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Economic growth is essential for regional economic performance, with 
gross regional domestic product (GRDP) being a key indicator of economic 
development over time. In this research case, the GRDP data of various 
provinces on Java Island from 2010 to 2023 will be used as the variable being 
studied. The data obtained from the GRDP variable contain spatial and temporal 
information, requiring an appropriate model to forecast spatiotemporal 
data, namely, the Generalized Space–Time Autoregressive (GSTAR) model. 
However, in estimating the parameters, the GSTAR model is unable to detect 
correlated residuals between equations, resulting in inefficient estimators. 
Therefore, an appropriate estimation method is needed to address correlated 
residuals within the seemingly unrelated regression (SUR) framework, namely, 
the Generalized Least Square (GLS) estimation method. The GSTAR-SUR 
method is applied to forecast the economic growth rate of Java Island. The 
optimal model, GSTAR-SUR (11)-I(1) with inverse distance location weights, 
demonstrates high accuracy with a mean absolute percentage error (MAPE) 
of 8.451%. Forecasts for Banten, DKI Jakarta, West Java, Central Java, East 
Java, and DI Yogyakarta predict consistent monthly GRDP increases through 
December 2024.
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1 Introduction

Economic development takes center stage in the development of many developing 
nations, including Indonesia. The aim of economic development is to stimulate various 
renewals in other aspects of life (1). Siagian (2) points out that the field of economics, 
especially in economic development, is a primary focus faced by developing countries. 
According to Badan Pusat Statistika (BPS) (3), the Central Statistics Agency, economic 
development is an effort with the goal of improving the living standards of the population. 
Success in the economic sector benefits the welfare of society. Therefore, economic growth is 
crucial in evaluating the economic performance of a region. One of the indicators used to 
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assess the level of economic development in a specific period is the 
gross regional domestic product (GRDP).

Java Island is the island with the highest average GRDP in 
Indonesia. It comprises six provinces, namely, Banten, DKI Jakarta, 
West Java, Central Java, East Java, and DI Yogyakarta. This research 
focuses on these six provinces because they contribute significantly to 
the GRDP of Java Island, making its GRDP the highest among all the 
islands in economic development. The GRDP data fall under time 
series data, which can be analyzed using time series analysis methods. 
Time series consists of a sequence of observational data from a fixed 
source occurring at consecutive time indices with a constant time 
interval (4). The time series analysis can be used to forecast data for 
several future periods, making it invaluable for planning the times to 
come. Given the multitude of variables under examination, time series 
data can be categorized into two types, namely, univariate time series 
and multivariate time series. Univariate time series involves the 
analysis of a single variable, while multivariate time series entails the 
analysis of multiple variables in the research due to their presumed 
interdependencies (5).

The movement of the population to a specific region also plays a 
significant role in influencing the economic growth in that area. 
Consequently, there exists an interconnection between regions, 
known as spatial correlation, which affects the GRDP of the leading 
sector. The development of a model that takes into account spatial 
effects in the research on the leading sector of GRDP has also been 
undertaken by Nofitasari et al. (6) in their analysis of the industrial 
sector GRDP using a spatial regression approach. A model that 
integrates the relationships of previous events and incorporates the 
correlation with locations in multivariate time series data is referred 
to as a space–time model (7–10). In 1980, Pfeifer and Deutsch 
introduced a model that combines temporal and spatial 
interdependencies, known as the Space–Time Autoregressive (STAR) 
model. However, the STAR model is limited in parameter flexibility, 
as it assumes that locations are homogenous. Therefore, when dealing 
with locations that exhibit heterogeneous characteristics, the STAR 
model is less suitable to use (7, 10, 11). To address this limitation (9), 
the Generalized Space–Time Autoregressive (GSTAR) model was 
developed. The GSTAR model is an extension of the STAR model, 
allowing autoregressive (AR) parameter values to vary at each 
location and making it adaptable for use in heterogeneous locations. 
Research conducted by Fransiska et al. (12) on rainfall forecasting in 
Bengkulu province produced the GSTAR model (1.1) using uniform 
weight and distance inverse weight. The other research studies 
conducted by Huda and Imro’ah (13) regarding the GSTAR model for 
the COVID-19 case study on Java Island found that the weight 
matrix, a feature of the GSTAR model and a representation of spatial 
impact, plays a significant role in identifying the optimal model for 
further predictions.

