETF) BOVA11,

which, despite being the fifth most traded asset in the period,

would cause multicollinearity problems in our estimation. Despite

filtering our database during the most critical times, a significant

volume of missing data remains in the sample. To address this, we

resort to interpolation methods. In our exercise, interpolation is

performed in a univariate manner directly in the return series. The

set of missing data in the sample is treated using smoothing cubic

splines. We rely on the imputeTS library developed by Moritz

and Bartz-Beielstein [50]. In other words, we fill in the missing

data using cubic splines constructed with the asset’s return series.

Although there was an attempt to perform the filling via Kalman

filter, the return series are filled with zeros, and when trying to

interpolate the price series, we encountered convergence problems

in executing the algorithm. Additionally, in terms of computational

performance, we highlight the efficiency of filling via splines.

Interpolation by splines is an approach in which the interpolant

is a particular type of piecewise polynomial called a spline. Instead

of fitting a single high-degree polynomial to all values, we fit low-

degree polynomials, in our case of degree 3, to small subsets of

the values. This is a preferable method to polynomial interpolation

because it helps reduce the interpolation error. Let x1 < x2 <

· · · < xn be the interpolation points. A cubic spline is a function

s(x) defined on the interval [x1, xn] with the following properties:

• s(x), s′(x) and s′′(x) are continuous functions on the interval

(x1, xn).

• In each subinterval [xi, xi+1], s(x) is a cubic polynomial such

that s(xi) = fi = f (xi) for i = 1, dots, n.

Once the assets have been selected, the next step is to construct

the daily covariance matrix. As discussed in the previous section,

we chose to make the choice of matrix more flexible so that we

can incorporate alternative methods and avoid using the sample

covariance matrix. As an illustration, let’s take naive example with

two assets and two day that demonstrates the construction of the

final dataset:

Day Time
Return

Asset 1

Return

Asset 2

Day 1 h1 r11,1 r21,1
h2 r11,2 r21,2
...

...
...

hk r11,k r21,k
Day 2 h1 r12,1 r22,1

h2 r12,2 r22,2
...

...
...

hk r12,k r22,k

Here, h1, . . . , hk are the times of each trade. rnt,k is the return

on asset n, on day t and time k. This is our sample at the collection

stage. Considering two assets, a covariance matrix 6t on day t will

have the following format:

6t =
[

σ1,1t σ1,2t
σ2,1t σ2,2t

]

σm,nt is the covariance between assets m and n, on day t. The

intraday data is utilized to construct a daily proxy for the asset’s

volatility. We will consider vech(6t) transposed so that we can have

a row vector and additionally eliminate identical entries, given that

it is a symmetric matrix. The algorithm works by excluding the

lower triangle from the matrix. The data in its final version has the

following configuration:

σ1,1 σ1,2 σ2,2

Day 1 σ1,11 σ1,21 σ2,21
Day 2 σ1,12 σ1,22 σ2,22
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FIGURE 2

(A) Heatmap of the proportion of selected variables by economic sector. Diagonal elements. Matrix calculated via ewma. (B) Models selected by MCS,

by economic sector. The numbers refer to the series that belong to the diagonal. Matrix calculated via ewma.

Generalizing to a sample of j days and n assets, our dataset

will have j rows and n(n + 1)/2 columns. Finally, the data is

all standardized, as required for the use of shrinkage methods

Tibshirani et al. [34].

4.2 Estimation

In this work, we construct covariance matrices with daily

frequency from the intraday data. The idea is for each component

of the matrix to propose an estimation, equation by equation, such

that a series of covariances or variances will be explained by their

past and the past of all other elements in the matrix. To carry out

the exercise, it is necessary to determine which covariance matrix

will be calculated, as we pointed out in Section 3.

We compute the results for all the formats we present, in

such a way that the proposed exercise consists of the following

algorithm: for the return data, already filled in when missing, we

calculate the daily covariance matrix, such that the final result is

a dataset in which the columns are the elements of the matrix

and the rows are the days of our sample. We separate 20% of

the sample to construct a test set, and on the training basis, we

estimate a model with 1 lag, that is, we write 6t as a function

of 6t−1.

The estimation is done with the adaptation of glmnet, where

the penalty criterion is chosen via the HQ information criterion.

For each series, we estimate 11 models, such that each model has

a value of α ∈ αgrid. Once the models are estimated, we construct

the table with the modular loss function using out-of-sample data.

This will be the data for running the MCS. Once this is done, we
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FIGURE 3

(A) Heatmap of the proportion of selected variables by economic sector. O�-diagonal elements. Matrix calculated via ewma. (B) Models selected by

MCS, by economic sector. The numbers refer to the o�-diagonal series. Matrix calculated via ewma.

save the winning model based on the established significance level

and choose the best model.

