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Introduction: The first case of COVID-19 in Kenya was reported on March 
13, 2020, prompting the collection of baseline data during the initial spread 
of the disease. Subsequently, the Kenyan government implemented non-
pharmaceutical interventions (NPIs) on April 9, 2020, to mitigate disease 
transmission over a two-month period. These measures were later gradually 
relaxed starting from June 9, 2020.

Methods: We applied a deterministic mathematical model to simulate the 
dynamics of COVID-19 transmission in Kenya. Using baseline data, we estimated 
transmission and recovery rates and proposed a mathematical model of how 
NPIs affect disease transmission rates. The model extends to interventions 
that yield an increase in disease transmission, unlike previous models that 
were limited to a decrease in transmission. We computed the mitigation and 
relaxation fractions and hence deduced the impact of the interventions.

Results: The mitigation measures imposed from April 9, 2020, reduced the 
disease transmission by 43.7% from the baseline level, while the relaxation 
from June 9, 2020, increased the transmission by 32% over the mitigation level. 
Without intervention, the model predicts that infections would have peaked at 
30% by late May 2020. However, due to the combined effect of mitigation and 
relaxation, the epidemic peaked at 13% infection in mid-July 2020.

Discussion: The model’s projections closely align with observed data, providing 
valuable insights for planning. Ongoing research aims to refine the model to 
capture sub-waves and spikes, as well as simulate multiple waves of infection. 
These efforts will enhance our understanding of COVID-19 dynamics and 
inform effective public health strategies. The estimated basic reproduction 
number 0 2 76= . , consistent with previous findings, underscores the validity of 
our model and its relevance in predicting disease transmission dynamics.
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1 Introduction

Coronavirus Disease of 2019 (COVID-19) is a disease caused by 
the novel coronavirus that appeared in Wuhan, China, in December 
2019. The disease has since spread to all parts of the world and has 
resulted in millions of confirmed cases and deaths (1). The disease has 
wreaked havoc on the economies of most countries and permanently 
transformed people’s lives. To control the spread of disease, in the 
initial stages, countries introduced non-pharmaceutical interventions 
(NPIs) in addition to strengthening health facilities and treatment 
regimes. As time passed, the disease developed into waves that were 
mainly driven by variants of COVID-19.

We briefly present pertinent biological information on COVID-19 
and a related disease, influenza, popularly known as flu. Our reference 
to influenza here will mean seasonal and not pandemic influenza. In the 
early days of COVID-19, many people confused the disease with the flu, 
since both show almost identical symptoms. On 11th February 2020, the 
virus that causes COVID-19 was named ‘severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2)’ by the International Committee 
on Taxonomy of Viruses (ICTV) (2). The flu is caused by influenza 
viruses types A, B, and C. Influenza and SARS-CoV-2 are spread through 
droplets released from the nose and mouth of an infected individual 
when they cough or sneeze (3). However, unlike influenza, COVID-19 
has also been shown to spread by the long-range airborne route at greater 
distances (4). A critical determinant of the infectivity of these viruses is 
the concept of reproduction number 0, which represents the degree of 
transmissibility of the virus and provides an estimate of how many 
secondary infections can arise from one person infected with the virus, 
in a population where everyone is susceptible to the disease. In the early 
stages of the epidemic, the 0 for COVID-19 was estimated to be 2.2–2.5 
(5). Since then, most of the published estimates for 0 lie in the range 
2–3. For seasonal influenza, studies yielded 0 in the range of 1.1–1.5 
(6), suggesting that COVID-19 is more easily spread than seasonal 
influenza. For both flu and COVID-19, it is possible to spread the virus 
at least 1 day before experiencing any symptoms. Once an individual has 
the flu, the person can be contagious for 5 to 7 days, while for COVID-19 
the person could be contagious for 10 to 14 days. The number of days of 
staying contagious will depend on the patient’s age, the severity of the 
disease and whether there are other underlying medical conditions (7, 
8). Mortality from COVID-19 is believed to be much higher than that of 
seasonal influenza (8, 9).

Mathematical models can be used to inform and provide health 
decisions during a disease outbreak; in addition, they can be used to 
predict and perform the peak detection of infected cases in a particular 
country. Various mathematical models have been applied to understand 
the dynamics of COVID-19, as can be seen from a recent extensive 
review (10). In this study, we consider the compartmental model, where 
the population is usually divided into various compartments such as 
Susceptible (S), Exposed (E), Infected (I), Recovered (R), and Dead (D). 
If all compartments are included, then the model is said to 
be SEIRD. Models do not necessarily use all compartments, and in our 
case, we omit the exposed compartment and hence end up with the SIRD 
model, which has been used before for COVID-19; see, for instance, 
(11–13). Irrespective of the number of compartments used, models can 
be modified to include additional compartments such as asymptomatic, 
hospitalized, and vaccinated, among others (14–16).