The parameter estimation studies using GSTAR have been 
primarily limited to ordinary least square (OLS) estimation 
methods (14). As a result, GSTAR models with correlated residuals 
can yield less efficient estimators due to the increased likelihood 
of larger errors during forecasting. To address this issue, the 
generalized least square (GLS) method is employed to estimate 
parameters with correlated residuals, which is commonly used in 
the seemingly unrelated regression (SUR) model. The SUR model 
is a multivariate linear regression model introduced by Zellner, 

consisting of several regression equations in which the errors are 
uncorrelated within a single equation but are correlated across 
equations (15, 16). SUR research conducted by Tiong et al. (17), 
with a case study analysis of factors influencing train arrival 
delays, employed the SUR method to obtain efficient parameter 
estimation values for spatiotemporal data. A comparative study 
between GSTAR-OLS and GSTAR-SUR was conducted by Yundari 
and Perdana (18) in the context of applying GSTAR-SUR to the 
number of domestic airline passengers at Indonesian Airports. 
The results indicated that the GSTAR-SUR method outperformed 
GSTAR-OLS. In addition, Septyaningrum (19) conducted research 
on forecasting the number of tourists at three tourist locations in 
Pacitan Regency using the GSTAR-SUR method. Another research 
conducted by Adella et al. (20) with a case study of the number of 
tourists in Central Java produced the GSTAR (2.1) model, and 
there was a correlation between the residuals, so it was continued 
using the GSTAR-SUR method. The findings showed that 
GSTAR-SUR exhibited superior forecasting accuracy, with smaller 
root mean square error (RMSE) values across all tourist sites. 
Based on the above discussion, this research will employ the 
GSTAR-SUR method to analyze the GRDP in various provinces 
on Java Island. The goal of this study is to forecast the economic 
growth rate in Indonesia.

2 Methods

2.1 Search on data and research

The data used in this study consist of the GRDP of six provinces 
on Java Island from January 2010 to March 2023, with 318 data 
points sourced from BPS Java Island. The method used in this 
research is GSTAR-SUR. The first step involves analyzing the 
descriptive statistics of the data and checking stationarity. The 
second step is identifying the time order using the modified partial 
autocorrelation function (MPACF) and selecting the model order 
based on the minimum Akaike information criterion (AIC). 
Following this, spatial weights are determined for the analysis. The 
research steps continued by estimating the p-order parameters with 
the GSTAR-OLS model and carrying out residual correlation tests 
between locations. If there is a residual correlation between 
locations, the parameters of the GSTAR-SUR model are estimated 
using the GLS method. The next step is to test the significance of 
the GSTAR-SUR model parameters and carry out model feasibility 
tests. The final step in this research is to test the goodness of the 
GSTAR-SUR model based on the MAPE value and forecast the 
GRDP data of six provinces on Java Island (Table 1).

TABLE 1 MAPE criteria.

MAPE range Explanation

<10% Excellent

10%–20% Good

20%–50% Moderate

>50% Poor
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2.2 Multivariate time series

Multivariate time series refers to a sequence of data that consist 
of several variables obtained over time and recorded in chronological 
order at regular time intervals (16). Multivariate time series analysis 
is typically used for datasets that involve more than one time series, 
resulting in multiple variables within the model. Similar to univariate 
time series, the analysis of multivariate time series also takes into 
account the concept of data stationarity (21–23).

2.3 Generalized space–time autoregressive 
model

The spatial model is a framework designed to elucidate 
interrelationships between various geographic locations. Within datasets, 
it is not uncommon to encounter information that possesses not only 
temporal interdependencies but also spatial associations. Data exhibiting 
both temporal and locational dependencies can be effectively characterized 
using the space–time model. The space–time model serves as a formal 
representation of multiple observations that span both temporal and 
spatial dimensions, with Z ti ( ) exists at each of the N locations in a given 
space (i = 1, 2, …, N) with respect to the time period t. The location effects 
on the model are expressed as spatial weighting matrices, while the time 
effects are formulated as time series models. The STAR model is a 
classification of models that are characterized by lag, which exerts a linear 
influence both in terms of location and time (24). The STAR model can 
only be applied to homogeneous locations, based on the assumption that 
current research is influenced by past time within the same location.

The GSTAR model is an extension of the STAR model, with its 
primary distinction lying in the autoregressive parameters. In the 
STAR model, autoregressive parameters are assumed to be uniform, 
whereas, in the GSTAR model, they are presumed to be heterogeneous. 
Using matrix notation, the GSTAR model with autoregressive order p 
and spatial orders λ1, λ2,…, λp is formulated as follows (22, 25):

 Z W Z t k e tt k
p

k k= +  −( ) + ( )=∑ 1 0 1φ φ  (1)

Where:
Zt = The observation vector of size (n × l) pertains to n locations 

at time t.
Z t k−( ) = The observation vector of size (n × l) for n locations at 

time (t-k).
W = The weighting matrix of size (n × n).
φk0 = diag (φ φ φk k k

n
0

1
0

2
0, , , )…  = The diagonal matrix of autoregressive 

parameters for lag time 1.
φk1 = diag (φ φ φk k k

n
1

1
1

2
1, , , )…  = The diagonal matrix of autoregressive 

parameters for lag time 1 and spatial lag 1.
e t( ) = The residual vector n×( )1  normally distributed with a mean 

of 0 and a variance–covariance matrix σ 21N .