We chose to present the results in three formats:

• As in Medeiros et al. [30], our main reference, we calculate the

selection of variables by sector, as depicted in the Figures 2A,

3A, 4A, 5A, 6A, 7A. This type of analysis allows us to identify

effects within and between sectors. To simplify the axes of

the graphs, the sectors will be denoted by their initials, i.e.,

CNC for non-cyclical consumption, BI for industrial goods,

FIN for the financial sector, PGB for oil, gas, and biofuels,

MB for basic materials, CC for cyclical consumption, UP for

utility public, COM for communications, and SAU for health.

The results are presented in a heatmap format, indicating the

average percentage of shares selected by sector.

• To exemplify how to interpret the heatmap, let’s use Figure 6A

as an example: for Non-Cyclical Consumption (CNC), on

average, 41% of the selected variances and covariances are

from CNC, 7.7% are from Industrial Goods (BI), and so on.

The rows represent the asset sector, and the columns show the

average percentage of selected covariances. We also illustrate

which models are eligible by economic sector to identify any

patterns. The idea is to count and compute, by sector, which

regressions are the winners within the MCS for each process.

This information is presented in Figures 2B, 3B, 4B, 5B, 6B,

7B.

• Finally, we present the calculation of prediction errors.

Traditional error measures are tabulated in Table 2. In the

rows, we have the economic sector, and in the columns,

the averages of the respective errors are displayed. The first
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FIGURE 4

(A) Heatmap of the proportion of selected variables by economic sector. Diagonal elements. Matrix calculated via color. (B) Models selected by

MCS, by economic sector. The numbers refer to the series that belong to the diagonal. Matrix calculated via color.

column shows the mean of the Mean Absolute Error (MAE),

the second shows the mean of the Mean Absolute Percentage

Error (MAPE), the third shows the mean of the Mean Square

Error (MSE), and finally, the fourth shows the mean of the

Root Mean Square Error (RMSE).

All results are presented from two perspectives: the elements

within the main diagonal of the covariance matrix and the elements

outside the diagonal. In other words, we separate the results

into variances and covariances. An important observation to be

made is the difficulty in classifying covariance between assets

from different sectors. We decided to replicate our reference

strategy and point out that the covariance process between

an asset a and b belongs, mutually, to the economic sectors

a and b, for a 6= b.

4.2.1 Variance of type ewma
We observed from Figure 2A that there is not much pattern in

the selected variables. We highlight the strong presence of the Basic

Materials (MB) and Cyclical Consumption sectors. This result is

consistent with the Brazilian market, which is not very liquid and

highly correlated, as evident in the graph (Figure 2B). According

to our algorithm, regression via LASSO was not chosen for any

asset, comprising only Elastic Net and Ridge in the MCS. Due to

the performance of Ridge regression in this matrix format, the

proportion we see in the heatmap is close to the proportion we

previously presented in Table 1. Convergent behavior was noticed

for the off-diagonal elements. Figure 3A shows strong intensity in

more liquid sectors, with emphasis on the Finance sector (FIN) and

Basic Materials (MB). From the point of view of chosen models, we

see almost equivalence between the graphs in Figures 2B, 3B. The
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FIGURE 5

(A) Heatmap of the proportion of selected variables by economic sector. O�-diagonal elements. Matrix calculated via color. (B) Models selected by

MCS, by economic sector. The numbers refer to the o�-diagonal series. Matrix calculated via color.

off-diagonal elements did not present the LASSO regression for any

process and mostly showed the choice of the Ridge-type regression.

4.2.2 Variance of type color
For this matrix format, we were also unable to detect clear

patterns. We highlight the intra-sector effect of Non-Cyclical

Consumption (CNC), with an average selection of 47%, of

volatilities from the same sector. Basic Materials (MB) has a strong

presence in almost all sectors and is involved in Public Utility (UP)

volatilities. From a model selection point of view, this was the first

matrix format that had LASSO regression chosen for some assets,

but only for the financial sector. In the opposite direction of the

matrix via ewma, we noticed a greater performance of the Elastic

Net format. This is a more convergent result to the challenge of

reducing dimension and does justice to the method of calculating

the covariance matrix itself. For the covariance elements, off

the diagonal, we note in Figure 5A a great predominance of

Basic Materials (MB) and Cyclical Consumption (CC). From the

Figure 5B, we have more gains in dealing with the size of the

problem, as LASSO is computed in almost all sectors, except Health

(SAU). If we compare the errors, we occasionally notice gains in

predictive performance, as the results of the method color in

Table 2 present better results compared to results of the method

color in the same table.

