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This study presents a comprehensive analysis of the transmission dynamics

of monkeypox, considering contaminated surfaces using a deterministic

mathematical model. The study begins by calculating the basic reproduction

number and the stability properties of equilibrium states, specifically focusing

on the disease-free equilibrium and the endemic equilibrium. Our analytical

investigation reveals the occurrence of a forward bifurcation when the basic

reproduction number equals unity, indicating a critical threshold for disease

spread. The non-existence of backward bifurcation indicates that the basic

reproduction number is the single endemic indicator in our model. To further

understand the dynamics and control strategies, sensitivity analysis is conducted

to identify influential parameters. Based on these findings, the model is

reconstructed as an optimal control problem, allowing for the formulation

of e�ective control strategies. Numerical simulations are then performed to

assess the impact of these control measures on the spread of monkeypox. The

study contributes to the field by providing insights into the optimal control and

stability analysis of monkeypox transmission dynamics. The results emphasize

the significance of contaminated surfaces in disease transmission and highlight

the importance of implementing targeted control measures to contain and

prevent outbreaks. The findings of this research can aid in the development of

evidence-based strategies for mitigating the impact of monkeypox and other

similar infectious diseases.

KEYWORDS

monkeypox, mathematical model, stability analysis, optimal control, contaminated

surfaces

1 Introduction

The global outbreak of monkeypox in May 2022 has highlighted the significant public

health risks associated with zoonotic diseases [1]. Monkeypox, caused by the monkeypox

virus, primarily spreads to humans through contact with infected animals, but human-to-

human transmission can also occur through various routes [2, 3]. Contaminated surfaces

play a crucial role in the transmission of diseases. Studies indicate that viral transmission

can take place through contaminated surfaces, and mounting evidence underscores the

pivotal role of contaminated fomites or surfaces in the spread of viral diseases [4].

Specifically, the environmental viral load significantly influences the transmission of the

monkeypox virus, with direct contact with contaminated items or materials emerging as
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a major contributing factor to its spread [5]. The disease manifests

in distinct phases, including an incubation period, a prodromal

phase, and an eruptive stage characterized by skin lesions [2, 6].

The ongoing monkeypox outbreak has become a public health

emergency of global concern, with over 63,000 cases reported,

including its spread to locations such as the United Kingdom

[7, 8]. This outbreak poses a strain on healthcare systems already

dealing with the COVID-19 pandemic [9]. Although monkeypox

cases are typically mild, at-risk groups such as children, gravid

women, and individuals with compromised immune systems may

experience severe cases [10, 11]. Historically, monkeypox outbreaks

have been prevalent in marginalized communities in Africa, where

the disease became endemic [12–14]. Concerns have been raised

due to waning immunity resulting from the discontinuation of

smallpox vaccination and the evolving epidemiology of the virus

[15, 16]. To effectively address themonkeypox outbreak, it is crucial

to develop robust disease modeling strategies for public health

planning and response.

Previously, there has been limited focus on monkeypox,

resulting in a lack of understanding of the disease’s transmission

dynamics. However, a few numbers of studies have made efforts

to employ mathematical modeling techniques to gain insights

into the monkeypox virus’s dynamics. Mathematical modeling

has been studied in Al-Shomrani et al. [17] to analyze the

interaction between humans and animals in relation to the

Monkeypox virus, while Okyere and Ackora-Prah[18] explores

the mechanism of human transmission of the virus through a

mathematical study. The authors in Peter et al. [19] investigated

the transmission dynamics of the monkeypox virus and found

that isolating infected individuals in the human population

effectively reduces disease transmission. Alharbi et al. [20] explored

the effectiveness of treatment and vaccination interventions as

containment measures for monkeypox. In a study by Michael

et al. [21], the authors examined a mathematical model for

monkeypox that incorporated surveillance as a control measure.

Additional valuable contributions can be found in El-Mesady

et al. [22], Alshehri and Ullah [23], and Alzubaidi et al.

[24]. According to the existing literature, it is evident that

further research and exploration are necessary to gain a deeper

understanding of the phenomenon of monkeypox. This study

aims to investigate the dynamics of monkeypox transmission

and its control in humans by employing a classical and

deterministic model that incorporates contaminated surfaces as a

separate compartment.

In our study, we present a novel contribution to the field

by adopting a deterministic approach, distinguishing our study

from previous studies conducted by Addai et al. [5] and Li et al.

[25], who utilized the Caputo fractional derivative. Furthermore,

while Madubueze et al. [26] employed a deterministic model

and made commendable progress, our study extends beyond

by conducting more in-depth analyses in optimal control and

numerical simulations for the proposed strategies. Additionally,

our research sets itself apart from the study by Alshehri et al.

[23], who also employed a deterministic model by incorporating

an exposed population variable into our model and conducting

a comprehensive cost-effectiveness analysis for the implemented

strategies. Our strong emphasis on these aspects showcases the

distinctive contributions and advancements made in our study

compared to the existing literature.

The subsequent sections of this article are outlined in the

following manner: In Section 2, we explain the construction of

the mathematical model. Next, Section 3 focuses on analyzing the

model, including the disease-free equilibrium, basic reproduction

number, endemic equilibrium, and global stability. We conduct a

bifurcation analysis in Section 4. Section 5 presents a sensitivity

analysis of the model. Section 6, explores an optimal control

problem, including its characterization, simulation, and discussion.

Finally, we conclude the article by summarizing the key findings in

Section 7.

2 Model construction

In this section, we present the construction of ourmathematical

model for the optimal control and stability analysis of monkeypox

transmission dynamics, considering the impact of contaminated

surfaces. In developing the model, an assumption is made that the

population of humans (N) remains constant over a period of time.

The model is developed based on compartmentalization, where

individuals are classified into different compartments representing

their disease status. We consider the following compartments:

susceptible (S), exposed (E), infectious (I), recovered (R), and

contaminated surfaces (C). The explanations of the model

construction for each compartment are constructed using Figure 1

and given as follows:

• Susceptible (S). This compartment represents individuals

who are susceptible to contracting monkeypox. They have

not been exposed to the virus and can become infected

if they come into contact with infectious individuals or

contaminated surfaces. The rate of change in the susceptible

compartment is determined by multiple factors. First, the

birth rate of the human population (3h) contributes to the

increase in the number of susceptible individuals. Second,

the term
((

(βhI)
N

)

+ βcC
)

S represents the combined effect

of virus transmission from infectious individuals (I) and

contaminated surfaces (C) to susceptible individuals, where βh

and βc represent the transmission rate of monkeypox through

contact of human to other human or contaminated surfaces,

respectively. This term signifies the rate at which susceptible

individuals become infected. In addition, it is important to

note that the natural mortality rate denoted by (µh) applies to

all compartments, including the infected and recovered. This

rate contributes to the decrease in the respective populations

due to non-disease-related causes.

