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PM2.5, fine particulate matter with a diameter smaller than 2.5 µm, is associated

with a range of health problems. Monitoring PM2.5 levels at the community scale

is crucial for understanding personal exposure and implementing preventive

measures. While monitoring agencies around the world, such as the U.S.

Environmental Protection Agency (EPA), provide accurate data, the spatial

coverage is limited due to a sparsemonitoring network. Recently, the emergence

of low-cost air quality sensor networks has enabled the availability of air quality

data with higher spatiotemporal resolution, which is more representative of

personal exposure. However, concerns persist regarding the sensitivity, noise,

and reliability of data from these low-cost sensors. In this study, we analyzed

PM2.5 data from both EPA and Purple Air (PA) sensors in Cook County,

Illinois, with two primary goals: (1) understanding the di�erential impact of

meteorological factors on PA and EPA sensor networks and (2) provide a

mathematical approach to quantify the individual impact of correlated predictors

on both short-term and baseline variations in noisy time series data. We used

the Kolmogorov-Zurbenko (KZ) filter to separate the time series into short-

term and baseline components, followed by fitting linear models to quantify the

impact of meteorological predictors, including temperature, relative humidity

(RH), wind speed (WS), and wind direction (WD). Furthermore, we applied the

Lindeman, Merenda, and Gold (LMG) method to these linear models to quantify

the individual contribution of each predictor in the presence of multicollinearity.

Our results show that the PM2.5 data from PA sensors exhibit higher sensitivity to

meteorological factors, particularly wind speed, in the short-term and RH in the

baseline component. This method provides a structured approach for analyzing

noisy sensor data under diverse environmental conditions.
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1 Introduction

Air pollution is one of the most significant public health concerns of our era as

it impacts not only public and individual health but also climate change. PM2.5 is an

air pollutant that is associated with several health risks. Microorganisms in PM2.5 may

directly cause mononuclear inflammation or disrupt microbial balance contributing to

the development and exacerbation of chronic obstructive pulmonary disease (COPD)
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[1, 2]. Recent studies have also shown that PM2.5 exposure is

positively associated with lung cancer, COVID-19 infection, and

mortality [3–7]. Understanding the impacts of air pollution at the

community level can aid in informed decision-making on a larger

scale.

Air monitoring is typically performed using reference

monitors. In the United States, the Environmental Protection

Agency (EPA) manages Air Quality Monitoring Stations (AQMSs)

to monitor regulated pollutants, including ambient PM2.5.

However, these instruments are expensive and require substantial

infrastructure and maintenance. Despite the availability of over

a few thousand AQMSs across the U.S., the spatial coverage

of this monitoring network remains sparse. When aggregating

concentrations, it is often assumed that exposure to air pollution

is uniform within defined areas. Consequently, this assumption

induces exposure measurement errors in epidemiological studies.

These errors often lead to inaccuracies, generally biasing effect

estimates toward the null, thereby diminishing the apparent

strength of associations [8, 9].

For precise exposure assessment and more accurate personal

exposure, a high-resolution air quality monitoring network is

essential. One such network that exists globally is the PurpleAir

(PA) sensor network [10]. The sensing technology used in these

sensors is based on laser light scattering techniques, consisting

of a pair of Plantower PMS 5003 low-cost sensors that measure

ambient aerosol concentrations. The PMS 5003 measures various

particle concentration metrics, including PM1, PM2.5, and PM10

[11]. However, PM sensors employed in low-cost monitors exhibit

biases and calibration dependencies, especially under varying

meteorological conditions. In particular, it has been established that

PA low-cost sensors are sensitive to meteorological parameters,

especially relative humidity (RH) [12, 13]. PA sensors tend to

overestimate PM2.5 concentrations. To address this issue, a U.S.-

wide correction model for PA sensors was recently developed [12].

These models rely solely on RH and temperature as correction

parameters. However, [14] found that both models tend to

underestimate short-term changes in PA PM2.5 data.

The widely used standard, U.S.-wide correction equation for

PA sensor data is linear, with RH as the correction factor due

to its simplicity and interpretability. Recent studies analyzing

the performance of low-cost air quality sensors have noted the

influence of wind speed and direction on PM2.5 concentrations,

particularly during rare events such as haze and wildfires, as

well as in conditions of low and high wind speeds [13, 15, 16].

However, a limited number of studies [15, 17, 18] have focused on

wind speed’s impact on low-cost sensor data, primarily relying on

visual inspection and simulations, without adequately addressing

multicollinearity, an issue caused by correlations between weather

variables like temperature, relative humidity, wind speed, and wind

direction. This creates a gap in understanding how individual

weather variables contribute to PM2.5 concentrations in noisy time

series data, particularly when using a linear model. Therefore,

there is still a need for a technique that can systematically

quantify the impact of individual variables in a linear model while

addressing both short-term and baseline variations in noisy data

and mitigating the effect of multicollinearity.