4.2.3 Variance of type large
In this matrix format, we notice a clearer pattern within the

diagonal processes. It is possible to observe in Figure 6A a greater

intensity on the diagonal of the heatmap, indicating that the sector

selects processes from the same sector more intensely, on average.
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FIGURE 6

(A) Heatmap of the proportion of selected variables by economic sector. Diagonal elements. Matrix calculated via lw. (B) Models selected by MCS, by

economic sector. The numbers refer to the series that belong to the diagonal. Matrix calculated via lw.

This implies that the past of the volatility itself and the volatility

of assets in the same sector are more relevant as features for a

volatility process. Additionally, analyzing themodel selection graph

for the large format, we obtained greater gains compared to

dimension reduction, as Ridge is the model that, among those

eligible, is the least selected. Again, for the off-diagonal elements,

we see a strong participation of the Basic Materials (MB) sector, as

shown in Figure 7A. Covariances also benefit from more restrictive

penalties, but we noticed Ridge regression across all sectors. From

a predictive point of view, we have smaller measurements, on

average, for this specific matrix format. This is, therefore, the type

of covariance matrix estimation that generated the processes where

the punctual estimation obtained better predictive performance

and the ℓ1 penalty was more effective, better facing the curse

of dimensionality.

5 Conclusion

In this work, we study the realized volatility of Brazilian

market data and analyze the predictive impact of choosing

the covariance matrix. Using intraday trading data for 50

assets, daily covariance matrices were constructed. This approach

allows the simultaneous computation of time-varying variances

and covariances. Flexible covariance matrix methods enable

the exercise to be conducted using alternative methods to

sample covariance. The proposed estimation was autoregressive,

aiming to identify how much the past of the series and

the past of other processes influence a given covariance.

Traditionally, via VAR, this exercise would entail specification and

dimensionality problems due to the large number of covariates.

Therefore, our proposal was based on a flexible algorithm that
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FIGURE 7

(A) Heatmap of the proportion of selected variables by economic sector. O�-diagonal elements. Matrix calculated via lw. (B) Models selected by

MCS, by economic sector. The numbers refer to the o�-diagonal series. Matrix calculated via lw.

incorporates some shrinkage methodology, employing regressions

with penalties.

Utilizing the Model Confidence Set algorithm proposed by

Hansen et al. [10], we evaluated the predictive performance of

the regressions and determined whether there is a statistically

significant predictive gain in assigning Ridge, LASSO, or ElasticNet.

The results obtained indicate that for challenges related to

dimensionality and predictive gains, the outcome depends on how

the covariance matrix is calculated. There is a direct relationship

between the choice of variance or covariance processes and the

liquidity of the corresponding sector.

As discussed in this study, the Brazilian market exhibits

low liquidity, which limits the options available to investors

in constructing trading strategies. Additionally, we found little

relationship between distinct sectors: we demonstrated that,

sectorally, what provides the most predictive gain for explaining

volatilities are the volatilities of assets within the same sector.

Alongside these findings, we also identified the financial sector as a

relevant feature both within its own sector and across others: it is as

if each economic sector possesses particular/idiosyncratic returns

and volatility structures.

In the Brazilian financial market, the volatility of specific

sectors has a considerable impact on the overall volatility of

the stock exchange. Among these sectors, the financial sector

stands out not only for its strategic importance but also for its

significant impact on the dynamics of the stock market. The

volatility of financial stocks often reflects not only the country’s

macroeconomic conditions but also sector-specific factors such as

changes in regulatory policies, fluctuations in interest rates, and

corporate events.

In periods of economic instability or political uncertainty,

the volatility of financial sector stocks tends to increase, exerting
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TABLE 2 Average of prediction errors for diagonal and o�-diagonal

elements my method and sector.