• Exposed (E). The exposed compartment represents individuals

who have been exposed to the monkeypox virus but are not yet

infectious. During this period, the virus is incubating within

their bodies, and they do not exhibit symptoms or pose an

immediate risk of transmission. However, they can potentially

transmit the virus to susceptible individuals or contaminated

surfaces. The rate of change in the exposed compartment

depends on various factors. The term
((

(βhI)
N

)

+ βcC
)

S

represents the rate at which exposed individuals become
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FIGURE 1

Transmission diagram depicting the spread of the disease in the model.

infected, considering virus transmission from infectious

individuals (I) and contaminated surfaces (C). Additionally,

γE accounts for the transition from the exposed to the

infectious stage, where γ represents the transition rate due to

infection progression. This term represents the rate at which

exposed individuals progress to the infectious compartment.

• Infectious (I). The infectious compartment consists of

individuals who have become infectious and can spread the

monkeypox virus to susceptible individuals or contaminated

surfaces. They may exhibit symptoms of the disease and

contribute to the transmission dynamics. The rate of change

in the infectious compartment is influenced by several factors.

First, γE represents the rate at which exposed individuals

progress to the infectious stage, reflecting the transition from

the exposed compartment to the infectious compartment.

Moreover, γ0I signifies the rate at which infectious individuals

recover and transition to the recovered compartment, where

γ0 represents the recovery rate from monkeypox.

• Recovered (R). This compartment represents individuals

who have recovered from the monkeypox infection and

developed immunity. The rate of change in the recovered

compartment is primarily determined by the rate at which

infectious individuals recover and transition to the recovered

compartment, denoted as γ0I.

• Contaminated surfaces (C). The contaminated surfaces

compartment represents surfaces or environments that have

been contaminated by the monkeypox virus. These surfaces

can act as sources of infection if individuals come into

contact with them. The virus can persist on these surfaces and

potentially contribute to the transmission of monkeypox. The

rate of change in the contaminated surfaces compartment is

influenced by two main factors. First, αI denotes the rate at

which infectious individuals contaminate surfaces, indicating

the rate at which the virus is deposited on surfaces. Second,

µpC represents the cleaning rate or decay rate of the virus on

contaminated surfaces, signifying the rate at which the virus is

removed or becomes inactive on surfaces.

The model can be represented by the following set of

differential equations:

dS

dt
= 3h −

((

βhI

N

)

+ βcC

)

S− µhS,

dE

dt
=

((

βhI

N

)

+ βcC

)

S− (γ + µh)E,

dI

dt
= γE− (γ0 + µh) I,

dR

dt
= γ0I − µhR,

dC

dt
= αI − µpC.

(1)

The initial conditions of the model (Equation 1) are non-

negative:

S(0) ≥ 0,E(0) ≥ 0, I(0) ≥ 0,R(0) ≥ 0,C(0) ≥ 0. (2)

All parameters in the system are positive. The specific values

of these parameters and their descriptions are provided in Table 1.

Before doing additional analysis on the model, it is essential to

ensure that the solutions of system (Equation 1) exhibit both

positivity and boundedness. These properties are stated in the

following theorems.

Theorem 1. Given non-negative initial conditions (Equation 2),

every solution (S,E, I,R,C) of model (Equation 1) is positive for all

t ≥ 0.
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TABLE 1 Parameter descriptions and values for the basic model (1).

Parameter Description Value Reference

3h Birth rate of the human population 338,289,625
79×365

[23]

βh Transmission rate between infectious individuals and susceptible individuals 0.2084 [23]

βc Transmission rate between contaminated surfaces and susceptible individuals 7.6977× 10−8 [23]

γ Rate at which individuals in the exposed compartment become infectious 1
14

[27]

γ0 Rate at which infectious individuals recover 1
7

Assumed

µh Natural mortality rate of the human population 1
79×365

[23]

α Rate at which infectious individuals contaminate surfaces 0.0004 Assumed

µp Cleaning rate or decay rate of the virus on contaminated surfaces 1
15

[28]

Proof: In the boundary region ofR5
≥0, we have system (Equation 1)

equals to:

dS

dt

∣

∣

∣

∣

S=0,E≥0,I≥0,R≥0,C≥0

= 3h ≥ 0,

dE

dt

∣

∣

∣

∣

S≥0,E=0,I≥0,R≥0,C≥0

=

((

βhI

N

)

+ βcC

)

S ≥ 0,

dI

dt

∣

∣

∣

∣

S≥0,E≥0,I=0,R≥0,C≥0

= γE ≥ 0,

dR

dt

∣

∣

∣

∣

S≥0,E≥0,I≥0,R=0,C≥0

= γ0I ≥ 0,

dC

dt

∣

∣

∣

∣

S≥0,E≥0,I≥0,R≥0,C=0

= αI ≥ 0.

The computation above shows that on the boundary planes

of the non-negative of R
5
≥0, all of the rates are non-negative.

Consequently, all of the vector field direction is inward

from the boundary planes. As a result, initiating the system

from non-negative initial conditions ensures that all solutions

remain positive.

Theorem 2. The solutions of model (Equation 1) are bounded in the

region

� =

{

(S,E, I,R,C) ∈ R
5
+| N ≤ max

{

N(0),
3h

µh

}

,C ≤
α3h

µhµp

}

.

Proof: Combining the first four equations within the model

(Equation 1) yields an equation that describes the overall

population as follows:

dN

dt
= 3h − µhN,

dN

dt
+ µhN = 3h.

By applying the integrating factor method using exp(
∫ t
0 µhdt) =

exp(µht), it can be established that N(t) satisfies:

N =
3h

µh
+ N(0) exp(−µht).

If we take the limit as t → ∞, we have N →
3h
µh

. If the initial

condition is larger than
3h
µh

, then the solution will monotonically

decrease and tends to
3h
µh

. If N(0) <
3h
µh

, then the solution will

monotonically increase and tends to
3h
µh

. On the other hand, if

N(0) =
3h
µh

, then the solution will remain constant at
3h
µh

. Hence,

we have N(t) ≤ max
{

N(0),
3h
µh

}

.

For the variable C, since I ≤ N, we got

dC

dt
= αI − µpC ≤ α

3h

µh
− µpC,

dC

dt
+ µpC ≤

α3h

µh
.

Moreover, employing the integrating factor method with

exp(
∫ t
0 µpdt) = exp(µpt), we get

C ≤
α3h

µhµp
+ C(0) exp(−µpt).

With t → ∞, C ≤
α3h
µhµp

. Hence, the theorem is proven.