2.4 Location weights in the GSTAR model

The selection of location weights in the GSTAR model is divided 
into three categories: uniform weights, inverse distance weights, and 
cross-correlation normalization.

2.4.1 Uniform location weights
Uniform location weights assign the same weight to every 

location. Ruchjana (9) defines the selection of uniform location 
weights as follows:
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i  at spatial lag 1. The weights in this model have the 
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2.4.2 Inverse distance location weights
Values in the inverse distance location weights are obtained based 

on the actual inverse distances and then normalized. The initial matrix 
form is as follows:
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Then, the matrix is standardized to satisfy the weight 
properties j

N
ij
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−

( )∑ = ≠1 1, , with the assumption that locations 
that are close in proximity have stronger relationships; in general, 
the inverse distance weight for each location is expressed as 
follows (13):
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With the number of weights for each location being 1, 

j
N

ij
lW

−
( )∑ =1 1 and i

N
j
N

ijW N
= =∑ ∑ =1 1 . The diagonal matrix of inverse 

distance weights Wij  = 0, as a location is considered to have no 
distance from itself; the resulting inverse distance matrix is as 
follows (21):
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2.4.3 Cross-correlation normalization location 
weights

According to Setiawan et al. (16), the determination of cross-
correlation weights uses cross-correlation between corresponding 
lag locations, with the sample estimate of cross-correlation 
as follows:
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Where:
r kij ( ) = The correlation value between location i and location j.
Zi  = The sample mean of the corresponding time series 

component i for a stationary process vector.
Z j  = The sample mean of the corresponding time series 

component i for a stationary process vector.
The determination of cross-location normalization weight values 

at corresponding time lags is assumed as follows:
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Based on cross-location cross-correlation values at 
corresponding times, location weights with normalization allow 
for the presence of relationships between locations. These weights 
also provide flexibility in the magnitude and direction of 
relationships between locations whether they are positive or 
negative (16).

2.5 Seemingly unrelated regression model

The seemingly unrelated regression (SUR) model is a multivariate 
linear regression model first introduced by Zellner (15). This model 
consists of several regression equations, where the errors are 
uncorrelated within an equation but are correlated across equations. 
The test used to determine whether the variance–covariance error 
structure is indeed an SUR structure is the Lagrange multiplier test 
with the hypothesis (16) as follows:

H0 = cov ε εi j1 1 0,( ) = for all i j↑  (the variance–covariance error 
structure is heteroskedastic, and there is no correlation among the 
errors across equations).

H1 = cov ε εi j1 1 0,( ) ≠ for all i j↑  (the variance–covariance error 
structure is heteroskedastic, and there is a correlation among the 
errors across equations).

The Lagrange multiplier test statistic is as follows:
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With T as the number of observations, rij is the correlation 
between errors in equations i and j. With a significance level α , the 

critical region is acquired, which is H0 rejected if λ
α
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Information regarding the correlated errors across equations can 
be used to improve parameter estimation in the model using GLS. GLS 
is an estimation method for regression parameters, which takes into 
account the correlation between errors across equations, where the 
errors are obtained from OLS estimation and later used to calculate 
regression coefficient estimates in the SUR model. In general, the SUR 
model for N observations, with each equation comprising K predictor 
variables, can be formulated as follows (17):

 Y X X eK K1 1 0 1 1 1 1 1 1 1= + +…+ +β β β, , , , ,

 Y X X eK K2 2 0 2 1 2 1 2 2 2= + +…+ +β β β, , , , ,
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 Y X X eN N N N N K N K N= + +…+ +β β β, , , , ,0 1 1  (6)

With i = 1, 2, …, N.
The SUR model has assumption as follows:

 E X X X andNε| 1 2 0, , , ,…( ) =
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Where:
IT = An identity matrix size (T×T)
∑ =Matrix size (M×M)
σ =ij  The error variances of each equation for i = j and the error 

covariance variances across equations for i↑ j.
The estimator for GLS parameters is β = ( ) ( )′ ′− − −X X X YΩ Ω1 1 1 . 

GLS estimators possess the properties of unbiasedness and efficiency 
(26, 27).

2.6 Feasibility test for the GSTAR-SUR 
model

Once the significant parameters and model have been obtained, it 
is necessary to perform a model feasibility test. The GSTAR-SUR 
model is considered feasible if the residuals meet the white noise 
assumption. White noise residuals follow an identical independent 
distribution and can be detected using residual autocorrelation tests 
in the error analysis. The white noise assumption test can be conducted 
using the Ljung–Box test with the following hypotheses:

H0: ρ ρ ρ1 2 0= =…= =k  (residuals are not white noise).
H1: at least one ρk ↑0, k = 1,2, …, k (residuals are white noise).
The statistics test is as follows:

 
Q n n

n kk k
k k= +( )

−=∑2 1
ρ


 
(7)

Where:
n = number of data, k = number of periods tested, and ρ



k= the 
hypothesis of residual autocorrelation at lag k as testing criteria: 
Rejecting the hypothesis H0 if Qk a df> χ ;

2  at a significance level 
of α = 0 05.  (28).