In this study, we introduce a mathematical technique that

fills this gap by utilizing the Kolmogorov-Zurbenko (KZ) filter,

in combination with the Lindeman, Merenda, and Gold (LMG)

method. The KZ filter decomposes the time series into short-

term and baseline components, enabling clearer identification

of short-term fluctuations and long-term trends. The LMG

method quantifies the relative contribution of each correlated

variable, helping to disentangle the influence of temperature,

relative humidity, wind speed, and wind direction, which are

often correlated in air pollution models. By applying these two

complementary techniques, our approach systematically analyzes

the effects of individual predictors in a linear model, making it

particularly useful for high temporal resolution data. This offers

a clearer understanding of both short-term and baseline PM2.5

variations in noisy datasets and, more importantly, addresses the

challenge of multicollinearity, which has been largely overlooked in

previous studies. The proposed technique is particularly applicable

to datasets from environmental monitoring sensors including

sensors for other pollutants such as Nitrogen Dioxide (NO2),

and Ozone (O3). It helps in quantifying the impact of correlated

predictors on sensor measurements to improve sensor data quality.

For the case study, we selected Cook County, IL, a significant

transportation and industrial hub with major rail and road

networks. We used the KZ filter to analyze short-term and baseline

PM2.5 trends in both networks and employed the LMG method

to quantify the individual influence of meteorological factors. By

combining the KZ filter and the LMG method, we analyzed and

quantified each meteorological factor’s impact on the accuracy

of low-cost sensor PM2.5 measurements in both short-term and

baseline components of the time series. Our findings suggest that

meteorological conditions have a higher impact on both short-term

and baseline PA PM2.5 than the EPA data. Particularly, wind speed

affects the short-term and RH baseline variations of PA PM2.5.

2 Materials and methods

2.1 Data collection and pre-processing

This study uses the publicly available hourly PM2.5 data

consisting of 2 years of EPA and PA measurements from

October 2019 to September 2021 [10, 19]. The hourly averages

were then converted to 24-h averages for this analysis. We

collected meteorological data from five nearby stations of the

National Oceanic and Atmospheric Administration (NOAA), [20]

with a distance of each nearest EPA, PA sensor, and NOAA

station. The meteorological variables include temperature, relative

humidity (RH), wind speed (WS), and wind direction (WD). The

information on these EPA, PA sampling can be extracted from

Figure 1 and from supplementary of [14], the information on

NOAA sites can be extracted from Supplementary Table S1. For

consistency and validation of results with [12, 14], the PM2.5 data

range was set to be [1,70] µg/m3. Furthermore, the monitoring

locations of EPA and PA are plotted on themap with the population

density, and housing units around the sampling locations in

Figure 1. The total population, housing units, and median housing

income were calculated in the census blocks, as defined by the U.S.

Census Bureau [38]. The PA sensors are located in urban areas with

higher populations and incomes.
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FIGURE 1

EPA and PurpleAir sampling locations with total population, total housing units, and median household income in Cook County IL.

2.2 Correlation analysis

The Pearson correlation coefficient was calculated to quantify

the linear association between pairs of EPA, PA, and NOAA sensors

using

r =
∑

(xi − x̄)(yi − ȳ)
√

∑

(xi − x̄)2
∑

(yi − ȳ)2
(1)

where xi and yi are the individual sample points, and x̄ and ȳ

are the means of the variables x and y, respectively. In the context of

PM2.5 measurements and meteorological data, xi and yi represent

data from either PM2.5 or meteorological variables.

2.3 Measurement error

To assess the significance of measurement errors between EPA

and PA, we conducted Bland–Altman analysis [21]. Additionally,

we performed Levene’s test of equality of variances to determine

whether the variability on the observed data from both EPA and PA

sensors was statistically different [22].

2.4 Kolmogorov-Zurbenko (KZ) filter

Recognizing that the correction models using only RH and

temperature do not uniformly account for the contribution of all

sources to the PA data, particularly at the short-term component

of PM2.5 [14], we plan to investigate the source components

impacting both short-term and baseline components of PM2.5. To

further examine this, we have separated the data into short-term

and baseline components. The short-term component includes

high-frequency data that is influenced by local anthropogenic

sources such as traffic and short-term weather events. The baseline

component, on the other hand, includes low-frequency data that

are related to seasonal changes in weather, and changes in emission

rates over time [23–25]. We ignored the medium-term component

of both EPA and PA from the analysis as the medium-term

component of raw PA data matches with raw EPA data.

The PM2.5 time series data are separated into short-term and

baseline components using the Kolmogorov-Zurbenko (KZ) filter

technique [14, 23]. The KZ filter is a low-pass filter produced

through repeated iterations of a moving average with parameters

moving window (m), and iterations (p) also known as KZm,p. For

details on the KZ filter formulation for air sensor data, please refer

to [14].