To facilitate further analysis of the model, we apply scaling

techniques to normalize the variables. By introducing the scaling

variables s = S
N , e = E

N , i = I
N , r = R

N , and c = C
N , where N

represents the total population size, we can express the model in

dimensionless form. Additionally, we redefine the transmission rate

of contaminated surfaces as βp = βcN. Utilizing the relationship

s = 1− e− i− r, the final model is obtained:

ds

dt
= (1− s) µh −

(

βhi+ βpc
)

s,

de

dt
=
(

βhi+ βpc
)

s− (γ + µh) e,

di

dt
= γ e− (γ0 + µh) i,

dc

dt
= αi− µpc.

(3)

In this transformed form, all variables and parameters in

model (Equation 3) are dimensionless, enabling a more convenient

analysis of the model’s behavior and stability properties.

3 Analysis of the model

3.1 The monkeypox-free equilibrium and
the basic reproduction number

The monkeypox-free equilibrium is a crucial state in the

analysis of the proposed model. It represents the equilibrium point
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of the system in the absence of the monkeypox disease. The

monkeypox-free equilibrium is determined by setting all disease-

related variables, including the infected variables (e, i, c) to zero

[29]. By solving the resulting system of equations, the monkeypox-

free equilibrium, denoted as E0, is derived. The equation for the

monkeypox-free equilibrium is given by:

E0 = (s0, e0, i0, c0) = (1, 0, 0, 0) .

With the disease-free equilibrium established, we proceed to

calculate the basic reproduction number, denoted as R0. The R0

represents the expected number of secondary cases generated by

a single primary case during its infectious period. E0 serves as an

indicator of the qualitative behavior of these models, such as the

persistence or extinction of the disease [30]. A higher E0 indicates

a higher potential for disease spread, while a lower E0 suggests a

decreased likelihood of sustained transmission. To calculate the E0

for our model, we adopt the next-generation matrix approach [31],

a well-established method for its determination.

The evaluation of the subsystem of model (Equation 1) that

specifically focuses on the infected compartment in E0 is given by

 =







− (γ + µh) βh βp

γ − (γ0 + µh) 0

0 α −µp






.

The matrix  can be written as the sum of the transmission matrix

T and transition matrix 6, where

T =







0 βh βp

0 0 0

0 0 0






,6 =







− (γ + µh) 0 0

γ − (γ0 + µh) 0

0 α −µp






.

Since the second and third rows of matrix T consist entirely of

zeros, the next-generation matrix can be derived as

K = −E
T
T6−1

E =
[

βhγ

(γ + µh) (γ0 + µh)
+

βpγα

(γ + µh) (γ0 + µh) µp

]

,

where E = [1, 0, 0]T . Consequently, the basic reproduction

number, calculated as the spectral radius of K, is given by

R0 =
γ
(

µpβh + αβp
)

(γ + µh) (γ0 + µh) µp
. (4)

Based on the expression forR0 and the application of Theorem

2 in Driessche and Watmough [32], we establish the local stability

of E0, leading to our summarized findings in the following theorem.

Theorem 3. If R0 < 1, then monkeypox-free equilibrium is locally

asymptotically stable and unstable if R0 > 1.

Proof: The disease-free equilibrium stability is examined through

the linearization of system (Equation 1) at E0, leading to the

derivation of the corresponding Jacobian matrix

J|E0 =











−µh 0 −βh βp

0 − (γ + µh) βh βp

0 γ − (γ0 + µh) 0

0 0 α −µp











.

The first eigenvalue λ1 = −µh is negative, whereas the

remaining three eigenvalues can be determined as the roots of the

following cubic polynomial

P(λ) : = λ3 + a1λ
2 + a2λ + a3 = 0

where
a1 = 2µh + µp + γ + γ0,

a2 = µp (2µh + γ + γ0) +
αβpγ

µp
+ (γ + µh) (γ0 + µh) (1− R0),

a3 = µp (γ + µh) (γ0 + µh) (1− R0).

According to the Routh–Hurwitz criteria for a third-degree

polynomial [33], the system (Equation 1) exhibits local asymptotic

stability when R0 < 1, as indicated by the positive values of a2 and

a3. The additional condition of a1a2 > a3 can be easily checked,

since a1a2 is equal to a3 plus to some extra positive terms.

3.2 The monkeypox endemic equilibrium

The determination of the monkeypox endemic equilibrium

point provides insights into the long-term dynamics of the system,

indicating the persistence of infection within the population [34].

We represent it as E1 = (s∗, e∗, i∗, c∗), where:

s∗ =
1

R0
, e∗ =

µhµp (γ0 + µh) (R0 − 1)

γ
(

µpβh + αβp
) ,

i∗ =
µhµp(R0 − 1)
(

µpβh + αβp
) , c∗ =

αµh(R0 − 1)
(

µpβh + αβp
) .

Given that the expression for the endemic equilibrium point

is consistently positive when R0 > 1, we establish the following

theorem regarding its existence.

Theorem 4. The monkeypox model within system (Equation 1) has

a unique endemic equilibrium E1 whenever R0 > 1.

The next theorem provides a summary of the local stability

analysis of the endemic equilibrium.

Theorem 5. The monkeypox endemic equilibrium is locally

asymptotically stable if R0 > 1.

Proof: The Jacobian matrix evaluated at the endemic equilibrium

E1 is

J|E1 =











−µhR0 0 −
βh
R0

−
βp
R0

−µh (1− R0) − (γ + µh)
βh
R0

βp
R0

0 γ − (γ0 + µh) 0

0 0 α −µp











.

The Jacobian’s characteristic equation is given as

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0
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where
a1 = µhR0 + 2µh + µp + γ + γ0,

a2 = µhR0

(

2µh + µp + γ + γ0
)

+ µp (2µh + γ + γ0) +
γαβp

µpR0
,

a3 = µhµpR0 (2µh + γ + γ0)+

µh
γαβp

µpR0
+ µh (γ + µh) (γ0 + µh) (R0 − 1) ,

a4 = µhµp (γ + µh) (γ0 + µh) (R0 − 1) .

It can be seen that ai for i = 1, 2, 3, 4 is strictly positive when

R0 > 1. In addition, it has been verified that a1a2a3 > a23+a21a4 by

checking that a1a2a3 − a23 + a21a4 > 0 when R0 > 1. Hence, based

on the Routh–Hurwitz criterion [33], the endemic equilibrium is

found to be locally asymptotically stable if R0 > 1.

3.3 Global stability of the monkeypox-free
equilibrium

Here, the monkeypox-free equilibrium global stability for

model (Equation 3) is examined. Theorem 6 states the result.

Theorem 6. The monkeypox-free equilibrium E0 is globally

asymptotically stable if R0 < 1.

Proof: The global stability of E0 is established using the direct

Lyapunov technique. Consider the Lyapunov function on R4+,

which is presented by,

L =
(

s− 1− ln s
)

+ e+
γ + µh

γ
i+

βp

µp
c.