2.7 Evaluation of the GSTAR-SUR model

Mean absolute percentage error (MAPE) is the average value of 
the absolute differences between predictions and actual values, which 
is expressed as a percentage of the actual value. MAPE is used to 
evaluate the accuracy of forecasts by calculating the error as a 
percentage of the actual values over a specified time period, providing 
information on the percentage of underestimation or overestimation. 
According to Khair et al. (29), the MAPE value can be calculated using 
the equation as follows:

 
MAPE

Y Y
Y

n

t
n t t

t
=

−

×

=∑ 1

100



%
 

(8)

With Yt, the actual value at time t denoted as Y t


, and the forecasted 
value at time t denoted as n.

The MAPE value can be used when evaluating forecast results, 
to assess the accuracy of the predicted figures compared with the 
actual values. The criteria for interpreting MAPE can be  as 
follows (30).

3 Results

3.1 Descriptive analysis

Descriptive analysis is conducted with the aim of providing a 
general overview of the data used in the research. The data used in this 
study consist of the GRDP of six provinces on Java Island from 
January 2010 to March 2023, with 318 data points. The description 
provided includes the mean, standard deviation, minimum value, and 
maximum value of the data.

The GRDP in Java Island is typically derived from the aggregation 
of six provinces on Java Island, namely, Banten, DKI Jakarta, West 
Java, Central Java, DI Yogyakarta, and East Java. As shown in Table 2, 
it can be observed that the average GRDP values vary for each of the 
six provinces on a monthly basis. The highest average is in East Java 
with a value of 299626.51, while the lowest average is in the DI 
Yogyakarta with a value of 9,036.8. In terms of standard deviation, 
the province with the greatest variability in GRDP is East Java with a 
value of 87667.82, and the lowest is the DI Yogyakarta with a value of 
2356.49. The smallest GRDP value is 3825.83 for Banten, 84164.61 
for DKI Jakarta, 162505.1 for West Java, 100535.56 for Central Java, 
5014.64 for the DI Yogyakarta, and 154152.92 for East Java. The 
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highest GRDP values are 97224.01 for Banten, 263212.22 for DKI 
Jakarta, 423487.62 for West Java, 266513.81 for Central Java, 14500.79 
for DI Yogyakarta, and 460997.67 for East Java. The time series plot 
is presented in Figure 1 as follows.

As shown in Figure 1, it is evident that the time series plot of the 
GRDP does not exhibit a seasonal pattern in each plot. Looking at the 
time series plots, the GRDP values intersect between West Java and 
East Java and DKI Jakarta and Central Java, while Banten and DI 
Yogyakarta are the provinces with the lowest GRDP values among the 
six provinces.

3.2 Correlation of GDRP data for six 
provinces

The correlation values between regions indicate the degree of 
association between one region and another. The correlation values 
between the six provinces are presented in Table 3.

As shown in Table 3, the GRDP among the six provinces exhibits 
high correlation values. This indicates that there is a temporal 
correlation in the GRDP data, and it suggests that the GRDP of 
neighboring locations is strongly interrelated.

3.3 Stationarity test

In time series data mode, it is essential to meet certain 
assumptions, one of which is that the data should be stationary with 
respect to the mean. The stationarity test for time series data with 

respect to the mean can be conducted using the augmented Dickey–
Fuller (ADF) test. The hypotheses used in the ADF test are 
as follows:

H0: δ = 1 (Data are not stationary)
H1: δ < 1 (Data are stationary)
H0 is accepted if p-value id < α = 0.05
As shown in Table 4, the GRDP data of the six provinces are 

not stationary. This is evidenced by the p-values of each province 
>0.05, indicating that the data do not exhibit stationarity if H0 is 
accepted; therefore, differencing is required to make the data 
stationary. The results of the ADF test after differencing twice are 
shown in Table 5.

After differencing, as shown in Table 5, the GRDP data for all six 
provinces are stationary. This is evidenced by a p-value in each 
province <0.05, which means H0 is rejected; hence, the data 
are stationary.

3.4 Identifying the order of the GSTAR 
model

Identifying the order of the GSTAR model can be  done by 
examining the plots of the modified autocorrelation function (MACF) 
and (MPACF) (28). The MACF plot is used to assess the stationarity 
of the data, while the MPACF plot is used to identify significant lags 
that can be used as the order of the GSTAR model. Below are the 
MACF and MPACF plots for the GRDP data.