The baseline part of PM2.5(t) time series denoted as PM2.5,B(t)

and baseline part of meteorological variables’ time series Mi(t)

denoted as MBi are obtained by

PM2.5,B(t) = KZ15,3PM2.5(t) (2)

MBi(t) = KZ15,3Mi(t) (3)

The short-term part of PM2.5(t) time series denoted as

PM2.5,S(t) and short-term part of meteorological time series Mi(t)
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denoted as MSi(t) are obtained by

PM2.5,S(t) = PM2.5(t)− KZ15,3PM2.5(t) (4)

MSi(t) = Mi(t)− KZ15,3Mi(t) (5)

2.5 Relative contributions (%) of temporal
components

By separating the data into short-term and baseline

components, we can analyze and examine how each component

contributes to the overall variance of the time series data for both

EPA and PA PM2.5 [26]. The relative contributions of temporal

components are obtained as follows:

Relative contribution (%) =
Var(i(t))

Var(PM2.5(t))
· 100 (6)

where Var(i(t)) is variance of short-term, or baseline component,

and Var(PM2.5(t)) is variance of total PM2.5 time series.

2.6 MLR models: PM2.5 contributions from
meteorology

The short-term and baseline components of PM2.5 can

be combined with short-term and baseline components of

meteorology to quantify the effect of meteorology and relatively

estimate the effect of anthropogenic activities on PM2.5 data [27–

29]. The PM2.5 data can be approximated as short-term and

baseline PM2.5 measurements as

PM2.5(t) = PM2.5,B(t)+ PM2.5,S(t)+ ǫ(t), (7)

The multiple linear regression (MLR) models for short-term

and baseline components of PM2.5 with short-term and baseline

meteorology and anthropogenic activities can be written as

PM2.5(t) = PM2.5,S(t)+ PM2.5,B(t) =
[

a0 +
∑4

i=1 aiMSi(t)
]

+
[

b0 +
∑4

i=1 biMBi(t)
]

+ (ǫB(t)+ ǫS(t)), (8)

where,

PM2.5,S(t) =
[

a0 +
4

∑

i=1

aiMSi(t)
]

+ ǫS(t), (9)

PM2.5,B(t) =
[

b0 +
4

∑

i=1

biMBi(t)
]

+ ǫB(t). (10)

MSi(t) and MBi(t) are time series of the ith meteorological

variable for short-term and baseline components, respectively, and

a0, b0, ai, and bi are regression model parameters to be estimated

using a step-wise algorithm in MLR model. The residuals ǫS(t),

ǫB(t) represent changes in PM2.5 concentrations that cannot be

attributed to meteorological variables present in the model and

are mainly due to anthropological activities in the short-term

and baseline components, respectively [27, 28]. To estimate the

impact of meteorology and anthropogenic impact on both short-

term and baseline PM2.5(t), we built models considering PM2.5(t)

data as the response variable and meteorological data from nearby

NOAA sensor as the predictor variable for each EPA sensor and

PA sensor. We used the variance inflation factor (VIF) to assess the

multicollinearity between the explanatory variables [30].

2.7 Relative importance of predictors
(LMG)

MLR models can only quantify the overall impact of

meteorology on PM2.5 measurements of both EPA and PA networks

in short-term and baseline components. However, the question of

which predictor most influences the data of both networks has

no trivial answer due to the presence of correlated predictors.

Correlation analysis is often used to examine the relationship

between two variables. However, when there are many predictors,

correlation analysis is not the best method to use. Here, we use

the LMGmeasure proposed by Lindeman, Merenda, and Gold [31]

and popularized by [32] to determine the relative importance of

predictors.

The LMG measure uses sequential R2, but it accounts for the

dependence on orderings by averaging over all possible orderings.

According to [33, 34], the variance decomposition for a linear

model with k predictors can be defined as

PM2.5(t) = β0 +
4

∑

i=1

βiMi(t)+ ǫ(t), (11)

and

V(PM2.5(t)) =
4

∑

j=1

β2
j ν

2
j +2

3
∑

j=1

4
∑

k=j+1

βjβk
√

νjνkρjk+σ 2(t), (12)

where νj and νk are variances of each predictorMi(t), and ρjk is the

covariance of predictor j = 1, 2, 3, 4 with k = j+ 1, ..., 4.

The R2 for a model with predictors in set S is given as

R2(S) =
Model sum of square

Total sum of square
(13)

The additional R2 adding set X to a model with the predictors in set

S is given by

seqR2(X|S) = R2(X ∪ S)− R2(S), (14)

where S and X are disjoint sets of predictors.

seqR2(xk|Sk(r)) = R2(xk ∪ Sk(r))− R2(Sk(r)),

(15)

where r denotes permutations, r = 1, 2, ..., p!; seqR2(xk|r) denotes
the sequential sum of squares for the predictors xk in the ordering

of the predictors in the r-th permutation.

