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The subject of predicting global crude oil prices is well recognized in academic 
circles. The notion of hybrid modeling suggests that the integration of several 
methodologies has the potential to optimize advantages while reducing limitations. 
Consequently, hybrid techniques are extensively used in contemporary research. 
In this paper, a novel decompose-ensemble prediction approach is proposed by 
integrating various optimization algorithms, namely biography-based optimization 
(BBO), backtracking search algorithm (BSA), teaching-learning-based algorithm 
(TLBO), cuckoo optimization algorithm (COA), multi-verse optimization (MVO), 
and multilayer perceptron (MLP). Furthermore, the aforementioned approaches, 
namely BBO-MLP, BSA-MLP, and TLBO-MLP, include the de-compose-ensemble 
technique into the individual artificial intelligence model in order to enhance the 
accuracy of predictions. In order to validate the findings, the forecast is conducted 
using the authoritative data on oil prices. This study will use three primary 
indicators, including EMA 20, EMA 60, EMA 100, ROC, and AUC assessments, to 
assess and evaluate the efficacy of the five methodologies under investigation. The 
below findings are derived from the conducted research: Based on the achieved 
AUC values of 0.9567 and 0.9429, it can be concluded that using a multi-verse 
optimization technique is considered the most suitable strategy for effectively 
handling the dataset pertaining to crude oil revenue. The next four approaches 
likewise have a significant AUC value, surpassing 0.8. The AUC values for the BBO-
MLP, BSA-MLP, TLBO-MLP, and COA-MLP approaches were obtained as follows: 
(0.874 and 0.792) for training and testing stages, (0.809 and 0.792) for training and 
testing stages, (0.9353 and 0.9237) for training and testing stages, and (0.9092 and 
0.8927) for training and testing stages, respectively. This model has the potential 
to contribute to the resolution of default probability and is very valuable to the 
credit card industry. Broadly speaking, this novel forecasting approach serves as a 
notable predictor of crude oil prices.
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1 Introduction

Crude oil plays a crucial role in sustaining the global economy. 
The economic development and prosperity of both industrialized and 
emerging countries depend on its materiality. Furthermore, it is 
noteworthy that political events, dramatic weather phenomena and 
financial market speculation have a significant influence on the crude 
oil market and thus contribute to the volatility of oil market prices 
(1, 2). Oil price fluctuations have a significant impact on a wide range 
of products and services and have direct economic and social 
consequences. Therefore, predicting price direction is of significant 
importance to minimize the negative impact of price volatility. 
Unfortunately, important information such as oil supply, demand 
stocks and GDP are not included in the daily data, making prediction 
more difficult (3, 4).

Crude oil has significant value as a globally sought-after raw 
material and serves as a basic resource for several industries. Crude oil 
plays an essential role in the economy of all nations. As a result, oil 
prices have become a growing concern for governments, companies and 
investors. The price of oil can be directly influenced by a variety of 
domestic and foreign market factors such as speculation, economic 
slowdowns and geopolitical events. These special properties contribute 
to the fact that the oil market tends to experience regular price 
fluctuations. In July 2008, the market price for each barrel of West Texas 
Intermediate (WTI) crude oil exceeded $145. However, as a result of the 
financial crisis, there was a significant decline in oil prices of over 80 
percent, which ultimately reached a low of around US$33 per barrel at 
the end of 2008. A limited number of academic articles (5–7) have 
conducted an examination of market microstructure to gain a deeper 
understanding of the complex dynamics in crude oil markets.

Since the outbreak of the 1973–1974 oil crisis, there has been a 
significant influx of academic research into forecasting crude oil 
prices. This section provides a brief overview of relevant and current 
scientific research. Moshiri and Foroutan (8) conducted an analysis of 
disorder and nonlinearity in crude oil futures prices. Various statistical 
and economic studies indicate that the time series of futures prices 
exhibits characteristics of stochasticity and nonlinearity. In addition, 
the authors conducted a comparison of artificial neural networks 
(ANN) and linear and nonlinear models, including autoregressive 
moving average (ARMA) and generalized autoregressive conditional 
heteroscedasticity (GARCH), to predict future crude oil futures prices. 
The researchers found that ANNs have a significant impact and 
provide statistically significant predictions. Two important 
observations can be made about this study. The authors began the 
process by providing raw data to the ANN. In addition, the neural 
network was trained with data that is no longer current, namely from 
the years 1983 to 2000. In this paper, we will next provide arguments 
that refute the validity of the two theses mentioned above.

Wang et al. (9) in their study, provide a hybrid approach aimed at 
predicting monthly fluctuations in crude oil prices. The model has three 
distinct components. The researchers develop a rule-based system, 
ANN and autoregressive integrated moving average (ARIMA) models, 
as well as a hybrid approach using web mining techniques. The three 
components operate autonomously prior to converging to provide the 
resultant product. It was shown that the integration of all three models 
using a non-linear approach yielded superior performance compared 
to the individual performance of each model. Nevertheless, this 
approach has some limitations. The text mining model 3 utilizes a 

rule-based system that relies on a knowledge base provided by humans. 
The problematic and untrustworthy nature of this method arises from 
the divergent perspectives of experts on the subject matter.