Initially, it is evident that L is equal to zero at the monkeypox-

free equilibrium. To establish the positivity of L for all (s, e, i, c) =

(1, 0, 0, 0), it suffices to observe the expression

(

s− 1− ln s
)

,

as the function g(s) = s − 1 − ln(s) satisfies a global minimum at

s = 1 and g(s) = 0. Consequently, g(s) is greater than zero for all

s > 0, excluding s = 1. Therefore, the first term is positive. The

other terms are obviously positive as well. Additionally, it is clear

that L is radially unbounded.

L is differentiated, then substitution is made using the

equations of model (Equation 3), which gives us

dL

dt
= −µh

(s− 1)2

s
+

(γ + µh) (γ0 + µh)

γ
(R0 − 1) i.

It is apparent that the first term is non-positive, and similarly,

the second term is non-positive as long as R0 < 1. Hence, it can

be established that dL
dt < 0 holds true for all (s, e, i, c) 6= (1, 0, 0, 0).

Therefore, based on Lyapunov’s theorem ([35], Theorem 7.1), the

monkeypox-free equilibrium is globally asymptotically stable.

3.4 Stability analysis on the endemic
equilibrium

Applying the principles of the center manifold theory made by

Castillo-Chavez and Song [36], we make the assumption

s = x1, e = x2, i = x3, c = x4.

Therefore, system (Equation 3) can be reformulated as follows:

f1 = x′1 = (1− µh) x1 −
(

βhx3 + βpx4
)

x1,

f2 = x′2 =
(

βhx3 + βpx4
)

x1 − (γ + µh) x2,

f3 = x′3 = γ x2 − (γ0 + µh) x3,

f4 = x′4 = αx3 − µpx4.

(5)

In the case where R0 = 1, let us assume that α is chosen as the

bifurcation parameter. Solving for α, from Equation (4) we obtain

α∗ =
(γ + µh) (γ0 + µh) µp − γµpβh

γβp

Evaluating the Jacobian matrix of system (Equation 5) at the

monkeypox-free equilibrium E0, where α = α∗, leads to

J|(E0 ,α∗) =











−µh 0 −βh −βp

0 − (γ + µh) βh βp

0 γ − (γ0 + µh) 0

0 0 α∗ −µp











.

The computation of the eigenvalues for J|(E0 ,α∗) yields a simple

zero eigenvalue, while the remaining three eigenvalues have a

negative real part. Thus, we obtain the right eigenvector w =

(w1,w2,w3,w4)
T associated with the zero eigenvalue by solving

J|(E0 ,α∗)w = 0. We have

w1 = − (γ + µh) (γ0 + µh) µp,

w2 = (γ0 + µh) µpµh,

w3 = βhγµh,

w4 = ((γ + µh) (γ0 + µh) − γβh) µh.

Similarly, let the left eigenvector v = (v1, v2, v3, v4)
T associated

with the zero eigenvalue. Solving the equation vJ|(E0 ,α∗) = 0

leads to

v1 = 0, v2 = µpγ , v3 = µp (γ + µh) , v4 = βpγ .

As v1 is zero, the derivatives of f1 is not needed. However,

considering the derivatives of f2, f3, and f4, the non-zero second

derivatives can be expressed as

∂2f2

∂x1∂x3
= βh,

∂2f2

∂x1∂x4
= βp,

∂2f4

∂x3∂α∗
= 1.
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The determination of the bifurcation coefficients a and b, where

their signs indicate the direction of bifurcation, is obtained as

a =

n
∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0)

= 2v2w1w3
∂2f2

∂x1∂x3
+ 2v2w1w4

∂2f2

∂x1∂x4

= −2µhµpγβ2
p (γ + µh)

2 (γ0 + µh)
2 < 0

b =

n
∑

k,i,j=1

vkwi
∂2fk

∂xi∂φ
(0, 0)

= v4w3
∂2f4

∂x3∂α∗

= β2
pγ

2µh > 0

Since a is negative and b is positive, this shows that the

system exhibits a forward bifurcation. Hence, the outcome stated

in Theorem 7 is verified.

Theorem 7. At R0 = 1, the system (Equation 3) exhibits a

forward bifurcation.

In the following theorem, we show the global stability of the

endemic equilibrium in system (Equation 3) at E1.

Theorem 8. The global asymptotic stability of the system

(Equation 3) is established for the unique endemic equilibrium E1

when R0 > 1.

Proof: We establish the global stability of the endemic

equilibrium of system (Equation 3) on the fixed set

� =
{

(s, e, i, c) : s ≥ 0, e ≥ 0, i ≥ 0, c ≥ 0, s+ e+ i ≤ 1
}

. It is

important to note that the solutions of the system are bounded and,

as proven in Theorem (5), the endemic equilibrium E1 exhibits

local asymptotic stability. The remaining task is to demonstrate the

absence of periodic solutions in system (Equation 3).

We will employ the Dulac Bendixson criterion to establish

our result. Adopting the notations specified in Theorem 3.6 of

Martcheva’s book [35], by choosing the Dulac function D = 1, we

obtain the following:

∂f1

∂x1
+

∂f2

∂x2
+

∂f3

∂x3
+

∂f4

∂x4
= −µh −

(

βhx3 + βpx4
)

−

(γ + µh) − µp < 0

Thus, there are no periodic orbits in the open first

quadrant. This implies the global asymptotic stability of the

endemic equilibrium.

3.5 Bifurcation diagram and autonomous
simulation

In this section, we visualize the result of Theorems 6 and 7 using

a bifurcation diagram which is given in Figure 2A. To perform the

simulation, we use the parameter values as follows:

µh = 1
79 ,µp =

1
5 ,βp = 7.6977× 10−8, γ0 =

1
7 , γ = 1

14 ,

α = 0.0004,

except βh, which is set to be a bifurcation parameter. The blue

and red curves represent the monkeypox-free equilibrium and

monkeypox endemic equilibrium points, respectively. The solid

and dotted curves represent the stable and unstable equilibrium,

respectively. The point BP is the value of βh such that R0 =

1, where βh = 0.183. It can be seen that when βh < BP,

then R0 < 1, which indicates a global stable of monkeypox-free

equilibrium. As βh increases, R0 also increases. When βh reaches

the BP, then the monkeypox-free equilibrium becomes unstable

which is indicated by a dotted blue curve. At the same time, a stable

monkeypox endemic equilibrium starts to arise and becomes larger

as βh increases. To illustrate the stable equilibrium, we consider

two sample points of βh at P1 and P2, i.e., βh = 0.1 at P1 which

gives us R0 = 0.546. However, at P2, with βh = 0.3, we have

R0 = 1.638. Figure 2B shows all trajectories solutions of i for

four different initial condition move toward the monkeypox-free

equilibrium i∗ = 0, while Figure 2C shows all trajectories tend to

monkeypox endemic equilibrium i∗ = 0.0269.