The LMG measure for the k-th predictor xk based on sequential
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sums of squares from all possible (p!) orderings for p predictors is

given by

LMG(xk) =
1

p!

p!
∑

r=1

(

seqR2(xk|r)
)

(16)

For example, for three explanatory variables (p=4), there are

24 different orderings (4!) and six different estimations (sequential

sum of squares) for each explanatory variable. The relative

importance of each explanatory variable is the mean of the six

estimations. We applied the LMGmeasure, defined in Equation 16

on short-term and baseline components of PM2.5 in Equation 9 and

Equation 10 to get the relative contribution of each meteorological

predictor on short-term and baseline PM2.5, respectively.

2.8 Steps to apply this method

Step 1:

Apply the KZ filter (Equation 2 to Equation 5) to decompose

the data into short-term and baseline components of the time

series.

Step 2:

Quantify the relative importance (Equation 6) of short-term

and baseline components; i.e., the variance of each component out

of the total variance of the time series.

Step 3:

Use the LMG method (Equation 16) to quantify the impact

of each correlated predictor on the short-term and baseline

components of the time series.

2.9 Software

For the entire workflow (reading and organizing data,

descriptive analysis, and data analyses), we used the R software

(R: A Language and Environment for Statistical Computing)

(version 4.2.3), along with the following libraries in our coding:

readxl, dplyr, tidyr, ggplot2, car, qqplotr, kza, stats, relaimpo.

The “relaimpo” package was developed by [35], which can

calculate the relative importance of predictor variables in

multiple regression using the LMG measure and bootstrap

confidence intervals.

3 Results

3.1 Data summary and correlation analysis

This analysis utilizes PM2.5 time series data from 5 EPA, 9 PA

sensors, and 5 NOAA monitors located in Cook County, IL, from

October 2019 to September 2021. The distribution of PM2.5 data

at each of the EPA and PA sensors over the entire analysis period

is presented in Table 1. The overall distribution of PA sensors

is broader compared to EPA monitors with higher mean PM2.5

concentrations. Furthermore, to understand the overall linear

relationship of EPA with PA, we applied the Pearson correlation

Equation 1 to each pair of EPA and PA sensors. The correlation

analysis was conducted for all possible combinations: PA with PA,

EPA with EPA, and PA with EPA. The results of the correlation

analysis are presented in Table 2. The PA sensor network shows

correlations within the PA network with correlation coefficients

ranging from 0.81 to 0.90 and with EPA coefficients ranging from

0.59 to 0.72. The correlation coefficient within the EPA network

ranges from 0.51 to 0.67. We calculated the correlation coefficient

of meteorological variables, as shown in Supplementary Table 2.

Relative humidity (RH), temperature, wind speed (WS), and wind

direction (WD) are all correlated with each other. Specifically,

T and RH are negatively correlated, and WS is also negatively

correlated with RH and T.

3.2 Measurement error

To assess the significance of measurement errors between

EPA and PA, we conducted Bland–Altman analysis as shown in

Supplementary Figure 1. The Bland–Altman analysis on EPA E2

and PA P6, the closest and comparable sensors pair, shows that

measurements of E2 tend to report values that are lower than those

reported by P6 and have significant measurement error. This is also

reported in many earlier studies that PA sensors overestimate the

measurements [12, 14]. Additionally, we applied Levene’s test of

equality of variances to assess whether the variances of the data

from the EPA and PA sensors were statistically different. The results

showed a p < 0.001 and an F-test value of 225.43. This indicates

that the measurement variances from the EPA (E2) and PA (P6)

sensors differ significantly. The difference in variances suggests that

the measurements are inconsistent between the two sensor types.

3.3 Kolmogorov-Zurbenko (KZ) filter

To investigate the source components influencing the short-

term and baseline fluctuations of low-cost sensor PM2.5 data and to

compare it with PM2.5 data from reference monitors of EPA, we use

the KZ filtering approach to separate the short-term and baseline

components of the PM2.5 time series at each selected EPA monitor

and PA sensor, as well as meteorological variables including RH,

temperature, WS, andWD from a nearby NOAA station, following

Equations 2–5. The summary of KZ filtered short-term as baseline

components is presented in Tables 3, 4. For illustration of temporal

variations, one combination of EPA and PA datasets (E2 and nearby

PA sensor P6), the short-term and baseline components are shown

in Figure 2. The total PM2.5 time series in Figure 2A for EPA sensor

E2 has a range from 0 to 30µg/m3, whereas raw data from PA

sensor P6 have an almost double range from 0 to 60µg/m3, which is

also observed in the standard deviation of PA sensor data compared

to EPA. Similarly, after decomposing PM2.5 time series into short-

term components as shown in Figure 2B and Table 3, the standard

deviation is double in PA data compared to EPA. In the baseline

component of PM2.5 in Figure 2C, Table 4, the standard deviations

in both datasets are similar, suggesting that the data have more

variation in the short-term for PA sensors compared to EPA.
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TABLE 1 Descriptive statistics of PM2.5 data from EPA and PA sensors.