Furthermore, both the information base and the rules have not 
been made accessible to the general public. Predicting successful trading 
in the West Texas Intermediate crude oil cash market using machine 
learning nature-inspired swarm-based approaches is a crucial aspect of 
economic development and sustainability (10). Various studies have 
explored the application of different algorithms to enhance prediction 
accuracy, such as the hybridization of artificial immune system and ant 
colony optimization for function approximation (11), as well as utilizing 
artificial neural networks with the whale optimization algorithm to 
improve forecasting accuracy by up to 22% compared to basic models 
(12). Jovanović et al. (10) proposes a modified version of the salp swarm 
algorithm to improve the accuracy of crude oil price prediction. The 
approach is validated on real-world West Texas Intermediate (WTI) 
crude oil price data and outperforms other metaheuristics. Chen (11) 
show HIAO algorithm improves accuracy for crude oil spot price 
prediction. Sohrabi et al. (3) predicts WTI oil prices using ANN-WOA 
algorithm. In another study, Das et al. (13) focuses on forecasting crude 
oil prices using hybrid approach. They find out hybrid model using 
ELM and IGWO for crude oil forecasting, predicts crude oil prices 
efficiently for short-term. Additionally, employing extreme learning 
machines with the improved grey wolf optimizer has shown promising 
results in forecasting crude oil rates, outperforming other models like 
ELM-PSO and ELM-GWO in terms of convergence rate and mean 
square error (4). These advancements in machine learning models, such 
as ANN-PSO, have proven effective in accurately predicting long-term 
crude oil prices, aiding investors in making informed decisions and 
potentially increasing long-term profits (14). Xie et al. (15) developed a 
support vector machine (SVM) model to analyze and predict monthly 
fluctuations in crude oil prices. According to the authors, the SVM 
outperforms the multilayer perceptron (MLP) and autoregressive 
integrated moving average (ARIMA) models in terms of out-of-sample 
predictions. However, both studies used monthly pricing data, resulting 
in a significant reduction in the sample size. Furthermore, it should 
be noted that the sample includes data collected in 1970, which might 
be considered quite outdated. The use of commodity futures prices for 
the estimation of spot prices is based on the underlying assumption that 
futures prices exhibit a higher degree of responsiveness to fresh market 
information compared to spot prices. Silvapulle and Moosa (16) believe 
that futures trading offers a multitude of advantages, including reduced 
transaction costs, enhanced liquidity, and diminished initial capital 
prerequisites. This phenomenon enhances the attractiveness for 
investors to react to new information rather than taking an immediate 
position in the spot market. This theory is applicable to a wide range of 
commodities traded on financial markets, with a specific relevance to 
the energy sector (17, 18). When new information emerges about the 
oil market, investors have the option to adopt a position (either buying 
or selling) in either the spot or futures market. Opting for immediate 
engagement in the spot market may not always be  the most 
advantageous course of action in light of many factors such as 
substantial transaction charges, storage fees, and shipping expenses. 
This is particularly true when investors exhibit no inclination towards 
the specific commodity, but rather engage in hedging against an 
alternative commodity or speculating on arbitrage prospects via their 
investments in the market. Based on the aforementioned reasons (16), 
the futures market presents a far more attractive option for investors to 
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respond to emerging information in this particular scenario. Brooks 
et  al. (19) used 10 min high-frequency data of the FTSE index to 
examine the lead-lag connection. Based on the authors’ findings, it is 
suggested that the lead-lag4 connection has a maximum duration of 
30 min. The outcomes of the study indicate that it is possible to use 
future price fluctuations as a means to predict alterations in spot pricing. 
Bopp and Sitzer (20) examined the extent to which futures prices 
effectively predicted upcoming spot prices in the heating oil market. 
This study aims to determine to what extent the inclusion of forward 
prices in econometric models could improve their predictive 
capabilities. Based on the available data, it can be seen that futures 
contracts with a maturity of 1 or 2 months have statistical significance 
in predicting spot prices. In other words, it is necessary for novel data 
to be available. Chan (21), a research was conducted to examine the 
relationship between lags and leads in the context of the S&P 500. The 
results of this study produced results consistent with previous research. 
The researcher made the observation that the futures market serves as 
the primary channel for disseminating market-wide information.

Conversely, the cash market serves as the principal repository of 
information pertaining to a particular corporation. Additionally, 
Silvapulle and Moosa (16) indicates that the lead-lag relationship in 
the oil market is not consistently present and exhibits temporal 
variations. Coppola (22) conducted a study on the crude oil market, 
revealing findings that suggest futures contracts might potentially 
serve as indicators of future spot price trends. Abosedra and 
Baghestani (23) examined the monthly future prices as a means of 
doing long-term forecasting. Accurate projections were provided to 
policymakers only by futures contracts with durations ranging from 
one to 12 months in the future.

This research presents five ANN models that are used for the 
purpose of predicting the trade of crude oil based on the West Texas 
Intermediate price. The subsequent sections of this article are 
organized in the following manner: section 2 provides an analysis of 
database collecting, while section 3 delves into the topics of 
preprocessing and technique. Section 4 of the paper delves into the 

examination and analysis of the research outcomes, while section 5 
serves as a conclusion that encapsulates the whole of the study.

2 Database collection

The determination of data frequency and size has significant 
importance in the realm of network architecture. The determination of 
the intended consequence largely governs this matter. Short-term 
projections often rely on high-frequency data, such as intraday or daily 
data, for analysis and forecasting purposes. Nevertheless, accessing and 
obtaining this data may sometimes be  challenging and come with 
exorbitant expenses. Weekly and monthly data are preferred for 
predicting periods due to their lower levels of noise. The durability of 
the data is a crucial factor to take into account. The accuracy of the 
neural network’s generalization improves as the number of data points 
increases in the context of ANN. Nevertheless, this assertion does not 
consistently hold true in the context of economic or financial time 
series. Due to the dynamic nature of economic situations, the use of 
obsolete information may have a detrimental impact on outcome 
predictions. This is because including irrelevant information into the 
training process might lead to a suboptimal generalization of the model 
(24, 25). This study uses the following set of five-time series data. The 
abbreviation “WTI” refers to West Texas Intermediate. Once the data 
has been partitioned into training and testing sets, the training set 
comprises 80% of the data while the remaining 20% is allocated for 
testing purposes, which is conducted outside the sample period, often 
spanning one financial year (Figure 1).

The selection of the three indications in Figure 2 was justified. 
The prices of West Texas Intermediate (WTI) are subject to 
substantial impact from three price basis indicators, often referred 
to as exponential moving averages (EMAs). The exponential 
moving average (EMA) functions similarly to the simple moving 
average (SMA) by monitoring the trajectory of the trend as time 
progresses. The exponential moving average (EMA) exhibits a 

FIGURE 1

The process of real time data collection.
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preference for including more recent data as compared to the 
simple moving average (SMA), which relies on a straightforward 
calculation of the average price. A technical chart is a tool used in 
financial analysis to assess the fluctuations in the value of a 
financial instrument within a certain period. The exponential 
moving average (EMA) is a variant of the weighted moving 
average (WMA) that places more emphasis on more recent price 
data (Figures 2–4); (Table 1).

3 Methodology

Market participants will react to this information in accordance with 
their expertise, positions, forecasts, evaluations, and other relevant 
factors, assuming the market is seen as a system that incorporates past 
and current information as inputs. The output or closing price is 
determined by the collective efforts of market participants. In order to 
replicate the behavior of the market, a model must choose use a subset 

FIGURE 2

The example of EMA 20, 60 and 100 in 30  min timeframe.

FIGURE 3

Description of input layers (x1–x7) versus output.
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of the accessible information, endeavor to align it with the desired 
objective, and then provide a forecast with a certain level of accuracy, 
often referred to as an error (26). Figure 5 depicts the study flowchart, 
which encompasses the input components used for the purpose of 
predicting the result (Figure 5).

3.1 Artificial neural network

There are three primary prerequisites for every good ANN model 
in the widest sense (26):

 • In-sample precision.
 • The model’s capacity to function with new data.
 • Stability and uniformity of network output.