4 Optimal control problem

4.1 Optimal control model

Here, in this section, we extend our model in Equation (1)

by implementing three different control variables, namely the

self-protection (u1(t)), hospitalization (u2(t)), and disinfectant to

reduce virus in the surface (u3(t)).

1. Self-protection (u1(t)). To reduce human-to-human contact

and prevent the spread of monkeypox (monkeypox), several

measures can be taken. These include social distancing,

practicing good hygiene, and wearing a face mask [27, 37, 38].

We assume that u1(t) is the proportion of humans who are using

self-protection. We assume that the government consistently

promotes a self-awareness campaign to encourage adherence to

self-protection measures within the general population. Hence,

we define u1(t)N as the proportion of people using self-

protection at time t. There are three possible incidences of

contact based on the use of self-protection. First, when both

individuals employ self-protection, it is indicated by (u1N)2.

Second, when only one uses self-protection, then it is indicated

by u1N(1 − u1)N. The last is when both the individuals do

not use self-protection, which is indicated by contact between

(1− u1)N and (1− u1)N. Let us assume that this self-protection

will reduce the chance of transmission rate β by a factor ξ1 if

people who made contact both using self-protection, ξ2 if only

one of them uses self-protection, and no reduction if no one uses

self-protection. Hence, the total of new infections of monkeypox

when there is a proportion of u1 who use self-protection is

given by

3(S, I) = ξ1βhu1(t)S u1(t)I + ξ2βhu1(t)S (1− u1(t))I + ξ2βh

(1− u1(t))S u1(t)I

+ βh(1− u1(t))S (1− u1(t))I,

= (ξ1u
2
1(t)+ 2 ξ2u1(t)(1− u1(t))+ (1− u1(t))

2)βhSI.

For the sake of simplification, we denote k1(u1(t)) = (ξ1u
2
1(t)+

2 ξ2u1(t)(1− u1(t))+ (1− u1(t))
2).
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FIGURE 2

(A) Bifurcation diagram of system (3) in βh − i plane, (B) trajectory of solution at point P1 (when βh = 0.1) for various initial condition tends to

monkeypox free equilibrium, and (C) trajectory of solution at point P2 (when βh = 0.3) for various initial condition tends to monkeypox endemic

equilibrium.

2. Hospitalization (u2(t)). Individuals admitted to the hospital due

to monkeypox are typically provided with supportive measures,

including pain relief, antiviral medications, fluid replacement,

and interventions to address potential complications such as

pneumonia or sepsis. While no specific treatments exclusively

target monkeypox, certain antiviral medications, such as

tecovirimat (TPOXX), brincidofovir, and cidofovir, can be

employed to aid in managing the infection [39–41]. We

assume only a proportion of monkeypox-infected individuals

get hospitalized, with a proportion of u2. These hospitalized

individuals will get proper treatment which will increase their

recovery rate from γ0 to γ1. Hence, the total of recovered

infected individuals is given by

f (I) = γ1u2(t)I + γ0(1− u2(t))I,

= (γ1u2(t)+ (1− u2(t))γ0)I.

For the sake of simplification, let k2(u2(t)) =

(γ1u2(t)+ (1− u2(t)) γ0).

3. Disinfectant (u3(t)). Regularly disinfecting contaminated

surfaces is crucial in controlling the spread of monkeypox,

as it reduces the viability and transmission of the virus from

surfaces to humans. The lessons we have learned from the

COVID-19 pandemic highlight the significance of frequent

surface disinfection to prevent the spread of viruses. Effective

disinfectants, including those proven effective against SARS-

CoV-2, can also be beneficial in combating monkeypox. By

implementing rigorous disinfection protocols, especially for

frequently touched surfaces and in healthcare settings, we can

minimize the risk of surface-mediated transmission of the

disease [42, 43]. We assume that the use of disinfectant will kill

the free viruses on the environment’s surface. We assume this

disinfectant is implemented with a rate of u3(t). Hence, with
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this intervention, the C compartment will reduce not only by

µp but also by u3(t).

With the above explanation, the model in Equation (1) now reads

as follows.

dS

dt
= 3h −

((

k1(u1(t))βhI

N

)

+ βcC

)

S− µhS,

dE

dt
=

((

k1(u1(t))βhI

N

)

+ βcC

)

S− (γ + µh)E,

dI

dt
= γE−

(

k2(u2(t))+ µh

)

I,

dR

dt
= k2(u2(t))I − µhR,

dC

dt
= αI − µpC − u3(t)C,

(6)

where k1(u1(t)) = (ξ1u
2
1(t) + 2 ξ2u1(t)(1 − u1(t)) + (1 − u1(t))

2)

and k2(u2(t)) = (γ1u2(t)+ (1− u2(t))γ0).

Assuming s = S
N , e = E

N , i =
I
N , r = R

N , c = C
N , βp = βcN

and r = 1− s− e− i, then we have system (Equation 6) reduced as

follows.

ds

dt
= (1− s) µh −

(

k1(u1(t))βhi+ βpc
)

s,

de

dt
=
(

k1(u1(t))βhi+ βpc
)

s− (γ + µh) e,

di

dt
= γ e−

(

k2(u2(t))+ µh

)

i,

dc

dt
= αi−

(

µp + u3(t)
)

c.

(7)

Our aim is to reduce the proportion of infected individuals e

and i and also contaminated surfaces with a minimum cost for

intervention ui(t) for i = 1, 2, 3 which represent self-protection,

hospitalization, and disinfectant, respectively. Mathematically, it

can be done by minimizing the following cost function

J (ui(t)) =

∫ tf

0

[

ω1e+ ω2i+ ω3c+ φ1u
2
1 + φ2u

2
2 + φ3u

2
3

]

dt

(8)

where ωi > 0 for i = 1, 2, 3 represent the weight parameter

for e, i, and c, respectively. On the other hand, φi > 0 for i =

1, 2, 3 represent the weight cost for control variable u1(t), u2(t), and

u3(t), respectively.

If we assume that u1(t) = u1, u2(t) = u2, u2(t) = u2,

k1(u1(t)) = k1, and k2(u2(t)) = k2, then the control reproduction

number of system (Equation 7) can be expressed as

Rc =
γ
(

βhk1
(

µp + u3
)

+ βpα
)

(γ + µh)
(

µp + u3
) (

k2 + µh

) .

From the provided expression, it is apparent that

Rc (u1 = 0, u2 = 0, u3 = 0) = R0.

4.2 Existence of solution

Theorem 9. There exists an optimal control function u∗i , i = 1, 2, 3

as well as its corresponding set of solution s∗(t), e∗(t), i∗(t), c∗(t),

thereby J (u∗i ) = min{J (ui)}, i = 1, 2, 3.