As shown in Figure  2, the data from the six provinces are 
stationary, as indicated by the greater number of dots (.) compared 

TABLE 2 Descriptive analysis.

Province Mean Standard deviation Minimum Maximum

Banten 6628.186 16476.82 38525.83 97224.01

DKI Jakarta 169928.93 51300.36 84164.61 263212.22

West Java 283854.61 75039.62 162505.10 423487.62

Central Java 178329.52 46292.68 100535.56 266513.81

DI Yogyakarta 9036.80 2356.49 5014.64 14500.79

East Java 299626.51 87667.82 154152.92 460997.67

FIGURE 1

Plot of the GRDP in provinces.
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with plus (+) and minus (−) symbols. After achieving stationary data 
for the GRDP in these six provinces, the next step is to determine 
the order of the GSTAR model. The time order in the GSTAR model 
can be  determined using the MPACF plot, considering the AIC 
values. Below is the MPACF plot for the GRDP data of the 
six provinces.

Figure 3 shows that the significant lags are 1, 2, 4, 6, 7, 8, 10, 12, 
and 14. The next step in selecting the best time order in the GSTAR 
model is done using the VAR model approach, where the optimal time 
order is determined based on the smallest AIC value. The AIC values 
are shown in Table 6 as follows.

Based on Table  6, it is found that the smallest AIC value is 
associated with lag 1, with a value of 93.57164. Therefore, it can 
be concluded that the selected autoregressive order (p) for the GSTAR 
model of the GRDP of six provinces is 1. Thus, the resulting model is 
GSTAR (11)-I(1).

3.5 Determining location weights

3.5.1 Uniform location weights
Uniform location weights assume that the GRDP of one location 

has an equal influence on other locations. Based on the 

cross-correlation between locations at the matrix used in this study, 
the uniform weight is as follows:

 

Wij =

0 0 33
0 33
0 33
0 33
0 33
0 33

0
0 33
0 33
0 33
0 33

0 33 0 33
0 33

,
,
,
,
,
,

,
,
,
,

, ,
,
00

0 33
0 33
0 33

0 33
0 33

0
0 33
0 33

0 33 0 33
0 33
0 33
0 33

0
0 33

0

,
,
,

,
,

,
,

, ,
,
,
,

,

,333
0 33
0 33
0 33

0

,
,
,



























3.5.2 Inverse distance location weights
The determination of inverse distance location weights utilizes the 

approach of overland transportation distances between provincial 
capitals. Inverse distance location weights assume that the GRDP data 
of a location are influenced by the distance between that location and 
others. Locations that are closer tend to have higher weights compared 
to those that are farther away. The inverse distance weight matrix is 
as follows:
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3.5.3 Cross-correlation normalized location 
weights

Based on the order autoregressive (p), the last weight applied in 
this study is the location corresponding time lag. The corresponding 
time lag is 1. The matrix of cross-correlation normalization weights is 
as follows:
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TABLE 3 Correlations value of the GRDP in six provinces.

Province DKI Jakarta West Java Central Java DI Yogyakatrta East Java Banten

DKI Jakarta 1 0.9989 0.9980 0.9988 0.9995 0.9971

West Java 0.9989 1 0.9999 0.9989 0.9995 0.9996

Central Java 0.9980 0.9999 1 0.9980 0.9988 0.9998

DI Yogyakarta 0.9988 0.9989 0.9980 1 0.9996 0.9980

East Java 0.9995 0.9995 0.9988 0.9996 1 0.9984

Banten 0.9971 0.9996 0.9998 0.9980 0.9984 1

TABLE 4 ADF test.

Province p-value α Explanation

DKI Jakarta 0.9351

0.05

Not Stationary

West Java 0.9355 Not Stationary

Central Java 0.9435 Not Stationary

DI Yogyakarta 0.9466 Not Stationary

East Java 0.9683 Not Stationary

Banten 0.976 Not Stationary

TABLE 5 ADF test after differencing.

Province p-value α Explanation

DKI Jakarta 0.0000

0.05

Stationary

West Java 0.0194 Stationary

Central Java 0.0000 Stationary

DI Yogyakarta 0.0129 Stationary

East Java 0.0002 Stationary

Banten 0.0000 Stationary
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FIGURE 3

Plot MPACF data GRDP after differencing.

TABLE 6 AIC value.

Lag AIC

1 9.357.164

2 9.391.765

3 9.419.139

4 9.474.563

5 9.507.824

6 9.551.954

7 9.596.743

8 9.641.092

9 9.682.394

10 9.748.291

3.6 Parameter estimation of the 
GSTAR-OLS model

Parameter estimation in the GSTAR model can be performed 
using the least squares method, commonly known as OLS (31). The 
estimated parameter values are considered significant if t tvalue table> . 
Here are the results of the significance test of the GSTAR (11)-I(1) 
model parameters of the six locations using uniform, inverse distance, 
and cross-correlation normalization weights.