ANNs replicate the cognitive learning mechanism of the human 
brain. The brain obtains information via processes such as learning, 
remembering, and generalization (27). Computer software is responsible 
for executing essential activities, which include generating fresh data 
based on preexisting data. Artificial neurons are organized into artificial 
neural networks, as shown by previous studies (28, 29). The clustering 
process is executed in sequential stages, which are afterwards 
interconnected. All neural networks possess a fundamentally similar 
structure. Certain neurons within this configuration are externally affixed 
to facilitate the reception of inputs, whilst others are externally linked to 
facilitate the transmission of outputs. The neurons that survive are situated 
inside the buried layers. Several factors need to be taken into account in 
order to assure the achievement of the aforementioned objectives. The 
testing process encompasses several aspects, such as data preparation 
procedures, the number of layers used, the selection of activation 
functions, the determination of the learning rate, the duration of the 
training process, the utilization of first- and second-order optimization 
approaches, and the determination of the number of hidden neurons. The 
determination of the experimental design for all preliminary trials was 

based on a systematic exploration of various trial combinations. The 
determination of the optimal number of hidden neurons is a critical 
aspect in the use of neural networks, as an excessive quantity may lead to 
overfitting, while an insufficient quantity may result in under fitting. The 
objective is to use the minimum number of neurons that may provide the 
most significant results beyond the given sample (24). There is a lack of 
established protocols for addressing this issue. Typically, heuristics 
algorithms and evolutionary computing methodologies are used. Each of 
these tactics has both advantages and disadvantages associated with it. 
The implementation of a technique including a limited number of 
neurons, together with the training and evaluation of networks for a 
certain number of iterations, has been identified as a necessary approach 
in reference (25). The number of concealed neurons was increased until 
the desired amount was achieved (30). Furthermore, the researchers in 
reference (31) used this methodology to develop a lucrative ANN trading 
system specifically designed for the Australian stock market. In the study 
conducted by the authors (32), it was observed that a single neuron was 
disguised for every new input or delayed value of the same variable. This 
process continued until a total of 10 neurons were hidden.

Furthermore, the stability of each neuronal count was assessed by 
examining each network twice using different weight values (33). The 
performance of each model was correctly judged by averaging the 
outcomes of the three trials. The network configuration of this 
experiment is shown in Figure 6.

The number of hidden layers in an ANN can vary depending on the 
complexity of the problem. Common configurations include 2 hidden 
layers, often determined through experimentation or optimization. The 
number of neurons in each layer is also variable and can range from a 
few dozens to several hundred or more, depending on the specific 
requirements of the model and the complexity of the task. All these 
hyperparameters, including the number of hidden layers, the number of 
neurons in each layer, learning rate, batch size, and others, can 
be  considered as unknowns and determined/optimized using 
metaheuristic algorithms. Metaheuristic algorithms such as biography-
based optimization (BBO), backtracking search algorithm (BSA), 

FIGURE 4

Conditional factors.
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teaching-learning-based optimization (TLBO), cuckoo optimization 
algorithm (COA), and multi-verse optimization algorithm (MVO) can 
be employed to search the hyperparameter space efficiently, finding the 
best set of parameters that optimize the performance of the ANN. In 
designing and optimizing ANNs, several hyperparameters need to 
be carefully chosen and potentially optimized. These include:

Hyperparameters:

 – Learning rate: The rate at which the model updates its weights 
during training.

 – Batch size: The number of training examples used in one iteration 
of training.

 – Number of epochs: The number of times the entire training 
dataset is passed through the network.

 – Momentum: A factor that helps accelerate the gradient descent 
algorithm by considering the past gradients.

 – Weight initialization: The method used to initialize the weights 
of the network (e.g., Xavier, He initialization).

 – Regularization parameters: Such as L1/L2 regularization 
coefficients to prevent overfitting.

 – Dropout rate: The fraction of neurons to drop during training to 
prevent overfitting.

 – Activation function parameters: Any specific parameters required 
for certain activation functions.

Transfer functions (activation functions):

 – Sigmoid: Used primarily in the output layer for binary 
classification problems.

 – Tanh: Often used in hidden layers, it outputs values between 
−1 and 1.

 – ReLU (Rectified Linear Unit): A popular choice for hidden layers 
due to its ability to mitigate the vanishing gradient problem.

TABLE 1 example of input dataset and WTI price detail in daily time frame.

Number WTI PRICE EMA Successful 
trade

Successful 
WTI long 

daily tradeOpen High Low Close 20/60 20/100 60/100

x1 x2 x3 x4 x5 x6 x7

1 48.9 49.269 47.545 47.617 1.013 1.01 0.997 Short 0

2 47.625 47.973 47.137 47.762 1.012 1.009 0.997 Long 1

3 47.838 48.081 46.825 46.88 1.009 1.006 0.997 Short 0

4 46.957 47.32 46.611 47.024 1.008 1.004 0.997 Long 1

5 47.064 48.878 46.911 48.816 1.009 1.006 0.997 Long 1

6 48.878 48.878 47.218 47.535 1.008 1.005 0.997 Short 0

7 47.592 48.212 47.373 47.601 1.007 1.004 0.997 Long 1

8 47.658 48.52 47.564 48.367 1.007 1.004 0.997 Long 1

9 48.409 48.465 47.111 47.619 1.006 1.004 0.997 Short 0

10 47.692 47.963 47.472 47.872 1.006 1.003 0.998 Long 1

11 48.091 48.227 46.292 46.912 1.004 1.002 0.997 Short 0

12 46.985 47.089 45.998 46.526 1.002 1 0.997 Short 0

13 46.571 46.965 46.106 46.167 1 0.997 0.997 Short 0

14 46.21 47.78 45.831 47.443 1 0.997 0.997 Long 1

15 47.503 47.698 47.014 47.661 1 0.997 0.997 Long 1

16 47.745 47.947 47.455 47.654 1 0.997 0.997 Short 0

17 47.723 49.228 47.635 48.841 1.002 0.999 0.997 Long 1

18 48.858 49.667 48.794 49.389 1.004 1.002 0.998 Long 1

19 49.457 49.625 48.931 49.371 1.006 1.004 0.998 Short 0

20 49.406 49.568 47.678 47.934 1.006 1.004 0.999 Short 0

21 48.026 48.655 47.464 48.484 1.006 1.005 0.999 Long 1

22 48.572 48.866 48.178 48.734 1.007 1.006 0.999 Long 1

23 48.788 49.775 48.555 49.663 1.009 1.008 1 Long 1

24 49.717 50.849 49.534 50.092 1.011 1.011 1 Long 1

25 50.163 50.589 49.864 50.331 1.013 1.014 1.001 Long 1

26 50.417 50.847 49.686 50.322 1.014 1.016 1.001 Short 0

27 50.391 50.828 49.747 50.243 1.016 1.018 1.002 Short 0

28 50.313 51.129 50.166 50.709 1.018 1.02 1.003 Long 1

29 50.751 50.851 50.129 50.748 1.019 1.023 1.003 Short 0

30 50.791 50.844 50.369 50.671 1.02 1.024 1.004 Short 0
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 – Leaky ReLU: An improved version of ReLU that allows a small, 
non-zero gradient when the unit is not active.

 – Softmax: Used in the output layer for multi-class 
classification problems.