Proof: In this proof, we follow the process in Xu et al. [44]. The

theorem’s proof can be demonstrated using the Cesari Theorem

[45], which fulfills the following conditions:

1. The set of controls and state variables is non-empty.

2. The set of controls is both closed and convex.

3. The right-hand side of system (Equation 7) is limited by a linear

function of the state and control variables.

4. The integrand within the objective function exhibits convexity

concerning the input controls u∗i , i = 1, 2, 3.

5. There is a constant C1 > 1, along with positive numbers C2 and

C3, such that:

J (ui(t)) ≥ C2

(

3
∑

i=1

∣

∣ui(t)
∣

∣

2

)C1/2

− C3, i = 1, 2, 3. (9)

Clearly, when the system exhibits uniform Lipschitz continuity,

both set U and the set of solutions for initial values are not empty

[46], thereby fulfilling condition 1. Condition 2 and condition 4

are confirmed based on the given definition. Condition 3 can be

shown to be true by following the discussion below. This argument

is similar to classical arguments that have been presented in Fister

et al. [47].

The system (Equation 7) can be expressed as:

G(x)
.
=

dx(t)

dt
= Ax+ F(x),

where x(t) = [s(t) e(t) i(t) c(t)]T represents the vector of

state variables, while matrix A and the non-linear function F(x) are

defined as follows:

A =











−µh 0 0 0

0 − (γ + µh) 0 0

0 γ −
(

k2 + µh

)

0

0 0 α −
(

µp + u3
)











,

F(x) =











µh − k1βhis− βpcs

k1βhis+ βpcs

0

0











.

As a result of applying the Hölder inequality, F(x) fulfills the

following condition:

∣

∣F(x1)− F(x2)
∣

∣ ≤ P (|s1 − s2| + |e1 − e2|) ,

implies

∣

∣G(x1)− G(x2)
∣

∣ ≤ Q |x1 − x2| , (10)

where Q = max{P, ‖A‖} < ∞.

Hence, the function G(x) exhibits uniform Lipschitz continuity,

fulfilling the assumption of condition 1, and meets the prescribed

bound (Equation 10) specified in the Cesari Theorem. The control

signals are confined within the closed set
[

umin
i , umax

i

]

, and the

objective function’s value in (Equation 8) is bounded in the

compact interval [0, 1]. Consequently, the function G(x) is linear

in ui, i = 1, 2, 3. This satisfies condition 3.

The objective function (Equation 8) meets the condition

(Equation 9), by selecting C1 = 1.5,C2 = min{ 12 τi}, i = 1, 2, 3,

and C3 = 1(0). Thus, condition 5 is established.
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4.3 Optimal control characterization

The application of Pontryagin’s minimum principle [48] leads

us to define the Hamiltonian function as

H (ui(t)) =ω1e+ ω2i+ ω3c+ φ1u
2
1 + φ2u

2
2 + φ3u

2
3 + λ1

[

(1− s) µh −
(

k1βhi+ βpc
)

s
]

+ λ2
[(

k1βhi+ βpc
)

s− (γ + µh) e
]

+ λ3
[

γ e−
(

k2 + µh

)

i
]

+ λ4
[

αi−
(

µp + u3
)

c
]

,

where the costate variable λi and its coefficients correspond to the

right-hand side of the model for the ith state variable.

The adjoint system can be obtained by calculating the partial

derivatives ofH with respect to each of the state variables, resulting

in the following:

∂λ1

∂t
= −

∂H

∂s

= λ1
(

iβhk1 + cβp + µh

)

− λ2
(

iβhk1 + cβp
)

,

∂λ2

∂t
= −

∂H

∂e

= −ω1 + λ2 (γ + µh) − λ3γ ,

∂λ3

∂t
= −

∂H

∂i

= −ω2 + λ1k1βhs− λ2k1βhs+ λ3
(

k2 + µh

)

− λ4α,

∂λ4

∂t
= −

∂H

∂c

= −ω3 + λ1βps− λ2βps+ λ4
(

µp + u3
)

.

with the transversality conditions λi(tf ) = 0, i = 1, 2, 3.

We can determine the optimal solution for u1, u2, and u3
by utilizing the relevant conditions derived from Pontryagin’s

principle. This involves differentiating H with respect to each

control variable and subsequently solving the resulting equations

to obtain the expression for the control variables u1, u2, and u3
as follows:

u∗1 = −
isβh (λ1 − λ2) (ξ2 − 1)

is (λ1 − λ2) (ξ1 − 2ξ2 + 1) βh − φ1
,

u∗2 = −
λ3 (γ0 − γ1) i

2φ2
,

u∗3 =
λ4c

2φ3
.

Thus, the optimal control solution can be precisely

characterized by the given formula:

u†
1(t) = min{max{umin

1 , u∗1}, u
max
1 },

u†
2(t) = min{max{umin

2 , u∗2}, u
max
2 },

u†
3(t) = min{max{umin

3 , u∗3}, u
max
3 }.

5 Numerical experiments

5.1 Sensitivity of the control reproduction
number

An elasticity sensitivity analysis is conducted to identify the key

parameters influencing the transmission and spread of monkeypox.

The sensitivity index is used to assess the relative impact of

parameters on the basic reproduction number Rc and aids in

designing effective control measures [49]. The parameter values are

obtained from Table 1. An index value that is negative (or positive )

signifies an inverse (or direct ) influence of the respective parameter

on Rc. The sensitivity index of R0 with respect to the parameter θ

is expressed as

E Rc
θ =

∂Rc

∂θ
×

θ

Rc
.

Consequently,

E
Rc
βh

=

(

ξ1u
2
1 + 2ξ2u1 (1− u1) + (1− u1)

2
)

βh

(

µp + u3
)

(

µp + u3
)

βh

(

ξ1u
2
1 + 2ξ2u1 (1− u1) + (1− u1)

2
)

+ αβp

,

E
Rc
βp

=
αβp

(

µp + u3
)

βh

(

ξ1u
2
1 + 2ξ2u1 (1− u1) + (1− u1)

2
)

+ αβp

,

E
Rc
α =

αβp
(

µp + u3
)

βh

(

ξ1u
2
1 + 2ξ2u1 (1− u1) + (1− u1)

2
)

+ αβp

,

E
Rc
γ =

µh

γ + µh
,

E
Rc
γ0

= −
(1− u2) γ0

γ1u2 + (1− u2) γ0 + µh
,

E
Rc
µh

=
((1− u2) γ0 + γ1u2 + γ + 2µh) µh

((u2 − 1) γ0 − γ1u2 − µh) (γ + µh)
,

E
Rc
µp

= −
µpαβp

((

µp + u3
) (

1+ (ξ1 − 2ξ2 + 1) u21 + (2ξ2 − 2) u1
)

βh + αβp

) (

µp + u3
) ,

E
Rc
u1

=
βh (2ξ1u1 + 2ξ2 (1− u1) − 2ξ2u1 − 2+ 2u1) u1

(

µp + u3
)

(

µp + u3
)

βh

(

ξ1u
2
1 + 2ξ2u1 (1− u1) + (1− u1)

2
)

+ αβp

,

E
Rc
u2

= −
(γ1 − γ0) u2

γ1u2 + (1− u2) γ0 + µh
,

E
Rc
u3

= −
u3αβp

((

µp + u3
) (

1+ (ξ1 − 2ξ2 + 1) u21 + (2ξ2 − 2) u1
)

βh + αβp

) (

µp + u3
) .