3.6.1 Significance test of the GSTAR (11)-I(1) 
model with uniform weights

The results of the significance test of the GSTAR (11)-I(1) 
model parameters using uniform weights are shown in Table 7 
as follows.

3.6.2 Significance test of the GSTAR (11)-I(1) with 
inverse distance weights

The results of the significance test of the GSTAR (11)-I(1) model 
parameters using inverse distance weights are shown in Table  8 
as follows.

Matrix Autocorrelation Function (MACF)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DKI Jakarta +++ … … … … … … … … … … … … … … … …
West Java +++ … … … … … … … … … … … … … … … …

Central Java +++ … … … … … … … … … … … … … … … …
DI Yogyakarta +++ … … … … … … … … … … … … … … … …

East Java +++ … … … … … … … … … … … … … … … …
Banten +++ … … … … … … … … … … … … … … … …

FIGURE 2

Plot of MACF data GRDP after differencing.

TABLE 7 Significance test of the GSTAR (11)-I(1) with uniform weights.

Parameter t-table t-value Explanation

φ110

1.98

2.1913 Significant

φ210 −4.8645 Significant

φ310 7.5693 Significant

φ410 2.417 Significant

φ510 −2.3396 Significant

φ610 4.5083 Significant

φ111 −6.6559 Significant

φ211 −7.0386 Significant

φ311 2.1344 Significant

φ411 −6.9683 Significant

φ511 2.7245 Significant

φ611 1.9895 Significant
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3.6.3 Significance test of the GSTAR (11)-I(1) with 
normalized cross-correlation weights

The results of the significance test of the GSTAR model (11)-I(1) 
using cross-correlation normalization weights are shown in Table 9 
as follows.

3.7 Testing residual correlations between 
locations

Before modeling the GSTAR Model (11)-I(1) using SUR, a 
Lagrange multiplier test is conducted to determine whether there is a 
residual correlation between locations in the GSTAR model (11)-I(1). 
Below is the Lagrange multiplier test.

The hypotheses are as follows:
H0 = cov ε εi j1 1 0,( ) = for all i j↑  (heteroskedasticity in the 

variance–covariance structure of residuals and correlation between 
residual equations).

H1 = cov ε εi j1 1 0,( ) ≠ for all i j↑  (heteroskedasticity in the 
variance–covariance structure of residuals and correlation between 
residual equations).

Significance level: α = 5%
Test criteria: λ χLM > =0 05 15

2 24 9958, ; ,
Test statistics:

 
λLM i

N
j
i

ijT r=
= =

−∑ ∑2 1
1 2

Here are the Lagrange multiplier test statistics for each 
weight type.

In this research, as shown in Table  10, it was found that the 
GSTAR model (11)-I(1) for all the weights exhibits residual correlation 
between locations. Therefore, using OLS estimates, the GSTAR model 
may not be  suitable for forecasting. OLS estimation methods for 
GSTAR models with correlated residuals can yield less efficient 
estimators due to the increased likelihood of larger errors during 
forecasting. As a result, a new modeling approach was used by SUR 
with GLS estimates to achieve more efficient parameter estimations.

3.8 Estimation of GSTAR-SUR model 
parameters using the GLS method

After conducting the Lagrange multiplier test, the model with 
correlated residuals is further processed using the GSTAR-SUR model. 
The estimation of model parameters in the GSTAR-SUR model can 
be done using the GLS method. In this phase, we use Python (32). The 
assessment of significant parameter estimates in this method is similar 

TABLE 9 Significance test of the GSTAR (11)-I(1) with normalized cross-
correlation weights.

Parameter t-table t-value Explanation

φ110

1.98

3.7365 Significant

φ210 −5.5513 Significant

φ310 2.0428 Significant

φ410 2.6674 Significant

φ510 8.4825 Significant

φ610 −3.5393 Significant

φ111 −5.2318 Significant

φ211 3.4281 Significant

φ311 6.8946 Significant

φ411 4.4298 Significant

φ511 −6.0643 Significant

φ611 −2.1892 Significant

TABLE 8 Significance test of the GSTAR (11)-I(1) with inverse distance 
weights.

Parameter t-table t-value Explanation

φ110

1.98

4.2773 Significant

φ210 6.4072 Significant

φ310 7.2379 Significant

φ410 2.4584 Significant

φ510 3.3509 Significant

φ610 −3.5464 Significant

φ111 −5.8978 Significant

φ211 2.9607 Significant

φ311 −2.5183 Significant

φ411 5.7685 Significant

φ511 6.7764 Significant

φ611 7.1138 Significant

TABLE 10 Lagrange multiplier test.