ID E1 E2 E3 E4 E5 P1 P2 P3 P4 P5 P6 P7 P8 P9

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Q1 5.3 5.1 6.3 4.5 4.5 4.5 5.8 4.8 4.2 5.5 5.6 3.9 4.4 4.5

Median 7.9 8.3 9.9 8.5 7.7 9.8 11.6 10.7 8.8 11.1 11.1 8.5 9.7 9.6

Mean 8.8 9.1 11.0 9.7 8.8 12.6 14.3 13.5 12.0 14.1 14.6 11.0 12.2 12.4

Q3 11.2 12.2 14.6 3.4 11.8 17.8 20.6 19.3 16.9 20.1 21.1 15.6 17.3 17.5

Maximum 68.5 65.2 63.8 68.1 65.2 66.5 68.0 69.6 69.7 66.7 70.0 67.5 68.9 67.5

Std.

Deviation

5.2 5.8 6.7 7.4 6.0 10.5 10.8 11.2 10.4 11.0 11.7 9.3 10.3 10.3

NA (%) 16.3 6.4 4.7 13.7 12.3 2.3 13.5 9.3 3.4 9.2 13.8 2.4 2.0 <1

TABLE 2 Correlation matrix of PM2.5 data from EPA and PA sensors.

ID E1 E2 E3 E4 E5 P1 P2 P3 P4 P5 P6 P7 P8 P9

E1 1

E2 0.67 1

E3 0.65 0.63 1

E4 0.56 0.55 0.57 1

E5 0.55 0.62 0.51 0.56 1

P1 0.74 0.72 0.70 0.67 0.65 1

P2 0.65 0.69 0.66 0.63 0.63 0.86 1

P3 0.64 0.65 0.65 0.64 0.60 0.87 0.92 1

P4 0.68 0.65 0.70 0.67 0.62 0.88 0.90 0.90 1

P5 0.70 0.66 0.68 0.64 0.59 0.92 0.82 0.85 0.86 1

P6 0.71 0.68 0.70 0.61 0.60 0.89 0.85 0.84 0.89 0.87 1

P7 0.63 0.66 0.65 0.64 0.65 0.87 0.89 0.90 0.88 0.83 0.83 1

P8 0.65 0.70 0.65 0.68 0.61 0.87 0.86 0.87 0.83 0.84 0.81 0.88 1

P9 0.65 0.66 0.67 0.64 0.63 0.87 0.96 0.93 0.92 0.84 0.87 0.90 0.86 1

For all correlation coefficient p-value < 0.001.

TABLE 3 Descriptive statistics of short-term of PM2.5 data from EPA and PA sensors.

ID E1 E2 E3 E4 E5 P1 P2 P3 P4 P5 P6 P7 P8 P9

Minimum -9.3 -8.0 -10.5 -9.4 -10.0 -15.5 -15.7 -16.1 -16.8 -17.2 -18.7 -13.6 -15.0 -15.8

Q1 -2.4 -2.7 -2.8 -2.9 -2.6 -5.4 -5.8 -5.9 -4.7 -5.4 -5.4 -5.4 -5.6 -4.7

Median -0.5 -0.4 -0.5 -0.7 -0.4 -1.1 -1.1 -1.2 -1.0 -0.8 -1.1 -1.0 -1.1 -1.0

Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Q3 1.7 2.1 2.3 2.4 2.0 4.4 4.9 5.0 4.3 5.1 4.9 4.4 4.2 4.7

Maximum 55.3 17.7 16.0 31.7 27.1 30.3 26.1 28.1 25.1 21.8 36.2 24.2 22.7 22.0

Std.

Deviation

4.3 3.7 4.2 4.3 3.6 7.4 6.0 7.7 6.8 7.56 8.2 6.6 7.1 6.9

3.4 Relative contributions (%) of temporal
components

Our analysis of the time series decomposition revealed

differences in the short-term and baseline components in both

networks. By measuring the variation in each temporal component,

we quantified the proportion of variation in each component

relative to the total variation of the EPA and PA PM2.5 time series

data using Equation 6. The results of the relative contributions of

short-term and baseline components to total data are presented
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TABLE 4 Descriptive statistics of baseline of PM2.5 data from EPA and PA sensors.