Upon substituting the parameter values provided in Table 1,

u1 = 0.4, u2 = 0.4, u3 = 0.4 for Rc = 0.6570877605 < 1,

and u1 = 0.1, u2 = 0.1, u3 = 0.1 for Rc = 1.503519079 > 1.

In addition, the assumed values for γ1, ξ1, and ξ2 are 1
3 , 0.5, and

0.3, respectively. The corresponding elasticity sensitivity indices are

presented in Table 2. Furthermore, Figure 3 displays a graphical

representation in the form of a bar plot. In the scenario where

Rc < 1, signifying the absence of an outbreak in the disease

spread, Figure 3A illustrates that the most sensitive parameter

influencing Rc is βh, the transmission rate between humans. This

underscores the pivotal role of human-to-human transmission

in preventing an outbreak. On the contrary, when Rc > 1,

indicating the presence of an outbreak, Figure 3B reveals that the

sensitivity of Rc is primarily influenced by two key parameters: γ0,

the recovery rate of the infected individuals, and βh, the human-

to-human transmission rate. This dual sensitivity emphasizes the

importance of recovery dynamics and the rate of transmission

between humans in understanding and mitigating the outbreak

dynamics of monkeypox.

We conclude this sensitivity analysis section by presenting a

two-parameter sensitivity analysis regarding the control parameters

u1, u2, and u3. The results can be observed in Figure 4. In Figure 4A,

we depict how the control reproduction number,Rc, varies with the

self-protection (u1) and hospitalization (u2) control parameters. It

is evident that increasing the values of u1 and u2 can significantly

decrease the magnitude of Rc. The sensitivity of both u1 and

u2 appears to be equally dominant in reducing Rc. The same
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observation holds for Figures 4B, C, where increasing the values of

parameters u1, u2, and u3 can reduce the value of Rc. However, it

is evident from this numerical experiment that the parameter u3 is

not as significant in suppressing the magnitude of Rc, as indicated

in Figures 4B, C. This finding aligns with the results of the elasticity

index analysis shown in Figure 3.

5.2 Optimal control simulations

In this section, we investigate the implications of several

of optimal control strategies for reducing the prevalence of

monkeypox within the human population. Our focus is specifically

directed toward assessing the potential of combined control

measures to stop the disease’s transmission. We aim to provide

TABLE 2 Sensitivity index of the parameters in Rc using parameter values

in Table 1, except u1,u2, and u3.

Parameter Sensitivity index
if Rc < 1

Sensitivity index if
Rc > 1

βh 0.8450240825 0.7434385908

βp 0.1549759173 0.2565614092

γ 14
28,849

14
28,849

γ0 –0.3912424056 –0.7939475830

α 0.1549759173 0.2565614092

µh –0.0006435824771 –0.0006994400511

µp –0.02213941676 –0.1026245637

u1 –0.3935728604 –0.1043722763

u2 –0.3477710271 –0.1176218642

u3 –0.1328365002 –0.1539368449

a demonstrative analysis through numerical simulations of the

monkeypox model, both with and without the incorporation of

optimized control interventions, to examine the influence of the

control variables introduced in the preceding section.

Investigations are conducted into the effects of various

combinations of optimal control strategies represented by u1, u2,

and u3. These strategies are systematically categorized into three

distinct scenarios: single control, double controls, and triple

controls, facilitating a coherent grouping of the seven potential

control strategies that have been simulated in this study. To clarify,

these strategies are defined as follows: Strategy 1 uses only u1,

Strategy 2 uses only u2, Strategy 3 uses only u3, Strategy 4 uses both

u1 and u2, Strategy 5 uses both of u1 and u3, Strategy 6 uses both of

u2 and u3, and Strategy 7 uses of all three controls u1, u2, and u3.

In the following, a comprehensive simulation along with an

analysis and discussion of these seven interventions are presented.

1. Single intervention

The influence of employing Strategy 1 (self-protection

control, u1 only) on the transmission of monkeypox within

the population is illustrated in Figure 5. The implementation

of this optimal control results in a 58.7% reduction of the

infected human population, as evident in Figure 5C after 50

days. Conversely, the susceptible population exhibits a 46.2%

increase, as depicted in Figure 5A. The control profiles that

correspond to Strategy 1 are illustrated in Figure 5E. The self-

protection control profile shows a constant level of 79% until

day 45, at which point it gradually declinesmonotonically until it

reaches its lowest threshold. This pattern suggests an early phase

marked by a strong self-defense mechanism deployment, which

may be suggestive of a critical phase during the management

of the disease. Over time, there is a deliberate decrease in the

intensity of these measures.

Figure 7 (as in Appendix A) illustrates the impact of

implementing Strategy 2 (use of hospitalization intervention,

FIGURE 3

Sensitivity analysis of Rc. (A) Rc < 1. (B) Rc > 1.
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FIGURE 4

Sensitivity analysis of Rc with respect to (A) u1 and u2, (B) u2 and u3, and (C) u1 and u3.

u2 only) on the dissemination and transmission of monkeypox.

The susceptible population experiences a rapid increase with

the application of control compared to the scenario without

control, as depicted in Appendix Figure 7A, with a 34.6%

rise observed after 50 days. When the strategy is used

to its fullest potential, as illustrated in Appendix Figure 7C,

there is a notable reduction in the population of infected

humans, amounting to 51.6%. Appendix Figure 7E analyzes

the control profiles of each control variable in strategy 2.

The control profile for hospitalization reveals a distinctive

curve, commencing at 60%, gradually decreasing until day

10. Following this decline, the curve maintains near-constant

levels at 30% until day 30, indicating a stable phase in

hospitalization measures. Subsequently, there is a further

monotonic decrease reaching zero, indicating a strategic

reduction in hospitalization efforts after an initial period

of intensity.