In addition to mathematical models for the analysis of COVID-19 
dynamics, some models address non-pharmaceutical interventions 
(NPIs) designed to control the spread of the disease. As a starting point 

for these models, it is important to have an understanding of the baseline 
dynamics and, hence, estimates of the parameters associated with the 
unmitigated disease, since they are essential to the implementation of 
interventions. Two of these parameters are particularly useful, namely, 
the transmission rate, β(t), which is the number of contacts per person 
per unit of time, and the basic reproduction number, 0 . In most 
situations, intervention starts almost immediately as COVID-19 emerges 
and baseline parameters are estimated later, using data collected from the 
period preceding any major mitigation measures. The main purpose of 
the intervention is to reduce the contact rate and hence the reproduction 
number, so that the peak of infection reaches a level that can be managed 
by available healthcare facilities and personnel.

The mathematical models we consider here are based on the SEIRD 
formulation, with one or two compartments omitted in some cases. The 
models can generally be  classified into two categories. In the first 
category, there are models in which additional compartments are 
introduced into the SEIRD system that have an impact on NPIs, for 
example, control interventions (17), masks and their efficiency (18), and 
hospitalization (19), among others. In the process, they introduce more 
parameters that define how the additional compartments interact with 
each other and with the rest of the system. The consequence is that the 
system of differential equations becomes more complex and the number 
of parameters to be  estimated increases significantly. In the second 
category of models, the intervention measures are collectively deemed to 
reduce the transmission rate from the time the intervention occurs. The 
reduction can be  reflected in several ways. In the simplest case, the 
constant transmission rate, before intervention, is multiplied by a positive 
constant, which is less than unity, to obtain a reduced transmission rate 
(20). The transmission rate can also be specified as a piecewise constant 
function, depending on the mitigation measures enforced (21), or as an 
exponentially decaying function (13, 22). In this category of models, the 
system of equations is less complicated. Furthermore, recovery and death 
rates are assumed to remain constant, except for a formulation in which 
they are time-dependent (13). In this paper, we use the methods in the 
second category since they are flexible and can easily be  applied to 
develop scenarios. We express the transmission rate as a function that 
can exponentially decay, thus reducing the level of infection, or 
exponentially increase, thus increasing the level of infection, as 
formulated in (23). Previous models were able to handle only a decrease 
in infection level.

The overall aim of this study is to approximate the SIRD model 
parameters using COVID-19 data from the baseline period in Kenya and 
thereafter introduce a mathematical model that illustrates how NPIs 
collectively affect the transmission rate of COVID-19 and hence 
infection levels. The model was applied to the first wave of COVID-19 in 
Kenya, since this was the period in which NPIs were implemented and 
properly documented. For the subsequent waves that emerged after the 
study period, the dynamics of the disease was largely influenced by the 
new variants of COVID-19 and the vaccinations that emerged from time 
to time. This study therefore forms a starting point of coupling the PIs 
and NPIs to faithfully describe the emergence of multiple waves of 
COVID-19 and other related diseases like Flu.

The rest of the paper is organized as follows. In Section 2.1, 
we briefly describe the COVID-19 situation in Kenya and present the 
major NPIs and the timelines in which they were proposed. In Section 
2.2, the SIRD model equations and initial conditions are given. A 
description is given in Section 2.3 of a mathematical model for 
interventions that takes into account the fact that interventions lead 
to a reduction of the transmission rate, in the case of mitigation, or an 
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increase in the transmission rate, when some mitigation measures are 
lifted or when the society violates prescribed mitigation regulations. 
In Section 3.1 we present the solution of the SIRD model for the 
baseline. Section 3.2 presents the results of the interventions. Finally, 
we give some concluding remarks and recommendations in Section 4.

2 Methods

2.1 COVID-19 in Kenya

The rapidly spreading outbreak of the novel coronavirus on the 
African continent prompted the Kenyan government to establish the 
National Emergency Response Committee on Coronavirus (NERC) 
on 28 February 2020. Approximately 2 weeks later, the first case of 
COVID-19 in Kenya was confirmed on 13 March 2020 (24). Due to 
the rapid increase in cases, the Kenyan government instituted several 
measures designed to curb the spread of the disease. For our 
modelling, the strategies pursued can be divided into four periods, 
each with its distinct characteristics as outlined below and also shown 
in Table 1.