The 
weightings 
used

The LM 
test

Decision Explanation

Uniform 74.8129 Rejecting Ho There is a cross-correlation 

between variables

Inverse distance 24.9958 Rejecting Ho There is a cross-correlation 

between variables

Cross-correlation 

normalization

128.7311 Rejecting Ho There is a cross-correlation 

between variables
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TABLE 11 Parameter estimation in GSTAR-SUR (11)-I(1) with inverse distance.

Parameter Estimation Value t-table t value Explanation

φ110 0.0379

1.98

−6.3163 Significant

φ210 −0.0725 4.3995 Significant

φ310 0.0881 8.1994 Significant

φ410 0.1836 6.2062 Significant

φ510 0.0779 2.6045 Significant

φ610 −0.2473 −2.6587 Significant

φ111 −0.2961 −6.8208 Significant

φ211 −0.0485 7.2673 Significant

φ311 0.0727 4.1069 Significant

φ411 0.1139 −3.2389 Significant

φ511 0.4782 5.766 Significant

φ611 −0.2473 7.9222 Significant

to the GSTAR model, meaning that a parameter estimate is considered 
significant if t tvalue table> . However, in this particular study, 
non-significant parameters were not eliminated to ensure that the 
weighting of each location remained stable. Below are the parameter 
estimates of the GSTAR-SUR model for all six locations based on 
each weighting.

3.9 Estimation of GSTAR-SUR model 
parameters (11)-I(1) with distance weight

The results of estimating GSTAR model parameters (11)-I(1) using 
inverse distance weights are shown in Table 11 as follows.

Based on these parameters, the matrix equation for the GSTAR 
model is (1.1) when using uniform weights. The model can 
be formulated as follows:
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Therefore, the GSTAR model obtained (11)-I(1) using inverse 
distance weights for each location can be represented as follows:

 1 The equation model of GSTAR (11)-I(1) for GRDP DKI Jakarta 
is as follows:

 Z t Z t Z t Z t1 1 1 11 0 0379 1 2


( ) = −( ) − −( ) − −( ) .

 − −( ) − −( )  −0 000468 1 22 2. Z t Z t

 0 000566 1 23 3. Z t Z t−( ) − −( )  −

 0 00066 1 24 4. Z t Z t−( ) − −( )  −

 0 000841 1 25 5. Z t Z t−( ) − −( )  −

 0 000343 1 26 6 1. Z t Z t e t−( ) − −( )  + ( )

 2 The equation model of GSTAR (11)-Im (1) for GRDP West Java 
is as follows:

 Z t Z t Z t Z t2 2 1 11 0 000849 1 2


( ) = −( ) − −( ) − −( ) .

 − −( ) − −( )  −0 0725 1 2 0 0013292 2. .Z t Z t

 
Z t Z t Z t3 3 41 2 0 000732 1−( ) − −( )  − −( ) −. [ ]

 Z t Z t Z t4 5 52 0 001368 1 2−( )  − −( ) − −( ) .

 − −( ) − −( )  + ( )0 000737 1 26 6 2. Z t Z t e t

 3 The equation model of GSTAR (11)-I(1) for GRDP Central Java 
is as follows:

 Z t Z t Z t Z t3 3 1 11 0 000916 1 2


( ) = −( ) + −( ) − −( ) .

 + −( ) − −( )  +0 001723 1 2 0 08812 2. .Z t Z t

 
Z t Z t Z t3 3 41 2 0 00125 1−( ) − −( )  + −( ) −. [ ]

 Z t Z t Z t4 5 52 0 000843 1 2−( ) + −( ) − −( )  +] .

 0 001781 1 26 6 3. Z t Z t e t−( ) − −( )  + ( )

 4 The equation model of GSTAR (11)-I(1) for GRDP DI 
Yogyakarta is as follows:

 Z t Z t Z t Z t4 4 1 11 0 00254 1 2


( ) = −( ) + −( ) − −( ) .

 + −( ) − −( )  +0 001515 1 2 0 0014922 2. .Z t Z t

 Z t Z t Z t3 3 41 2 0 1836 1−( ) − −( ) +  −( ) −.
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 Z t Z t Z t4 5 52 0 002711 1 2−( ) + −( ) − −( ) ] .

 + −( ) − −( )  + ( )0 003178 1 26 6 4. Z t Z t e t

 5 The equation model of GSTAR (11)-I(1) for GRDP East Java is 
as follows:

 Z t Z t Z t Z t5 5 1 11 0 001033 1 2


( ) = −( ) + −( ) − −( ) .

 
+ −( ) − −( ) +0 000966 1 2 0 0006792. [ ] .t Z t

 Z t Z t t3 31 2 0 00142 1−( ) − −( )  + −( ) −.

 

[ ] .
.