Method/sector MAE MAPE MSE RMSE

ewma—Diagonal

Industrial goods 0.99 4.36 1.84 1.33

Communications 1.08 3.12 2.13 1.43

Cyclical consumption 0.93 14.92 1.72 1.30

Non-cyclical consumption 0.97 5.46 1.71 1.29

Financial 1.00 8.78 1.84 1.33

Basic materials 0.97 5.83 1.78 1.31

Oil, gas and biofuels 0.93 4.53 1.81 1.33

Health 1.16 28.14 2.51 1.55

Public utility 0.99 9.46 1.88 1.34

ewma—O�-diagonal

Industrial goods 1.14 7.62 2.17 1.47

Communications 1.20 36.81 2.43 1.55

Cyclical consumption 1.13 11.74 2.14 1.46

Non-cyclical consumption 1.13 10.37 2.14 1.46

Financial 1.15 7.46 2.22 1.48

Basic materials 1.17 8.62 2.31 1.51

Oil, gas and biofuels 1.09 12.84 2.05 1.42

Health 1.20 4.68 2.43 1.56

Public utility 1.09 6.48 2.06 1.42

color—Diagonal

Industrial goods 0.77 2.20 1.25 1.09

Communications 0.70 4.18 1.16 1.07

Cyclical consumption 0.72 5.59 1.17 1.07

Non-cyclical consumption 0.75 5.57 1.13 1.05

Financial 0.75 1.93 1.04 1.01

Basic materials 0.81 2.03 1.27 1.09

Oil, gas and biofuels 0.61 3.72 1.16 1.07

Health 1.06 4.13 2.26 1.46

Public utility 0.84 2.62 1.25 1.10

color—O�-diagonal

Industrial goods 0.90 4.42 1.50 1.21

Communications 1.01 9.16 2.09 1.41

Cyclical consumption 0.92 54.91 1.59 1.24

Non-cyclical consumption 0.88 8.45 1.40 1.16

Financial 0.85 4.07 1.29 1.12

Basic materials 0.93 3.81 1.58 1.23

Oil, gas and biofuels 0.79 9.24 1.43 1.18

Health 1.04 4.42 2.08 1.41

Public utility 0.94 5.43 1.58 1.24

(Continued)

TABLE 2 (Continued)

Method/sector MAE MAPE MSE RMSE

lw—Diagonal

Non-cyclical consumption 0.71 2.90 1.01 1.00

Industrial goods 0.73 2.26 1.05 1.02

Financial 0.74 1.75 1.00 0.99

Oil, gas and biofuels 0.54 4.08 1.01 1.01

Basic materials 0.77 1.88 1.07 1.02

Cyclic consumption 0.67 2.75 1.04 1.01

Public utility 0.78 1.67 1.07 1.03

Communications 0.71 4.76 1.20 1.09

Health 0.96 4.14 1.70 1.28

lw—O�-diagonal

Industrial goods 0.77 2.37 1.10 1.04

Communications 0.83 22.68 1.43 1.18

Cyclical consumption 0.81 2.89 1.17 1.07

Non-cyclical consumption 0.78 2.12 1.05 1.02

Financial 0.77 2.67 1.03 1.01

Basic materials 0.84 2.91 1.25 1.09

Oil, gas and biofuels 0.69 3.40 1.16 1.07

Health 0.86 3.57 1.38 1.16

Public utility 0.81 2.44 1.13 1.05

additional pressure on the overall volatility of the Brazilian stock

exchange. This is due to the significant weighting of financial

companies in major market indices. As a result, investors and

portfolio managers often closely monitor the volatility of these

stocks as a key indicator of market sentiment and the degree of

risk aversion. In the Brazilian stock market, the lack of strong

correlation between economic sectors has significant implications

for trading strategies, which have been the subject of study and

analysis in academic financial literature. The absence of robust

correlation suggests that price movements and the performance

of one sector can occur independently of others, presenting both

opportunities and challenges for traders [51].

On one hand, this low correlation allows traders to diversify

their portfolios, capitalizing on performance variations between

sectors and exploiting opportunities for gains in different market

segments simultaneously [52]. Strategies focusing on sector

arbitrage or dynamic asset allocation may be particularly effective

in low sector correlation environments [53].

On the other hand, the lack of correlation also presents

challenges as it makes it more difficult to identify consistent

patterns or predict market movements based on traditional

analyses [54]. Traders may struggle to develop robust forecasting

models and anticipate the spread of shocks from one sector to

another [55].

Therefore, traders operating in markets with low sector

correlation often adopt more flexible and adaptive approaches,
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adjusting their strategies according to constantly changing market

conditions [56]. Fundamental and technical analysis remains

relevant, but the ability to adapt quickly to changes in market

dynamics and identify emerging opportunities becomes crucial for

trading success [57].

The work can be extended in several directions. An important

extension is the inclusion of leverage effects [58] and conditional

skewness [59–61] in the tested specifications. These effects are

especially relevant in the analysis of intraday financial data, as

discussed in Aït-Sahalia et al. [62] and Kambouroudis et al. [63].

Another very relevant extension is to analyze the impact of new

information on the variance structure [64], using for example the

news flow [65, 66] and market sentiments [67, 68] on the set of

covariates for realized variance prediction.
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