2.1.1 Period 1: Baseline (13 March to 8 April)
Since COVID-19 was a novel disease, this period was spent 

formulating policies and protocols on how to respond to it. A major 
decision was to immediately close the learning institutions. Other 
mitigation measures were announced, for instance: no overcrowding 
in public transport; social distancing and mask-wearing in public 
places; hand-washing and sanitization in malls and supermarkets. 
There was low compliance, so a lot of time was spent appealing to 
residents to comply with the measures. In anticipation of the 
potential impact of the pandemic, the government introduced a tax 
break to provide some relief to residents. Despite the mitigation 
measures enacted, it was business as usual in most places. This 
period can, therefore, be  safely regarded as the time when 
COVID-19 was still unmitigated. Hence, our model treats this 
period as the baseline.

2.1.2 Period 2: Mitigation (9 April to 8 June)
Due to the rapid increase in cases, and the public’s relaxed attitude 

to COVID-19, the government resolved to enforce the mitigation 
measures for 2 months and it enacted COVID-19 regulations whose 
contravention was a criminal offence (25, 26). The period can 
be regarded as one of the applications of mitigation measures, despite 
attempts by a cross-section of society to flout the rules. Consequently, 
our model treats this as a mitigation period.

2.1.3 Period 3: Relaxation (9 June to 8 August)
The implementation of mitigation measures during Period 2 had 

a devastating effect on the country’s economy and the livelihoods of 
the people. Many industries and small businesses laid off workers or 
simply folded. Other establishments placed workers on half salary or 
gave them leave without pay while waiting for the situation to stabilize. 
To ease the hardship being experienced, the government gradually 
relaxed some of the mitigation measures. There was a discussion on 
the opening of learning institutions in September, but the idea was 
shelved on the basis of the pandemic trend. Our model treats this 
period as the gradual relaxation of control measures.

2.1.4 Period 4: Extended Relaxation (9 August 
2020 to 30 September)

No significant changes were made to the relaxation measures that 
were supposed to be  in effect during Period 3. Consequently, 
we treated these measures as remaining in effect until the appearance 
of the second wave of COVID-19  in September 2020. We  thus 
regarded this as a period of extended relaxation.

Table 1, gives a summary of the major actions taken during each 
of the first three periods. The information in this table was obtained 
from the Ministry of Health, Kenya (25) and the Presidential 
Addresses on COVID-19 (27).

Figure 1 shows the trend of the 7-day moving averages of numbers 
and percentages of infections, deaths, and recoveries, from 25th 
March 2020 to 20th October 2020.

In Figure 1A, the infections gradually increase and reach a maximum 
in mid-July. The infections then decrease until early September, when 
they begin to increase, indicating the onset of the second wave. In 
Figure 1B, the recoveries also follow the wave pattern of the infections 
but there exist considerable fluctuations. Figure 1C shows that deaths 
exhibit considerable fluctuations but the numbers are generally low.

2.2 Formulation of the SIRD model for 
COVID-19

We consider an SIRD mathematical model. We  assume 
homogeneous mixing in the population and that the total population, 
N, is constant over time. At time t, the number of individuals in the 
population is divided into four classes: Susceptible, SN(t), infected, 
IN(t), recovered, RN(t), and dead, DN(t). Since this is a new disease, 
there is no prior immunity; hence at the beginning, everyone is 
susceptible to COVID-19. As the total population, N, is constant over 
time, the numbers of individuals in the various compartments satisfy 
the equation.

 S t I t R t D t NN N N N� � � � � � � � � � � �  (1)

If the variables are normalized on division by N, then 
Equation (1) becomes

 S t I t R t D t� � � � � � � � � � � �1 (2)

where

 / , / , / and /N N N NS S N I I N R R N D D N= = = =  (3)

in which S, I, R and D are fractions of susceptible, infected, 
recovered, and dead individuals, respectively. Upon infected with the 
disease, susceptible individuals move to the infected class at a rate β, 
from which they recover at a rate γ or die from infection at a rate δ, as 
shown in Figure 2. In the presentation of our results, the variables will 
be  given as convenient in terms of actual observed numbers or 
percentages or as fractions of the total population.

The mathematical equations describing the movement of 
individuals in different compartments are given by;
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 dS dt SI/ � ��  (4a)

 ( )/dI dt SI I= β − γ + δ  (4b)

 dR dt I/ � �  (4c)

 dD dt I/ � �  (4d)

TABLE 1 Strategies for mitigating COVID-19 in Kenya in 2020.

