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We describe the genetic code in terms of numbers that help us to find

several dual symmetries. Our formulation can even be rewritten regarding

the up-down and right-left dual concepts. We argue that our work may

bring many topological tools to studying the DNA molecule, including the

Grassmann-Plücker coordinates, which are important in mathematical and

physical contexts.
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1 Introduction

It is a fact that mathematics continues to play an important role in the understanding

of genomes [1]. For instance, there is no doubt that the efforts to describe mathematical

aspects of the DNA structure helped to have a better understanding of the dynamics of the

creation of proteins [2].

A well-known example of the above comment is provided by the knowledge base of

triplet codons, a DNA sequence, consisting of three nucleotides (3-nucleotide), the basic

building blocks of DNA [3], coding for a specific amino acid sequence that is translated

into a polypeptide molecule called proteins, the main functional and structural molecules

in most organisms. The DNA consists of two strands in the form of a double right-handed

helix of repeating units called nucleotides, each consists of four bases (or 4-nucleotide),

adenine (A), thymine (T), cytosine (C), and guanine (G) which form the stair rungs and a

sugar molecule (either ribose in RNA or deoxyribose in DNA) attached to a phosphate

group which forms the poles of the staircase. The 4-nucleotide (in the DNA), in turn,

forms the corresponding sequence of amino acids and, finally, proteins. From the chemical

properties of the four bases, it is clear that adenine can only be combined with thiamine

and cytosine only with guanine (see Ref. [2] and references therein). Schematically, we can

consider these four options in the form;

A− T,

T − A,

C − G,

G− C.

(1)

We observe that the bases on the two strands of a DNA structure are complementary

or dual (see Refs. [4–7] and references therein). The reason for this seems to be that

adenine and thymine form two hydrogen bonds, while the cytosine and guanine form three

hydrogen bonds.
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The starting point in constructing the genetic code is to

consider the codons, which are triality of the 4-nucleotide. In turn,

the triality of nucleotides means that there are 64 = 4 × 4 × 4

possible combinations or codons. Indeed, 61 codons specify 20

amino acids, one as starting (initiation) codon which establishes

the beginning of synthesis and, at the same time, it codes the amino

acid methionine; on the other hand, three are used as stop signals

(see Ref. [8]). Moreover, the first problem is how to distribute the

41 = 61 − 20 codons in 20 amino acids. This is possible if some

associated amino acids are specified for more than one codon. In

the end, after years of hard work, a consistent and valuable genetic

table was obtained (see Figure 1), where U is associated with the

RNA structure but corresponds to T in the DNA. Surprisingly and

interestingly, this genetic table applies to most genes in animals,

plants, and microorganisms.

On the other hand, it is known that in nature, there are

visible and hidden symmetries. A very good explanation of this

phenomenon can be found in a book by Moshinsky: Simetría en la

Naturaleza (symmetry in Nature) [9]. This author put an example

of such a phenomenon by presenting a picture of a mural called

“La Nueva Democracia” (“The New Democracy”) by Siqueiros (a

famous muralist in Mexico). In such a mural, one can find a natural

symmetry as bilateral of two sides of the central figure. However, if

we look at the original sketched structure of the mural, we find a

series of hidden symmetries such as circles, triangles, and squares,

which were important for the development of the final mural.

In analogy to this Siquerios mural, the question arises whether

the genetic code associated with the DNA also contains hidden

symmetries.

With the above purpose, in this study, we have as a main goal to

rewrite the genetic code inmore mathematical terms.We show that

our strategy helps us find hidden duality symmetry, which allows us

to reduce the 64 = 4× 4× 4 possible codons to only 32. Moreover,

we also present an even more abstract notion of the genetic code in

terms of duality concepts up-down and left-right. We believe that

our approach may help not only to have a better understanding of

symmetry in the genetic code but also to establish a bridge between

different mathematical tools in both mathematics and physics. We

think that it will improve our understanding of the nature of coding

activity and the evolution of the genetic code.

2 Genetic code in terms of the set
{1, 2, 3, 4}

Assume we consider the following identifications.

T ↔ 1,

C↔ 2,

A↔ 3,

G↔ 4.