ID E1 E2 E3 E4 E5 P1 P2 P3 P4 P5 P6 P7 P8 P9

Minimum 0.2 3.3 6.8 5.7 4.2 6.5 9.6 8.1 4.9 9.1 6.5 7.7 7.5 7.7

Q1 7.3 7.1 9.3 7.9 6.6 9.3 11.4 10.1 7.7 10.5 10.6 9.5 9.6 9.1

Median 8.5 9.3 10.7 9.2 8.6 11.8 12.6 12.0 10.7 12.7 13.5 10.9 11.0 11.1

Mean 8.4 9.1 11.0 9.6 8.8 12.5 13.5 12.7 10.9 13.3 14.5 11.0 11.5 11.7

Q3 9.9 10.2 12.6 10.8 10.4 15.3 15.2 15.1 13.3 15.6 17.8 12.2 13.1 13.7

Maximum 14.7 16.2 16.9 16.4 20.3 23.6 19.9 21.1 19.4 21.4 29.0 16.1 17.8 18.4

Std.

Deviation

2.6 2.3 2.1 2.2 2.8 3.8 2.6 3.2 3.8 3.3 2.1 2.1 4.5 3.0

FIGURE 2

(a) PM2.5 time series data from EPA sensor E2, and PA sensor P6. (b) KZ filtered short-term component for the two datasets. (c) KZ filtered baseline

component for the two datasets.

in Figure 3A, Supplementary Table S3A. In Figure 3A, it can be

observed that both PA and EPA PM2.5 data have a greater

relative contribution in the short-term component to the total

variance, which is approximately 60–86%. However, comparing

the two networks, the PA sensors have a relatively higher

contribution than EPA to short-term variations. The relative

contribution of the short-term component to total variance is

greater in PA data, with a narrow distribution, indicating that

the short-term component variance is largely uniform in the

PA network and may be due to the capture of a local source

that is independent of the sensor’s location, as observed in

correlations within the PA network in Table 2. On the other

hand, the EPA sensors exhibit a broader variation in their short-

term component, indicating that they capture local sources based

on their location. The relative contribution of baseline to total

variance is approximately 8–37%, but when comparing the two

networks, the relative contribution of EPA sensors is more than

that of PA sensors in the baseline component. The higher relative

contribution of EPA to the baseline could be due to the impacts of

meteorology as meteorology contributes to baseline trends of air

quality data.

3.5 MLR models: PM2.5 contributions from
meteorology

To understand and quantify the effect of meteorological

conditions on the PM2.5 data from PA and to compare with the data

fromEPA, we usedMLRmodels with the stepwise forward selection

algorithm. We included short-term and baseline temperature, RH,

WS, and WD as meteorological predictors and short-term and

baseline PM2.5 data as response variables in our analysis. In the

final model, only variables that were significant according to the

stepwise forward selection algorithmwere included. This technique

involves adding variables one at a time based on their p-value

and determines the optimal set of parameters for the model. The

model performance was compared using the R2 values. From the
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FIGURE 3

(a) Relative contributions of PM2.5 (b) R
2 of MLR models of PM2.5 with meteorology, both (a, b) in short-term and baseline components of EPA and PA.

previous section, we noted that the relative contributions of short-

term components were higher in PA sensors as shown in Figure 3A

but looking at MLR models, meteorology has a greater impact on

PA sensors’ short-term variations as observed in Figure 3B. This

implies that higher variations were indeed due to weather in the

short-term component of low-cost PA sensors.

In Figure 3B, it can be observed that the short-term component

of the PA sensors has R2 ranging from 0.33 to 0.42. On

average, this is 11% more R2 than EPA sensors, as seen in

Supplementary Table S3A. Likewise, the baseline component of PA

sensors in Figure 3B, Supplementary S3A has higher R2 ranging

from 0.23 to 0.67. Despite having lesser relative contributions in

the baseline component, it still has an average of 18% more R2 than

EPA sensors. This shows that weather is a higher contributor to the

variance of PM2.5 in both short-term and baseline components in

low-cost sensors compared to reference monitors. The short-term

and baseline components of all PA sensor PM2.5 data have higherR
2

with meteorological parameters, indicating that weather influences

PA sensors but is less responsive to anthropogenic emissions from

traffic and other sources compared to EPA reference monitors.

We also used the variance inflation factor (VIF) to assess

multicollinearity among the explanatory variables, as a complement

to the LMG method. The VIF analysis indicates that when the

model is fitted to the PM2.5 time series without separating it

into short-term and baseline components, all weather variables,

including temperature, relative humidity (RH), wind speed (WS),

and wind direction (WD), have VIF values below 2. However,

after applying the KZ filter, the baseline component models show

VIF values of T greater than 4 and WS greater than 2, while RH

and WD remain below 2. In contrast, the short-term component

has VIF values below 2 for all weather variables, suggesting that

multicollinearity is present in the baseline component.