3.2 Hybrid model development

This study assesses and compares the effectiveness of five 
innovative neural computing optimizations (BBO-MLP, BSA-MLP, 
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TLBO-MLP, COAMLP, and MVO-MLP) when used to the task of 
predicting crude oil cash flow. The integration of optimization 
algorithms from various categorization approaches within ANNs 
enhances their ability to accurately predict and analyze complex data 
patterns. This process involves incorporating BBO, BSA, TLBO, 
COA, and MVO into the training and optimization phases of ANNs. 
BBO is inspired by the migration patterns of species. In the context 
of ANNs, BBO can be used to optimize the weights and biases of the 
network by simulating the sharing of information among a 
population of solutions. This helps in escaping local optima and 
finding a more globally optimal solution for the network parameters. 
BSA employs a systematic search methodology that backtracks to 
previous solutions to explore the solution space efficiently. When 
integrated with ANNs, BSA enhances the training process by 
systematically exploring and exploiting the weight space, leading to 
improved convergence rates and accuracy. TLBO mimics the 
teaching-learning process in a classroom. In ANNs, the TLBO 
algorithm can be used to iteratively refine the network parameters. 
The “teacher” phase improves the mean solution by guiding the 
population towards better solutions, while the “learner” phase allows 
solutions to interact and learn from each other, enhancing the 
network’s learning capability. COA is inspired by the brood parasitism 
behavior of some cuckoo species. It uses a combination of local and 
global search mechanisms to find optimal solutions. When applied 
to ANNs, COA helps in optimizing the network parameters by 
balancing exploration and exploitation, which leads to better 
generalization and performance of the network. MVO is based on the 
concepts of physics, particularly the interaction of universes through 
wormholes. In ANNs, MVO can be utilized to optimize the network 
by allowing multiple candidate solutions to interact and converge 
towards the best solution. This algorithm enhances the diversity of 
solutions and avoids premature convergence, leading to more robust 
and accurate models. Each of these optimization algorithms can 
be integrated into the ANN training process to fine-tune the network 
parameters. This integration involves embedding the optimization 
routines into the backpropagation algorithm or using them as 
standalone optimizers to adjust weights and biases iteratively. Once 
the required hybrids have been constructed, their capability for 
learning and generalization is evaluated by analyzing data obtained 
from both the training and testing phases. This research utilizes two 
precision measures, namely the mean average error (MAE) 
correlation metric and the root mean square error (RMSE) error 
measurements. The formulation of these indices is as follows  
Eqs. 1, 2:
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where n deotes the observations number. y imeasured,  represents the 
determined value of the ith data number, y ipredicted,  represents the 
anticipated value of the ith data number. RMSE should be equal to 0, 
in the most optimal model.

3.2.1 Biography-based optimization
Similar to conventional problem-solving methodologies, 

biogeography may be seen as nature’s mechanism for the dispersal 
of species. Let us consider a hypothetical scenario where a problem 
is presented along with a set of possible remedies. The problem 
may manifest itself in several domains of human existence, as long 
as we are able to measure the effectiveness of a suggested solution. 
The field of biogeography, which examines the geographical and 
temporal distribution of biological species, has had a significant 
impact on the development of biogeography-based optimization 
(BBO) throughout time. A habitat H (𝐻 ∈ SIV𝑛) is a 
multidimensional array of n variables that represents a possible gas 
chimney alternative.

The suitability index variable (SIV) is a quantitative 
representation of all favorable characteristics found within a given 
ecosystem. The habitat suitability index (HSI) is a metric used to 
assess the fitness of a given environment by quantifying its quality. 
The habitat that has the highest HIS is considered to be the most 
optimal initial feature subset. The habitat vector utilizes migration 
and mutation mechanisms to determine the optimal solution. The 
immigration rate (k) is proportional to the probability that SIVs 
will move into habitat H, which is proportional to λ, and the 
probability that the source of modification originates from habitat 
𝐻𝑗 is proportional to 𝜇𝑖.

The number of species in a habitat determines immigration and 
emigration rates. Each generation is computed using Eqs. 3, 4.
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The rank of the ith individual, denoted as R(i), is determined. 
Smax represents the largest species count, whereas I represent the 
maximum immigration rate and E represents the maximum 
emigration rate. The mutation operator is a stochastic mechanism that 
introduces random adjustments to the habitat’s SIVs, influenced by 
the habitat’s a priori probability of existence. The utilization of the 
mutation technique facilitates the enhancement of solutions 
characterized by a low HSI, while solutions exhibiting a high HSI have 
the potential to experience even greater improvement. The selected 
feature of the ith solution is substituted with a value that is randomly 
produced, in accordance with the mutation rate that has been 
provided in Eq. 5:
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where 𝑚𝑖 denotes the mutation rate of the ith individual, mmax is the 
maximum mutation rate, 𝑝𝑖 is the probability of the ith individual 
given by Eq. 6:

 p p p pj j j j j j j j� � ��� �� � �� � � �1 1 1 1 1� � � �  (6)
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where pmax denotes the maximum probability calculated among all 
probabilities. The algorithm maintains elitism to keep the population’s 
best solutions. This prevents immigration from diminishing the 
quality of the most effective solutions. Figure 2 depicts the entire BBO 
method for determining the optimal subsets of features for 
interpreting gas chimneys and hydrocarbons. As with other 
evolutionary algorithms, BBO’s superior solutions have a greater 
propensity to share their data, resulting in the best characteristics.

Unique among evolutionary algorithms, BBO’s migration process 
permits the modification of earlier solutions (34). BBO and GA 
increase population diversity via mutation.

BBO successfully identifies important chimney disturbances and 
correlations between seismic features by identifying the pertinent 
non-redundant seismic feature for straightforward and effective 
interpretation (35).

3.2.2 Backtracking search algorithm
The BSA method is a revolutionary approach designed for solving 

numerical optimization problems that include variables, including 
values that are real-valued (36). In contrast to previous evolutionary 
algorithms, the BSA method addresses many issues, including 
vulnerability to control variables, premature convergence, and slow 
computing (37). Therefore, the BSA has just one parameter. 
Additionally, the performance of BSA is not too reliant on the initial 
value of this parameter. The BSA population is generated by the use of 
genetic operators, namely selection, mutation, and crossover. The term 
refers to the algorithmic approach used in the field of computer 
science for the purpose of locating a certain value or achieving a 
desired objective. The presence of a specific objective is crucial in this 
context, and the optimal strategy must be selected from the range of 
alternatives that are now accessible.

Furthermore, the use of the search-direction matrix and the 
implementation of the search-space boundary amplitude control 
enhance the system’s ability to explore and utilize its surroundings. 
The BSA has the capability to enhance the search direction by using a 
memory component that stores a population with random 
characteristics. The initial value of this parameter does not have an 
impact on the problem-solving efficacy of BSA. The BSA has a 
fundamental framework that exhibits effectiveness, expediency, and 
proficiency in addressing multimodal challenges, hence facilitating its 
ability to swiftly accommodate diverse numerical optimization 
problems. The BSA population formation experimental approach has 
been enhanced with the inclusion of two more crossover and mutation 
operators. The technique used by BSA in generating trial populations 
and managing the amplitude of the search-direction matrix and 
search-space boundaries is very successful in facilitating both 
exploration and exploitation.

3.2.2.1 Population initialization
The population is the total number of individuals uniformly 

distributed across the search area. It may also be stated as Eq. 7:

 P Ui j j j, ~ low ,up� � (7)

where i and j represent the population size and issue dimension, low 
and up represent each individual’s minimum and maximum values, 
and U represents the uniform distribution in each person.