(2)

The genetic code in Figure 1 now becomes Figure 2:

At first sight, there does not seem to be any new advantage of

the genetic code according to Figure 2 over the one presented in

Figure 1. But considering Figure 3, we would like to present a very

good example that this is not the case. In Figure 3, we do not include

the corresponding amino acids at this stage because we would like

to discover hidden relations. Let us assume that the codons (ijk),

with i, j, k = 1, 2, 3, 4, are symmetric in any permutation of the

indices i, j, k. If we use the formula

N =
(n+ d − 1)!

(d − 1)!n!
, (3)

which applies to any symmetric permutation, we observe that

N = 20. This is because, in our case, d = 4 and n = 3. This

number coincides with the number of amino acids. Moreover, this

coincidence may motivate us to associate only one codon with each

value of the symmetric permutation of (ijk). First, we notice that

when i = j = k, we have the four results {(111), (222), (333), (444)}.

Therefore, in this case, the other degenerated values in Figure 3 are

eliminated; for instance, we have

Gly = {(444)}. (4)

But

Gly 6= {(144), (344), (244)}. (5)

Now consider

Glu = {(224), (244)}. (6)

Since

Arg = {(134), (334), (234), (344), (224), (244)}, (7)

we observe that if we choose (244) for Glu, Arg must

be (224). Similarly if we choose (224) for Glu, Arg must

be (244). This is because for any two repeated index values

of (ijk), there are only three possibilities. Thus, we have

that

if Glu = (244) then Arg(224),

and

if Glu = (244) then Arg(224).

(8)

This shows that we must choose

Arg 6= {(134), (334), (234), (344)}, (9)

Thus, since

Pr o = {(333)}, (10)

Pr o 6= {(133), (233), (334)} (11)

and

Ala = {(134), (334), (234), (344)}, (12)

we must choose

Ala = {(334)}. (13)
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FIGURE 1

Genetic Code regarding the set {U, C, A, G}.

FIGURE 2

Genetic code in terms of the set {1 ,2, 3, 4}.

However, by Arg and Gly, we observe that we must have

Ala = {(344)}. (14)

Therefore, Ala has inevitably two assigned codons. This

contradicts the fact that each codon must have only one associated

codon. Therefore, with the help of Figure 3, we have proven that the

codon structure (ijk) can not be a totally symmetric quantity.

3 Genetic code in terms of the sets
{1, 2} and {1∗, 2∗}

Now that we have the genetic code according to Figure 3, we

wonder if we can go a step further in a more abstract mathematical

structure. For this purpose, let us make the new correspondences

1↔ 1,

2↔ 2,

3↔ 1∗,

4↔ 2∗.

(15)

With this identification Figure 3, we can construct the genetic

code of Figure 4. The reason for this proposal is that thiamine

T = 1 can only be combined adenine A = 3 and cytosine C = 2

with guanine G = 4. This additional requirement must lead us to

consider the relations 1↔ 1∗ and 2↔ 2∗, which start to look as a

type of duality relations. The anti-code associated with each codon

of Figure 4 is established in Figure 5.
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FIGURE 3

Genetic code in terms of the set {1, 2, 3, 4} without the associated amino acids.

FIGURE 4

Genetic code in terms of the set {1, 2, 1*, 2*}.

Let us make the following index identification:

a = (1, 2),

a∗ = (1∗, 2∗).

(16)

Inspired by tensor analysis [10], we also may rewrite the

expression

Cijk = (ijk), (17)

with the indices i, j, k, ...etc running from 1 to 4. Moreover,

combining Equations (16) and (17), we shall get

Cijk =











Cabc Cab∗c

Cabc∗ Cab∗c∗

Ca∗bc Ca∗b∗c

Ca∗bc∗ Ca∗b∗c∗











. (18)

Using Equation (17), it is possible to verify that this is consistent

with the structure of Figure 3. As wementioned, we have the duality

relations 1↔ 1∗ and 2↔ 2∗. From Equation (16), this means that

a↔ a∗. (19)

Duality has always the property (A∗)∗ = A for any quantity

A. From Equation (19), we observe that this is the case because

(a∗)∗ = a. Hence, the expression (18) leads us to establish the

following connections:

Cabc ↔ Ca∗b∗c∗ Cab∗c ↔ Ca∗bc∗

Cabc∗ ↔ Ca∗b∗c Cab∗c∗ ↔ Ca∗bc

. (20)
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FIGURE 5

Genetic code in terms of the anticodons.

FIGURE 6

Genetic code regarding the dual concepts up/down and right/left.