3.6 Relative importance of predictors
(LMG)

We utilized multiple linear regression models to determine

that low-cost sensors are more sensitive to weather parameters

compared to reference monitors, in both the short-term and

baseline components. However, it is not possible to determine

the individual influence of each meteorological predictor using

MLR analysis due to their correlation with each other. Therefore,

we used the LMG measure to determine the relative importance

of each predictor in both short-term and baseline PM2.5. The

output of LMG(xk) is partial R2 for the variable that adds up

to 1 for all predictors xk, for k = 1, 2, ...., n. For our study

case, k = 1, 2, 3, 4, for RH, temperature, WS, and WD. The

LMG(xk) measure was calculated using Equation 16, applied on

short-term (Equation 9) and baseline (Equation 10) PM2.5, and

the results of LMG(xk) measure for PM2.5 time series, short-

term, and baseline components of PM2.5 are summarized and

presented in Tables 5–7, Figures 4A, 4B, respectively. Based on

the LMG measure, we found that wind speed (WS) is the most

influential factor for both PA and EPA time series before the

data are broken down into short-term and baseline components.

However, if we exclude WS, relative humidity (RH) becomes the

most influential factor. Once the time series is broken down into

components, WS emerges as the most influential factor in almost

half of the PA sensors (P1, P4, P5, and P6) in the short-term

components, while the temperature is the most important factor

in the short-term component of all EPA sensors except E1. In

the baseline, RH consistently remains an important factor for

PA sensors, except for P6 and P8. There are varying responses

of meteorological factors in the baseline and short-term of

both datasets.
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TABLE 5 Relative importance, LMG (R2) of predictors in PM2.5 time series.

Variable/ ID Relative humidity Temperature Wind speed Wind direction Total R2

E1 1.23 0.29 5.63 3.38 10.53

E2 1.24 6.35 14.10 1.50 23.19

E3 2.54 0.41 7.88 0.08 10.91

E4 1.00 0.12 5.63 0.06 6.81

E5 3.13 2.00 9.89 0.40 15.42

P1 5.03 0.36 12.78 0.67 18.84

P2 6.56 0.22 12.94 0.56 20.28

P3 7.59 0.35 7.56 0.23 15.73

P4 5.55 4.59 9.11 0.20 19.45

P5 7.97 0.69 11.49 0.97 21.12

P6 7.12 2.97 13.51 0.19 23.79

P7 5.62 0.33 10.11 0.43 16.49

P8 3.66 1.62 10.62 0.68 16.58

P9 7.72 0.85 8.20 0.26 17.03

TABLE 6 Relative importance, LMG (R2) of predictors in the short-term component of PM2.5.

Variable/ ID Relative humidity Temperature Wind speed Wind direction Total R2

E1 2.26 4.31 7.25 5.04 18.86

E2 3.25 14.63 13.41 0.67 31.96

E3 0.25 10.9 10.34 2.07 23.56

E4 0.14 12.83 8.05 0.5 21.52

E5 2.92 19.6 11.31 1.35 35.18

P1 5.12 11.59 15.31 2.52 34.54

P2 8.35 19.8 12.12 0.68 40.95

P3 8.35 19.8 12.12 0.62 40.89

P4 5.44 8.61 16.42 1.09 31.56

P5 9.94 8.90 16.94 2.81 38.59

P6 6.47 7.97 17.52 2.03 33.99

P7 9.73 17.16 11.17 1.43 39.49

P8 8.77 15.98 12.42 1.70 38.87

P9 9.94 14.87 10.83 0.63 36.27

4 Discussion

Our study introduces a mathematical methodology for

analyzing sensor data with high spatiotemporal resolution. We

analyzed 2 years of PM2.5 monitoring data from EPA reference

monitors and PA low-cost air sensors. Comparing raw PA PM2.5

data to EPA monitors’ PM2.5 data, it is evident that the EPA

monitors’ data are consistently lower than the EPA standard limit

of PM2.5 set by the EPA (9 µg/m3. However, the mean values from

raw PA sensors exceed this recommended standard limit. This is

because PA data tend to overestimate PM2.5 and require calibration

use in health analysis and policy decisions.

Correlation analysis showed that within the PA network

correlations were higher than those within the EPA network,

regardless of sensors locations. Moreover, the PA sensors

exhibit strong correlations with EPA sensors across various

locations. It should be noted that the high observations in

the PA network may be adjusted after calibrating the PA data

using weather parameters such as relative humidity (RH) and

temperature, as discussed in a previous study [12, 14]. However,

the correction models built using RH and temperature can

adjust the baseline, but the short-term component becomes

underestimated after corrections. Short-term changes in air

quality data are typically due to local temporal sources such as
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TABLE 7 Relative importance, LMG (R2) of predictors in the baseline component of PM2.5.