3.2.2.2 Selection-I
The BSA selection focuses on direction-improving memory data 

in the first stage. OldP’s historical population is what we are referring 
to here as the memory. The initial population of people is determined 
at random as follows Eq. 8:

 old low ,upP Ui j j j, ~ � � (8)

At the start of each iteration of BSA, the oldP is redefined using 
the “if-then” expression (38).

 
if then old ,a b P P a b� � � �: , ~| 0 1

 (9)

The update operation, denoted by the symbol “≔,” is defined so 
that Eq. 9 guarantees that BSA labels a population as belonging to the 
historical population and retains this designation until it undergoes a 
change. Subsequently, the arrangement of persons in oldP undergoes 
a random permutation through the utilization of a shuffling function, 
as described in Eq. 10:

 
old permuting oldP P:� � �  (10)

3.2.2.3 Mutation
Identical to biological mutation, the mutation is a genetic operator 

used to preserve the genetic variety of chromosomes. One or more 
chromosomal gene values are affected by the mutation. The mutation 
process of BSA is stated as Eq. 11:

 
Mutant old� � � �P F P P. �

 (11)

where, F controls the amplitude of the search-direction 
matrix, oldP-P.

3.2.2.4 Crossover
The genetic operator known as crossover, or recombination, 

combines the genetic material of two parents to produce a set of 
offspring, denoted as T. The last stage of the two-step experimental 
offspring generation method used by BSA involves the phenomenon 
known as crossover. The first stage involves the computation of a 
binary integer-valued matrix (referred to as a map) that identifies 
the people in T to be adjusted based on the relevant persons in P. In 
the second stage, the p-value of T is updated when the map is 
equal to 1.

3.2.3 Teaching-learning-based optimization
Rao et  al. (38, 39) have recently developed the teaching-

learning based optimization (TLBO) algorithm, which is grounded 
on the concept of the teaching-learning process, whereby a 
teacher’s effect on students’ classroom output serves as the 
foundation. The algorithm emulates the instructional and learning 
abilities of both teachers and students inside a classroom 
environment (40). The algorithm elucidates the two main modes 
of learning: instructor-led learning (referred to as the teacher 
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phase) and peer interaction. The evaluation of the TLBO 
algorithm’s performance is based on the academic outcomes or 
grades achieved by students, which are contingent upon the 
effectiveness of the teacher. As a result, the teacher is often seen as 
a someone with extensive knowledge and expertise who imparts 
instruction to students in order to achieve improved academic 
performance (41, 42).

Moreover, the interactions among the results play a significant 
role in enhancing their overall performance. The TLBO algorithm 
is a population-based approach, whereby a population is defined 
as a collection of individuals, namely students (43). The study 
involves a comparison of several design factors with the courses 
offered to students, and an evaluation of the students’ performance 
in relation to the optimization problem’s “fitness” value. The 
educator is often regarded as the most optimal approach for 
addressing the needs of the whole population. The functioning of 
the teaching-learning based optimization (TLBO) algorithm has 
two distinct phases, namely the “Teacher phase” and the “Learner 
phase.” The following section will address the functioning of 
both stages.

3.2.3.1 Teacher phase
The initial stage of the algorithm involves the acquisition of 

knowledge by pupils through instruction provided by the teacher. 
During this phase, an educator endeavors to increase the average 
score of the classroom from an initial value M1 to a desirable level, 
denoted as TA. Nevertheless, attaining this objective in reality is 
unattainable due to the fact that a teacher has the ability to modify 
the classroom mean M1 to any value M2 that surpasses M1, 
contingent upon their level of expertise. Let Mj denote the average 
value and Ti denote the teacher at each given iteration i. The 
objective is to improve the current mean, denoted as Mj, by 
employing a method referred to as Ti. Consequently, the updated 
mean will be denoted as M new, and the discrepancy between the 
original mean and the updated mean is Eq. 12.

 Difference Mean new F_ i i jr M T M� �� � (12)

where TF is the teaching factor that determines the new value of 
the mean and ri is a random integer in the interval [0, 1]. TF’s value 
may be either 1 or 2, which is a heuristic step, or it can be determined 
at random with equal chance as Eq. 13:

 T randF round ,� � � � �� ��� ��1 0 1 2 1  (13)

Within the procedure, a teaching factor is randomly generated 
within the range of 1 to 2. A value of 1 represents the absence of 
knowledge level growth, while a value of 2 signifies the complete 
transfer of knowledge. The intermediate values correspond to the 
degree of knowledge transfer. The extent of knowledge transfer may 
be contingent upon the proficiency of the learners. In the present 
study, attempts were undertaken to augment the outcomes by 
incorporating values within the range of 1 to 2; nevertheless, no 
discernible enhancement was observed. To enhance algorithmic 
simplification, it is advisable to assign the teaching factor a value of 

either 1 or 2, based on the specific rounding criteria. However, the 
variable TF has the potential to assume any value within the range of 
1 to 2. The present answer is adjusted in accordance with the 
Difference_Mean Eq. 14.

 X Xi i inew old Difference Mean, , _� �  (14)

3.2.3.2 Learner phase
Students deepen their knowledge through conversation in the 

second phase of the TLBO algorithm. Knowledge acquisition 
requires learners to engage in unanticipated interactions with 
others. The teaching-learning-based optimization (TLBO) 
algorithm is one of the most prevalent global optimization 
methods. It consists of a teacher phase and a learner phase. 
Premature convergence and entrapment in  local optima are 
inescapable for TLBO when dealing with challenging optimization 
problems. A student will learn new knowledge from a more 
knowledgeable classmate. Bakhshi et  al. (41) provides a 
mathematical expression for learning phenomena during this stage. 
At any iteration i, consider two different learners 𝑋𝑖 and 𝑋𝑗 where 
i ≠ j as Eqs. 15, 16.

 
X X r X X X Xi i i i j i jnew old if , ,� � � � � � � � �� F F

 (15)

 
X X r X X X Xi i i j i j inew old if , ,� � � � � � � � �� F F

 (16)

Accept Xnew when its function value is superior. The following is a 
summary of the TLBO installation steps:

Step 1: Randomly generate the population (learners) and design 
variables of the optimization problem (number of topics supplied to 
the learner) and assess them.

Step 2: Select the best learner of each topic as the subject’s teacher 
and determine the mean result of each subject’s learners.

Step 3: Calculate the difference between the current mean result 
and the best mean result using the teaching factor (TF) (Eq. 13).

The fourth step is to refresh the knowledge of the students using 
the teacher’s knowledge in accordance with Eq. 14.

Step 5: Update the knowledge of the learners by applying the 
knowledge of another learner in accordance with Eqs. 15, 16.

Step 6: Repeat steps 2 through 5 until the termination requirement 
has been fulfilled. Rao and Savsani (44) provide further information 
regarding the TLBO algorithm.