Figure 8 (as in Appendix A) displays time series plots

showing the effect of applying Strategy 3 (disinfectant

control, u3 alone). Using a singular application of

disinfectant control results in reduced exposure of

susceptible individuals by 48.9% at day 50, as illustrated

in Appendix Figure 8B. Consequently, this leads to a decline

in the overall number of infected individuals within the

population, as demonstrated in Appendix Figure 8C,

with a reduction of 46.9%. It is noted that the decrease

in contaminated surfaces concentration occurs more

rapidly compared to preceding strategies, as represented

in Appendix Figure 8D. Following Appendix Figure 8E, we

present the control profiles associated with this strategy.

A distinct pattern can be seen in the control profile for

disinfectant application on contaminated surfaces, which

first increases in a curve before peaking at 90%. The

curve then starts to progressively decline until it reaches
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FIGURE 5

Simulations applying Strategy 1 to the optimal control model. (A) Susceptible individuals, (B) exposed individuals, (C) infected individuals, (D)

contaminated surfaces, and (E) control profile.

its lowest value. This profile proposes a strategic and

efficient use of disinfectant, stressing a thorough application

at first and a gradual, deliberate reduction in intensity

over time.

2. Combination of two interventions

The impact of employing Strategy 4 (combination

of self-protection and hospitalization controls) on

the dynamics of monkeypox within the population is
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depicted in Appendix Figure 9. A greater number of

susceptible individuals are shielded during the intervention

period, and the size of the infected population notably

decreased after a few days of employing this strategy,

as shown in Appendix Figures 9A, C, respectively.

Specifically, there is a 59.6% increase in susceptible

individuals and a remarkable 79% decrease in the

infected population.

As in Appendix A, Figure 10, we showcase the

simulation of Strategy 5 involving the combination of

the use of self-protection and disinfectant controls on

the population. There is a remarkable reduction in

both the infected human population and contaminated

surfaces when the combined interventions are applied, in

comparison to the scenario without control, as illustrated in

Appendix Figures 10B, D. This results in an 85.5% reduction

in the infected population and a significant 93.1% reduction in

contaminated surfaces.

Figure 11 (see Appendix A) displays the

influence of Strategy 6, optimizing the use of

hospitalization and disinfectant controls on the

dynamics of monkeypox transmission. The impact

of the combined interventions on contaminated

surfaces mirrors the findings in Strategy 5 (see

Appendix Figures 10D, 11D). It is noteworthy, though,

that in this particular intervention, the reduction in the

number of infected individuals occurs more rapidly, as

Appendix Figure 11C illustrates.

3. Combination of three interventions

The effect of Strategy 7 (combination of self-protection,

hospitalization, and disinfectant) on the dynamic behavior

of monkeypox is presented in Figure 12 in Appendix A,

where Appendix Figure 12E specifically shows the plots

displaying the control profiles for all optimal control variables

in this strategy. It is observed that the susceptible and

exposed individuals, in addition to contaminated surfaces,

are in the best results in all strategies as revealed in

Appendix Figures 12A, B, D. On the contrary, this is

not the case for the number of infected individuals (see

Appendix Figure 12C).

5.3 Cost-e�ectiveness analysis

The objective here is to evaluate the most cost-effective

strategy among the mentioned monkeypox control techniques

in a setting with limited resources. To achieve this, we employ

metrics such as the Infection Averted Ratio (IAR) and Average

Cost-Effectiveness Ratio (ACER) [50]. Applying the mathematical

definitions of these economic assessments as outlined in Asamoah

et al. [50], the outcomes of these calculations are presented in

Table 3.

When employing the Infection Averted Ratio, the strategy

exhibiting the largest IAR value is considered the most effective

one [51]. Figure 6A suggests that the strategy yielding the highest

cost-effectiveness is Strategy 7, which involves the combined use of

self-protection, hospitalization, and disinfectant.

TABLE 3 IAR and ACER for all strategies.

Strategy IAR ACER (×109)

Strategy 1 0.2287 205.40

Strategy 2 0.1988 1.4461

Strategy 3 0.1229 1.5735

Strategy 4 0.3681 2.9508

Strategy 5 0.4238 4.1407

Strategy 6 0.2871 1.5486

Strategy 7 0.5075 2.6190

On the other hand, the strategy exhibiting the lowest ACER

ratio is deemed the most cost-effective, in accordance with the

Average Cost-Effectiveness Ratio methodology [51]. Strategy 2, as

can be seen in Figure 6B, emerges as themost cost-effective strategy,

involving the use of hospitalization only.

6 Conclusion

A mathematical model for monkeypox transmission

considering contaminated surfaces in the transmission process

is considered in this article. The model was developed based on

an SEIRC model. Given the comprehensive analysis presented

in this study on the transmission dynamics of monkeypox,

incorporating contaminated surfaces into a deterministic

mathematical model, several key findings emerge. The calculated

basic reproduction number serves as a critical threshold, with a

forward bifurcation occurring when it equals unity, signifying

a pivotal point for disease spread. The absence of a backward

bifurcation underscores the singular significance of the basic

reproduction number as the sole indicator of the model’s

endemicity.

The stability analysis, focusing on disease-free and endemic

equilibria, establishes global stability conditions based on the basic

reproduction number. Notably, the study emphasizes the global

stability of the monkeypox-free equilibriumwhen the reproduction

number is below one, contrasting with the instability observed

when it exceeds this threshold. The existence and global stability

of the endemic equilibrium become evident when the reproduction

number surpasses one.

To deepen insights into control strategies, sensitivity analysis

identifies influential parameters. This leads to the formulation

of an optimal control problem, encompassing self-protection,

hospitalization, and disinfection as key interventions. Existence of

the solution of the optimal control problem is shown analytically.

The Pontryagin Maximum Principle is used to characterize the

optimal control problem, giving us the set of adjoint equations and

showing optimality conditions.

Numerical simulations explore various control scenarios,

demonstrating the efficacy of implemented measures in curbing

monkeypox spread. Cost-effectiveness analyses, employing IAR

and ACER criteria, underscore the superiority of combined

interventions, particularly the synergistic effect of self-protection
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FIGURE 6

(A) IAR plots for all strategies. (B) ACER plots for all strategies except Strategy 1, as its value exceeds the range of the figure’s index.

and disinfection. The IAR results indicate that Strategy 7

is the optimal approach, whereas the ACER metric favors

Strategy 2.

The findings of this research underscore the critical role of

contaminated surfaces in disease transmission, advocating for

targeted control measures. These results align with the conclusions

reached by previous studies [5, 23], further supporting the existing

body of research highlighting the significant contribution of surface

contamination to the spread of infectious diseases. The suggested

optimal control strategies, validated through rigorous analysis

and simulations, provide valuable insights for evidence-based

approaches in mitigating the impact of monkeypox. Additionally,

future research considerations, such as incorporating human

awareness and assessing the impact of animals as potential vectors,

offer avenues for further improvement and a more comprehensive

understanding of the dynamics involved in combatting the spread

of monkeypox.
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