Z t Z t Z t
Z t Z t

4 5 5

6 6

2 0 0779 1 2
0 000866 1 2

−( ) + −( ) − −( ) 
+ −( ) − −( ))  + ( )e t5

 6 The equation model of GSTAR (11)-I(1) for GRDP Banten is 
as follows:

 Z t Z t Z t Z t6 6 1 11 0 00277 1 2


( ) = −( ) − −( ) − −( ) .

 − −( ) − −( ) −0 003759 1 2 0 005492 2. [ .Z t Z t

 Z t Z t Z t3 3 41 2 0 00596 1−( )  − −( ) −  −( ).

 

− −( ) −  −( ) − −( )
− −( ) − −( )

Z t Z t Z t
Z t Z t

4 5 5

6 6

2 0 003388 1 2
0 2473 1 2

.
.   + ( )e t6

3.10 Model GSTAR-SUR feasibility test  
(11)-I(1)

After finding the parameters and models for each location, the 
next step is to test the white noise assumption for the residuals. 
Checking this assumption aims to determine whether the residuals 
from each equation are independent of each other. The method used 
to assess the white noise assumption is the Ljung–Box test, and the 
results of the Ljung–Box test are shown in Table 12.

Based on Table 12, it can be observed that all the p-values of the 
Ljung–Box test for each weight are greater than α=0.05, meaning that 
the residuals in the model meet the white noise assumption. Therefore, 
it can be concluded that the model is suitable for forecasting.

3.11 Evaluation of the GSTAR-SUR model 
(11)-I(1)

After attaining the GSTAR-SUR model and conducting model 
feasibility tests, the next step is to calculate the forecast accuracy of the 
model by examining the MAPE value. The calculated MAPE value for the 
GSTAR-SUR model is 8.451%. Consequently, it can be concluded that the 
GSTAR-SUR model (11)-I(1) demonstrates a high level of accuracy.

3.12 Forecasting GRDP data for each 
municipality using the optimal model

The best model that has been obtained is GSTAR-SUR (11)-I(1) 
inverse distance weight. This model is used for forecasting to obtain 
predictions of the GRDP data for the six provinces on Java Island, 
namely, Banten, DKI Jakarta, West Java, Central Java, East Java, and 
DI Yogyakarta. Data forecasting is performed for 7 quarters. The 
forecasting results are shown in Table 13 as follows.

As shown in Table 13, it is observed that the forecasted GRDP 
values of all six provinces for the next 7 quarters until December 2024 
will experience a monthly increase.

However, the GRDP growth remains relatively stable, as there are 
no significant spikes from 1 month to the next month. The forecasted 
results are shown in Figure 4 as follows.

The forecasted data plot indicates that the GRDP data for the next 
7 quarters in all six provinces follow a trend pattern. This is evident 
from the increasing trend in the GRDP values for each month.

4 Discussion

The data obtained from the GRDP variable contain spatial and 
temporal information, requiring an appropriate model to forecast 
spatiotemporal data, namely, the GSTAR model. In this research, it was 
found that the GSTAR model (11)-I(1) for all the weights exhibits 
residual correlation between locations; hence, the GSTAR model using 
OLS estimates may not be suitable for forecasting. This is supported by 
the research conducted by Adella et al. (20) with a case study of the 
number of tourists in Central Java, which produced the GSTAR model 
(2.1), and there was a correlation between residuals. Moreover, it was 
continued using the GSTAR-SUR method. The SUR model is a 
multivariate linear regression model in which the errors are uncorrelated 
within a single equation but are correlated across equations (16). As a 
result, a new modeling approach was used by SUR with GLS estimates 
to achieve more efficient parameter estimations. After conducting the 
Lagrange multiplier test, the optimal model is GSTAR-SUR (11)-I(1) 
with inverse distance location weights, demonstrating high accuracy 
with a MAPE value of 8.451%. Forecasts for Banten, DKI Jakarta, West 
Java, Central Java, East Java, and DI Yogyakarta predict consistent 
monthly GRDP increases in December 2024.

5 Conclusion

The best model that has been obtained is GSTAR-SUR (11)-I(1) with 
inverse distance location weights. The calculated MAPE value for the 
GSTAR-SUR model is 8.451%. Consequently, it can be concluded that 
the GSTAR-SUR model (11)-I(1) demonstrates a high level of accuracy. 

TABLE 12 The results of the white noise test.

p-value α Explanation

0.7471 0.05 White noise
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The best model that has been obtained is GSTAR-SUR (11)-I(1) with 
inverse distance weight. This model is then used for forecasting to obtain 
predictions of the GRDP data for the six provinces on Java Island, 
namely, Banten, DKI Jakarta, West Java, Central Java, East Java, and DI 
Yogyakarta. The forecasted GRDP values of all six provinces for the next 
7 quarters until December 2024 will experience a monthly increase. 
However, the GRDP growth remains relatively stable, as there are no 
significant spikes from 1 month to the next.
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FIGURE 4
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