3.2.4 Cuckoo optimization algorithm
The cuckoo optimization algorithm (COA) aims to optimize 

a given function by starting with an initial population. Within 
many societies, the cuckoo population is composed of both adult 
individuals and their eggs. The competitive struggle for survival 
among cuckoos serves as the inspiration for the development of 
the cuckoo optimization algorithm. In the context of the battle for 
survival, a number of cuckoos and their eggs perish. The 
remaining populations of cuckoos undergo a process of relocation 
to a more advantageous habitat, where they engage in reproductive 

https://doi.org/10.3389/fams.2024.1376558
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Bojnourdi et al. 10.3389/fams.2024.1376558

Frontiers in Applied Mathematics and Statistics 11 frontiersin.org

activities such as breeding and egg laying. The COA algorithm is 
a groundbreaking approach in the field of evolutionary algorithms, 
specifically designed to address the challenges posed by nonlinear 
optimization problems. The algorithm in question was developed 
by Rajabioun (45), who drew inspiration from the behavioral 
patterns shown by the cuckoo bird. Cuckoos have a reproductive 
strategy known as brood parasitism, when they deposit their eggs 
in the nests of other avian species in their natural habitat. Cuckoos 
use a reproductive strategy whereby they deposit their eggs into 
the nests of host birds, so facilitating the preservation and 
propagation of other avian species.

However, it is possible for the host bird to encounter cuckoo 
eggs and subsequently eliminate them. When this phenomenon 
takes place, cuckoos relocate to areas that are more conducive to 
the survival of their offspring over generations and the deposition 
of eggs. If we consider the habitat of the cuckoo as a decision 
space, it can be  inferred that each habitat corresponds to a 
potential solution. Consequently, the algorithm starts with a 
population of cuckoos that inhabit various locations Eqs. 17, 18.

 habitat � �V V VN1 2, , ,  (17)

 cost habitat� � �F  (18)

where V1, V2, …, VN = decision variables, F = objective function, and 
cost = value of F.

Identifying the most attractive ecosystems by calculating their 
price. Then, in the second step, cuckoos migrate to the nearest 
location now suited for egg laying as the eggs grow and mature. 
This migration happens up to a particular maximum distance in 
the wild. This greatest distance is known as the egg laying radius 
(ELR), and within this radius, each cuckoo lays its eggs at random. 
In an optimization issue including variables having an upper limit 
(varhi) and a lower limit (varlow), ELR is determined using the 
following Eq. 19:

 
ELR

Number of current cuckoos eggs

Total number of eggs
� �� varr varhi low�� �

 
(19)

where 𝛼 = an integer number which handle maximum value of ERL.
Because cuckoos are dispersed over the decision space, it is 

difficult to identify which cuckoo belongs to which group. To tackle 
this challenge, cuckoos were categorized using the K-means 
clustering approach. The group with the greatest relative optimality 
will serve as the target for next generations of groups. During 
immigration, cuckoos do not traverse all routes toward the target 
within a single generation. They traverse only λ percent of the entire 
and hence exhibit a variation with φ value. λ is uniformly distributed 
number between zero and one, and also has uniform distribution 
with interval of [−𝑤, 𝑤]. Typically, if w is equal to π/6, it, it will give 
the required convergence to get absolute optimal. The terms 
according Eqs. 20, 21.

 
� � � �U 0 1,

 (20)

 � ��U w w( ),  (21)

Due to variables such as hunting, food scarcity, etc., there is 
often a balance between bird populations in nature. Therefore, in 
COA, the maximum number of cuckoos is determined by the 
value of a number of Nmax. After several iterations, all cuckoos 
converge on the most profitable location, where the fewest eggs 
are destroyed. The point (habitat) would be the solution to the 
optimization issue.

3.2.5 Multi-verse optimization
As seen in Figure 5, multi-verse optimization (MVO) presents 

itself as a viable approach to address global optimization 
challenges by using the concepts of the white hole, the black hole, 
and the wormhole. The Big Bang theory, which investigates the 
genesis of the universe as an immense explosion, serves as a 
source of inspiration. Based on the postulated hypothesis, it is 
posited that several instances of cosmic expansion, sometimes 
referred to as “big bangs,” occurred, with each event giving rise to 
the formation of a distinct universe.

Within the confines of our observable realm, the visual 
detection of a white hole has yet to be accomplished. Nonetheless, 
scholars postulate that the phenomenon known as the big bang 
may perhaps be  regarded as a white hole, serving as the 
foundational impetus for the genesis of our universe. The cyclic 
model of the multiverse hypothesis posits that the occurrence of 
big bangs or white holes is a consequence of the collision between 
parallel worlds. The behavior of black holes, which has been 
regularly observed, has certain characteristics that are 
fundamentally different from those of white holes. The profound 
gravitational force exerted by these objects results in the 
gravitational bending of light beams. Wormholes are theoretical 
structures that can serve as conduits connecting many components 
throughout different universes concurrently. According to the 
idea of the multiverse, wormholes function as conduits via which 
items may instantaneously traverse between different areas inside 
any given world.

Every universe exhibits an inflationary phenomenon that 
induces the expansion of the spatial dimensions. The inflation rate 
of the universe plays a crucial role in the formation of celestial 
bodies including as planets, stars, wormholes, black holes, white 
holes, and asteroids, as well as in determining the possibility for 
life to exist inside the cosmos. One of the cyclic multiverse ideas 
posits that distinct universes attain a level of stability via 
interactions involving black holes, white holes, and wormholes. 
Consequently, these entities transport various items to other 
realities, so making significant contributions to the inflation rates 
seen inside those realms. White holes are more prone to manifest 
in worlds characterized by elevated rates of inflation.

Hence, it is more probable for black holes in worlds 
characterized by modest inflation rates to engage in the absorption 
of matter originating from other universes. This phenomenon 
enhances the likelihood of inflation rate formation in universes 
characterized by low inflation rates.

The average inflation rate of all universes has gradually 
dropped over time due to the transportation of things from 
universes with higher inflation rates to those with lower inflation 
rates through white hole tunnels. Irrespective of the inflation rate, 
wormholes have a tendency to manifest sporadically throughout 
all realms, hence preserving the diversity of the cosmos over the 
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course of time. Despite the need for rapid transitions inside black 
hole tunnels, this requirement serves to incentivize the 
investigation of the search space. The universe variables undergo a 
process of random redistribution around the best solution 
identified during iterations, hence facilitating the exploitation of 
the most promising search area.

The MVO algorithm under consideration has a notable propensity 
for exploitation due to the integration of the traveling distance rate 
(TDR) and wormhole mechanisms. The high exploitation capabilities 
of MVO are facilitated by the use of the traveling distance rate (TDR) 
and wormholes.