This result means that from the four quantities

Cabc Cab∗c

Cabc∗ Cab∗c∗
, (21)

we can obtain via duality the other four quantities

Ca∗bc Ca∗b∗c

Ca∗bc∗ Ca∗b∗c∗
. (22)

One of the consequences of this development is that if duality

is used, out of the 64 possible codons, only 32 are necessary.

4 Genetic code in terms of the sets
{ ↑,↓ } and { −→,←−}

Motivated by the duality prescription of the previous section,

we propose an even clearer construction for duality in this section.

The idea is to write 1 as ↑, 1∗ as ↓, while 2 as −→ and 2∗ as

←−. We call ↑ up, ↓ down, while we call −→ right and←− left.

With this new notation, we may construct Figure 6. Of course, it

is evident that up/down are dual concepts, while right/left are also

dual concepts. This means that all the codons and, consequently, all

the genetic code are written in terms of two dual concepts: up/down

and right/left.
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An interesting thing from the present perspective is that with

the sets

{ ↑,↓ } and { −→,←−} (23)

we may consider options of the form;

↑

←− −→

↓

, (24)

↓

−→ ←−

↑

, (25)

or

↓

←− −→

↑

, (26)

which are well-knownmathematical structures in topology [11]

and differential geometry [12].

5 Final remarks

The prescription of Section 4 recalls the dual concepts of the

spin associated with particles in higher energy theory. For instance,

it is known that the electron spin can have only two possible states:

spin up or down. This is because the electron is a fermion with

half-integer spin. Conversely, the neutrino spin is classified as left-

handed or right-handed. Moreover, although the scenarios of the

genetic code and particle theory describe different scenarios, there

could be, at the fundamental level, some dual principles in both

cases.

The two options { ↑,↓ } and { −→,←−} can be considered

that describe a 2-dimensional structure. Our world, however, at our

scales is 3-dimensional. Moreover, we wonder whether there is a

3-dimensional genetic code structure.

Recently, we became aware of Reference [13], where there are

several reflections on the origin and early evolution of the genetic

code. An important issue raised in this reference is why the codons

are composed of three nucleotides; in our language, why the codons

are described by the quantity Cijk, why not Cij or Cijkl. Of course, Cij

gives only 16 different codons, which are not enough to code the 20

amino acids. While Cijkl, we shall have 254 codons, which is too

big number for the code of the 20 amino acids. However, if Cijkl is

a totally symmetric object, Cijkl describes only 35 codons. Another

possibility is that Cijkl has the symmetries

Cijkl = −Cijlk = −Cjikl, (27)

and

Ck[lij] = 0 (28)

(as the Riemann tensor in general relativity theory; see page 326

of Reference [14]). Let us assume that i, j, k and l run from 1 to p

then the first condition (27) leads to

p(p− 1)

2
(29)

and from the last condition in Equation (27), we obtain the

same result. Moreover, the conditions in Equation (27) determine

a square matrix of
p(p−1)

2 ×
p(p−1)

2 . This means that, in principle,

there are

p2(p− 1)2

4
(30)

components in Cijkl. However, due to Equation (28), no all

of these conditions are independent; we must subtract from

Equation (30) all the combinations obtained from Equation (28),

namely

p
p!

3!(p− 3)!
(31)

or

p(p− 1)(p− 2)

6
(32)

components. Thus, the total number of independent

components in Cijkl satisfying (27) and (28) can be obtained

from the expression

p2(p− 1)2

4
−

p(p− 1)(p− 2)

6
. (33)

We obtain

p2(p2 − 1)

12
, (34)

which is the formula that determines the number of

independent components of the quantity Cijkl (see page 326 of

Reference [14]). In particular, in our case p = 4 and therefore,

surprisingly from Equation (34), we obtain that the several possible

codons for Cijkl is 20, the same number of amino acids!

In Reference [4], a link was established between the DNA

molecule and the Grassmann–Plücker coordinates, which, in

both mathematics and physics, are of great importance and are

connected with oriented matroid theory (see [5, 6] references

therein). It is worth mentioning that recently, it has been shown

[15] how the matroid concept can be used to determine the

existence of mutations in DNA and RNA. Moreover, in Reference

[16], the importance of mathematical modeling methods in

analyzing complex signal systems is raised. It is tempting to assume

that the dynamics of mutations in DNA and RNA can be studied

using a dynamical-oriented matroid theory. Thus, further study

may be very interesting to establish a link between the present study

with these mathematical developments.
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