Variable/ID Relative humidity Temperature Wind speed Wind direction Total R2

E1 1.71 1.09 5.39 2.72 10.91

E2 0.72 5.56 21.96 14.18 42.42

E3 7.85 16.29 10.03 3.49 37.66

E4 4.65 4.66 1.69 2.94 13.94

E5 5.21 2.41 7.95 0.40 15.97

P1 12.63 12.15 8.40 2.50 35.68

P2 16.93 3.66 5.29 5.39 31.27

P3 16.40 6.40 2.46 8.35 33.61

P4 17.32 17.21 3.72 12.06 50.31

P5 31.30 15.46 6.96 3.96 57.68

P6 18.74 29.69 7.05 11.43 66.91

P7 21.83 9.83 6.78 2.21 40.65

P8 5.42 2.76 11.83 0.5 20.51

P9 17.49 9.29 3.47 8.9 39.15

FIGURE 4

Relative importance (LMG) of individual meteorological variables for PA sensor P6 in (a) short-term and (b) baseline components of PM2.5 data.

traffic and short-term weather variations, as described by [23–

25].

Our study also examined the impact of WS and WD on

short-term PA PM2.5 levels, a topic that has not been thoroughly

investigated, with only a few studies, including [15], addressing

this issue. It has not been investigated which meteorological

variable contributes more to the variability in PA data, both

in short-term and baseline components, compared to the EPA.

This comparison is important due to the correlated nature of

meteorological variables.

We also calculated the relative contribution of short-term and

baseline components of PM2.5 out of the time series of PM2.5. The

PA sensors located in urban areas near the lake, specifically P2, P3,

P7, P8, and P9, have a higher relative contribution in the short-

term component compared to other PA sensors. This increased

contribution of low-cost sensors to the total variance at most

locations, particularly in highly populated areas near the lake, can

be attributed to weather patterns. It is worth noting that this pattern

was not observed by [14] in the power spectral density (PSD)

analysis of high-frequency signals (4, 8, 12, and 24 h) in short-

term, which are primarily related to anthropogenic activities. It

has also been observed that the performance of low-cost sensors in

capturing particle size and optical properties can be influenced by

weather conditions at certain locations, leading to higher variations

in data readings.

We further quantify the impact of meteorological parameters

using linear regression models in both short-term and baseline

components. The PA sensor PM2.5 has higher R2 values in

both short-term and baseline components. However, with linear

regression models, it is not clear which meteorological variable is

impacting the data, as all variables, specifically temperature, RH,

WS, and WD, are correlated. The third step in our method is to

apply the LMG method on KZ-filtered short-term and baseline

PM2.5. According to the LMG measure, WS is the most influential

factor for both PA and EPA time series before the decomposition of

the data into short-term and baseline components. Additionally, if

we remove WS, RH becomes the most influential factor, as found

by earlier studies [12]. However, after decomposing the time series
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into components, WS is the most influential factor in most of the

PA sensors in the short-term components, whereas temperature is

the most important factor in the short-term component of most

EPA sensors. In the baseline, RH is a consistently important factor

for PA sensors aligning with findings of earlier studies [12].

It is worth noting that meteorological factors have varying

effects on both networks. RH is the only useful factor for

baseline (low-frequency) components but not for short-term (high-

frequency) components. However, previous studies by [12, 13, 36]

have used only RH for PA corrections in both components, i.e., the

time series of PM2.5, even though sensor performance depends on

the location. The reason for the impact of wind speed on the PA

sensor may be due to its inlet orientation being at a 90◦ angle to the

wind, which causes upward flow and the low inlet velocity through

the sampling holes can result in significant losses of larger particles

[15, 37].

This study has a few limitations. One of them is the limited

number of co-located sensors, which are important for comparing

responses from both reference monitors and low-cost sensors.

Another limitation is the assumption of linearity in the data and

keeping the range of PM2.5 data from 0 to 70µg/m3. This was done

to ensure a fair comparison to standard approaches for air sensor

data corrections. However, this methodmight not work beyond this

data range due to non-linearity in the data. The next step could be

testing this method on a wider range of sensor data across the US

and also without restricting the PM2.5 data range.

5 Conclusion

In this study, we propose a mathematical technique to

analyze air sensor data, specifically identifying the key correlated

environmental factors impacting the data across different temporal

components. These components include short-term changes driven

by anthropogenic activities and weather variations, as well as

baseline changes resulting from seasonal shifts in weather and

meteorology. By employing time series decomposition using the

Kolmogorov–Zurbenko (KZ) filter and assessing each predictor’s

impact with the Lindeman, Merenda, and Gold (LMG) method, we

effectively analyzed PM2.5 data from both EPA and PA networks.

This analysis suggests that PA sensors are more sensitive to

meteorological conditions, particularly wind speed in the short-

term and relative humidity (RH) in the baseline components.

Previous studies have typically only considered RH for correction

models. Our technique provides a valuable tool for analyzing air

sensor data and developing robust, location-specific calibration

strategies. Future research could extend this method to additional

sensors in various geographical locations as more air sensors are

deployed globally.
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