4 Results and discussion

Nature-inspired swarm-based approaches, such as swarm 
intelligence (SI) and artificial swarm intelligence (ASI), have 
shown promising results in predicting trading success. Research 
has demonstrated that human groups utilizing SI algorithms to 
predict financial trends have significantly increased their 
accuracy, with groups achieving up to 77% accuracy compared to 
individuals’ 61% accuracy (10–13). Additionally, combining 
bioinspired techniques like grammatical swarm algorithms with 
neural networks has been proposed to maximize prediction rates, 
showing improved results in trading success (14). These findings 
suggest that leveraging swarm-based approaches, modeled after 
natural systems, can enhance decision-making processes in 
financial trading, leading to more accurate forecasts and 
potentially higher returns on investment. This section presents 
the results of the recommended BBO-MLP, BSA-MLP, TLBO-
MLP, COAMLP, and MVO-MLP models, along with comparisons 
to benchmark classifiers. Four indications of efficacy are used to 
verify the model using the aforementioned dataset. Integrating 
optimization algorithms like BBO, BSA, TLBO, COA, and MVO 
within ANNs provides a robust framework for solving complex 
prediction problems. This hybrid approach leverages the 
strengths of both ANNs and optimization algorithms, leading to 
superior performance in various applications, such as financial 
market predictions and other data-intensive tasks. Integrating 
optimization algorithms with ANNs significantly enhances their 
predictive accuracy by efficiently navigating the solution space, 
speeds up the training process by guiding the network towards 
optimal solutions, and improves generalization by avoiding local 
optima and promoting global search strategies, leading to better 
performance on unseen data. Moreover, this study presents many 
tables and figures that illustrate the results of the proposed model 
and compare them to the findings of traditional models. These 
tables and figures are then analyzed and debated. A training set 
and a test set are created using the data that has been gathered. A 
subset of the training dataset was omitted during the training 
phase in order to provide space for the validation dataset, which 
was used to refine our methods. As a consequence, we conduct a 
total of 10 repetitions for each experiment, followed by the 
computation of the mean and standard deviation of the resulting 
area under the curve (AUC) values. This approach allows us to 
assess the potential impact of random variation on our results. 
This section undertakes a comparative evaluation of the two 

artificial neural networks (ANNs) that were introduced in 
Section 3, namely BBO, BSA, TLBO, COA, and MVO (Figure 7).

In addition, it should be noted that each algorithm exhibits 
ten unique subtleties, corresponding to population sizes of 50, 
100, 150, 200, 250, 300, 350, 400, 450, and 500. The ideal 
population size is determined by selecting the population size 
that yields the smallest mean squared error (MSE). This ensures 
that the swarm working on the task operates with the most 
acceptable size. Regarding their optimization behavior, the mean 
squared error (MSE) values, specifically the convergence curves, 
of several high-ranking structures.

The evaluation of the overall efficacy of categorization may 
be  conducted by using a metric called the receiver operating 
characteristic curve (ROC). The false-positive rate (FPR) 
corresponds to the error rate attributed to the minority class and 
is graphed on the X-axis of the receiver operating characteristic 
(ROC) curve. The Y-axis is indicative of the true positive rate 
(TPR). The classifier’s efficacy is considered to be higher when 
the receiver operating characteristic (ROC) curve is positioned 
closer to the top left corner. This observation suggests an inverse 
relationship between the magnitude of the Y variable and the 
magnitude of the X variable. However, the receiver operating 
characteristic (ROC) curve has a limitation that hinders its ability 
to be used for quantitative evaluation of the classifier’s efficacy. 
Consequently, the AUC value, which refers to the area under the 
receiver operating characteristic (ROC) curve, was used to 
evaluate the efficacy of the categorisation. The trade-off between 
recall and accuracy is seen in the ROC curves presented in 
Figures  8–12. As a result, the investigator has the capacity to 
manipulate the metrics of false positive and genuine positive (46, 
47). A conventional confusion matrix was used to provide a 
comprehensive overview of the associations between false 
positives, true positives, false negatives, and true negatives. The 
data may be  compared to the various areas under the curves 
generated from the receiver operating characteristic (ROC) 
curves, as shown in Tables 2–6, for population numbers ranging 
from 50 to 500. Upon comparing all five strategies, it is evident 
from the curves that the teaching-learning-based optimization 
(MVO) method has the best degree of efficacy (Figures 8–11, 13).

4.1 AUC optimization

The use of the universal binary classification metric, often 
referred to as area under curve (AUC), is a prevalent practice seen 
across several academic disciplines. The evaluation of a credit 
scoring system might also include the use of more specific 
indicators. The findings of the three methods based on the AUC 
values are shown in Tables 2–6. The training dataset consisted of 
80 percent of the information in the dataset, while the remaining 
20 percent was allocated for testing purposes. Upon implementing 
the BBO-MLP algorithm on the given dataset, we  achieved 
accuracy scores of 87.4 and 85.8% for the training and test 
datasets, respectively. Upon implementation of the BSA-MLP 
method on our dataset, the accuracy values obtained for the 
training and test datasets were 80.9 and 79.2% respectively. The 
TLBO-MLP approach achieved training AUC values of 93.53% 

https://doi.org/10.3389/fams.2024.1376558
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Bojnourdi et al. 10.3389/fams.2024.1376558

Frontiers in Applied Mathematics and Statistics 13 frontiersin.org

and testing AUC values of 92.37%. On the other hand, the 
COA-MLP method produced training AUC values of 90.92% and 
testing AUC values of 89.27%. Ultimately, the most effective 

strategy is determined to be  the MVO-MLP method, which 
exhibits the greatest AUC values of 95.67 and 94.29% throughout 
the training and testing phases, respectively (Tables 2–6).

TLBOMLP COAMLP

MVOMLP

BBOMLP BSAMLP

A B

C D

E

FIGURE 7

Variation of mean squared error versus iterations for the (A) BBOMLP, (B) BSAMLP, (C) TLBOMLP, (D) COAMLO, and (E) MVOMLP.
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ROC amount for BSAMLP.
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4.2 Error assessment

This section evaluates the efficacy of various models by comparing 
their yield to the goal values, with a focus on error values and 
performance metrics during both training and testing phases.

Figures  12 illustrate the results of the training phase, 
highlighting the variations between each output combination. The 
training error values for the biography-based optimization (BBO-
MLP), backtracking search algorithm (BSA-MLP), teaching-
learning-based optimization (TLBO-MLP), and cuckoo 
optimization algorithm (COA-MLP) models range between 
(0.0020429, 0.93462), (−0.0056553, 0.94228), (−0.003949, 0.853), 
and (0.005947, 0.89325), respectively. For the testing phase, these 
error values are (0.016245, 0.93714), (0.014071, 0.94668), 
(0.017697, 0.8554), and (0.024016, 0.89877), respectively. The 
multi-verse optimization (MVO-MLP) model demonstrates the 
lowest error values in both training and testing stages, with ranges 
of (0.0022124, 0.84856) and (0.025923, 0.85168), respectively. 
Moreover, the mean absolute error (MAE) values for the BBO-MLP, 
BSA-MLP, TLBO-MLP, COA-MLP, and MVO-MLP methods in the 
training stage are (0.92744, 0.93945, 0.83206, 0.88098, and 0.82642) 

and in the testing stage are (0.92834, 0.93868, 0.83168, 0.88542, 
and 0.82928). The mean squared error (MSE) values for these 
methods in the training stage are (0.87237, 0.94169, 0.72667, 
0.79688, and 0.71912) and in the testing stage are (0.87581, 
0.94535, 0.72979, 0.8059, and 0.72382). These results indicate that 
the MVO-MLP method outperforms the other methods, showing 
better accuracy in predicting crude oil prices. The lower error 
values in both training and testing phases, along with superior 
MAE and MSE metrics, suggest that the MVO-MLP model has a 
higher precision and reliability. This demonstrates the effectiveness 
of the multi-verse optimization algorithm in enhancing the 
performance of ANNs for complex prediction tasks like crude oil 
price forecasting.

5 Conclusion

This paper aimed to investigate, analyze, and develop five machine-
learning algorithm to accurately predict successful trading in the West 
Texas Intermediate crude oil cash market. According to the results of 
this research, using five different categorization approaches 

BSAMLP-Test

BSAMLP-Train

A

B

FIGURE 10

ROC amount for COAMLP.

BBOMLP-Test

BBOMLP-Train

A

B

FIGURE 9

ROC amount for TLBOMLP.
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[biography-based optimization (BBO), backtracking search algorithm 
(BSA), and teaching-learning-based optimization (TLBO), cuckoo 
optimization algorithm (COA), and multi-verse optimization 

algorithm (MVO)]. The multiverse optimization approach yielded the 
maximum AUC score possible, which was 0.9567 and 0.9429 in raining 
and testing stages, respectively. The other four methods also show a 

COAMLP-Test

COAMLP-Train

A

B

FIGURE 12

Error frequency and values to evaluates the efficacy of the applied 
models.

TABLE 2 AUC BBO.

Swarm size Network AUC results Scoring Total score Rank

Training Testing Training Testing

50 0.880 0.856 10 9 19 1

100 0.867 0.848 8 7 15 3

150 0.858 0.829 4 3 7 7

200 0.860 0.844 6 5 11 5

250 0.860 0.847 5 6 11 5

300 0.864 0.850 7 8 15 3

350 0.842 0.816 2 1 3 9

400 0.874 0.858 9 10 19 1

450 0.841 0.827 1 2 3 9

500 0.848 0.832 3 4 7 7

TLBOMLP-Test

TLBOMLP-Train

A

B

FIGURE 11

ROC amount for MVOMLP.
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TABLE 5 AUC COA.

Swarm size Network AUC results Scoring Total score Rank

Training Testing Training Testing

50 0.8868 0.8897 5 9 14 4

100 0.5245 0.4458 1 1 2 10

150 0.895 0.8719 8 5 13 5

200 0.8888 0.8788 6 6 12 6

250 0.9076 0.8828 9 7 16 2

300 0.8724 0.8381 4 4 8 7

350 0.86 0.824 2 3 5 8

400 0.9092 0.8927 10 10 20 1

450 0.8913 0.8834 7 8 15 3

500 0.8682 0.8001 3 2 5 8

high value of AUC (greater than 0.8). The values of (0.874 and 0.792), 
(0.809 and 0.792), (0.9353 and 0.9237), and (0.9092 and 0.8927) 
obtained for AUC in training and testing stages, for BBO-MLP, 
BSA-MLP, TLBO-MLP, and COA-MLP methods, respectively. This 

number was used to determine the crude oil cash. Therefore, the 
teaching-learning-based optimization strategy can be  used for the 
categorization of crude oil cash. Due to the fact that the algorithm 
places certain non-defaulters in the default category, we may wish to 

TABLE 3 AUC BSA.

Swarm size Network AUC results Scoring Total score Rank

Training Testing Training Testing

50 0.680 0.651 1 1 2 10

100 0.797 0.808 8 10 18 1

150 0.793 0.796 7 9 16 3

200 0.748 0.726 5 6 11 5

250 0.714 0.675 2 3 5 8

300 0.763 0.724 6 5 11 5

350 0.715 0.658 3 2 5 8

400 0.809 0.792 10 8 18 1

450 0.808 0.749 9 7 16 3

500 0.741 0.692 4 4 8 7

TABLE 4 AUC TLBO.

Swarm size Network AUC results Scoring Total score Rank

Training Testing Training Testing

50 0.9153 0.8789 4 3 7 7

100 0.5245 0.4458 1 1 2 10

150 0.9121 0.8889 3 4 7 7

200 0.9449 0.915 10 7 17 2

250 0.9342 0.9064 8 5 13 5

300 0.877 0.8486 2 2 4 9

350 0.9353 0.9237 9 10 19 1

400 0.926 0.9184 6 8 14 4

450 0.9216 0.9111 5 6 11 6

500 0.9336 0.9234 7 9 16 3
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investigate this problem deeper in order to improve the model’s ability 
to anticipate prediction of crude oil price. However, this strategy has 
many drawbacks. Numerous variables (supply and demand, supplier 
competition, replacement with other energy sources, technological 
advancement, local economics, deregulatory activities, globalization, 

and even political instability and conflicts) are known to influence the 
price of crude oil. In addition, the decomposition results rely on the 
selection of parameters, but the methodology fails to give a theoretical 
economic foundation for the decomposition rules. The integrated 
models are tested on historical data from the WTI crude oil cash 
market. Preliminary results indicate significant improvements in 
prediction accuracy when optimization algorithms are utilized in 
conjunction with ANNs. Detailed comparative analysis highlights the 
strengths and weaknesses of each approach, providing insights into 
their applicability in real-world trading scenarios. The study 
demonstrates that the integration of optimization algorithms with 
ANNs can lead to superior predictive performance. Each algorithm 
contributes uniquely to the training process, offering diverse strategies 
for escaping local optima and enhancing generalization capabilities. 
This research underscores the potential of hybrid models combining 
ANNs with advanced optimization algorithms in predicting successful 
trades in the WTI crude oil cash market. Future work will explore the 
integration of additional algorithms and the application of these 
models to other financial markets.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding authors.

Author contributions

EB: Writing – original draft. AM: Writing – original draft. SJ: 
Writing – original draft. MG: Writing – original draft. GR: Writing – 
original draft. ST: Writing – original draft. SR: Writing – original draft. 
MK: Writing – original draft.

Funding

The author(s) declare that no financial support was received for 
the research, authorship, and/or publication of this article.

TABLE 6 AUC MVO.

Swarm size Network AUC results Scoring Total score Rank

Training Testing Training Testing

50 0.9253 0.9025 5 5 10 6

100 0.5245 0.4458 1 1 2 10

150 0.9139 0.8866 3 3 6 8

200 0.9668 0.941 10 9 19 1

250 0.9519 0.9331 7 7 14 4

300 0.9429 0.9135 6 6 12 5

350 0.8725 0.8469 2 2 4 9

400 0.9567 0.9429 9 10 19 1

450 0.953 0.9343 8 8 16 3

500 0.9141 0.9005 4 4 8 7
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FIGURE 13

ROC amount for BBOMLP.
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