Period 1
13 March to 8 April

Period 2
9 April to 8 June

Period 3
9 June to 8 August

Categories Actions Actions Actions

Congregations

Bars and clubs Closed on 22 March Closed Closed

Places of worship Closed on 22 March Closed Open from 6 July for 100 attendants per 

session

Funerals and family gatherings Limited numbers; social distancing and 

hygiene

Limited numbers; social distancing and 

hygiene

Limited numbers; social distancing and 

hygiene

Political and social gatherings Banned Banned Banned

Restaurants and eateries Open for limited hours for take-away meals Operate with social distancing and

hygiene

Limited numbers; no alcohol from 31 

July

Work from home Compliance encouraged Compliance encouraged Compliance encouraged

Learning institutions

Schools Closed Closed Closed

Tertiary Institutions Closed Closed Closed

Restriction of mobility

Cessation of Movement None For Nairobi, Mombasa, Kwale, Kilifi

from 6 April

Lifted in 2 stages: 7 June and 7 July

Curfew Country-wide overnight curfew from 27 

March

Country-wide overnight curfew still

in force

Country-wide overnight curfew still

in force

Lockdown None For Eastleigh, Old Town Mombasa and 

Mandera

Lockdown lifted on 7 June

Prevention

COVID-19 regulations None Published; criminal offence to contravene Criminal offence to contravene

Public social distancing Compliance encouraged Compliance mandatory Compliance mandatory

Public mask wearing Compliance encouraged Compliance mandatory Compliance mandatory

Public Hygiene Compliance encouraged Compliance mandatory Compliance mandatory

Travel

International air travel A few were allowed initially, later all 

suspended

Suspended To resume on 1st August

Local air travel Suspended 2 April Suspended Resumed on 7th July

Public transport (within county) To operate with social distancing and 

hygiene

To operate with social distancing and 

hygiene

To operate with social distancing and 

hygiene

Public transport (inter-county) To operate with social distancing and 

hygiene

None to/from counties on cessation of 

movement

To operate with social distancing and 

hygiene

Economic incentives

Support for vulnerable families Plans to support the vulnerable Money sent directly to vulnerable 

families

Money sent directly to vulnerable 

families

National hygiene programme 

(Kazi Mtaani)

Plans to support youth Payment to youth for restoring public 

hygiene

Payment to youth for restoring public 

hygiene

General economic stimulus Announced Implemented Implemented
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These equations are solved subject to Equation (2) and also subject 
to non-negative initial conditions: S(0), I(0), R(0), and D(0). The SIRD 
model has already been applied to COVID-19 (11–13) and seasonal 
influenza (28–30).

2.3 Modelling interventions

In this section, we first derive the equations that define the effect 
of interventions on the disease transmission rate. We then indicate 
how intervention scenarios can be developed to help in decision-
making and, finally, we  indicate how the appropriate intervention 
model can be identified amongst the many possible scenarios.

2.3.1 Equations governing the effect of 
intervention on the transmission rate

In this subsection, we formulate an intervention model that leads 
to piecewise exponential-cum-constant functions for the transmission 
rate. We assume that the recovery rate, γ , and the death rate, δ, do not 
change during the intervention interval. Our model takes into account 
the fact that intervention not only leads to a reduction of the 
transmission rate, through mitigation but can lead to a surge in the 
transmission rate, through relaxation.

Let the daily intervention events be at the time nodes denoted as 
t t t0 1 2, , ,…. Suppose intervention is initiated at the time node tk then 
there will be a difference in the transmission rate before and after tk. 
Let βb be the incoming transmission rate before and up to, the time tk
; the quantity βb could be the result of baseline dynamics or it could 
be  due to the dynamics from some immediately preceding 
intervention. The main objective of intervention is to gradually change 
the transmission rate from βb, by a fraction c, so that the transmission 
rate at a future time becomes.

 � � �op k m bt c� � � � �� �� 1  (5)

where βopdenotes the optimum value of the transmission rate that is 
achieved due to the intervention at time tk . When an intervention 
takes place on day tk, the optimum transformation of the transmission 
rate does not occur instantly but takes place say m days later, that is, 
at the time tk m+ , where m  > 0. Therefore, the quantity m can 
be regarded as the duration of an optimal change in transmission rate 
and its value will depend on the implementation goals. For instance, 
when we  impose measures to reduce social distancing, we do not 
expect infection levels to drop instantly; it takes 7 to 20 days to show 
a significant change.

From Equation (5), when 0 < c < 1, then βop < βb; this corresponds 
to the intervention being mitigation since it yields a smaller future 
transmission rate, in which the incoming transmission rate has been 
reduced by a fraction c. Here, we call c the “mitigation fraction” and 
the quantity 100c� �%  the “percent mitigation.” On the other hand, 
when c < 0 then βop > βb; this corresponds to the intervention being a 
relaxation since it produces a higher future transmission rate in which 
the incoming transmission rate has been increased by a fraction c . 
Here we call c  the “relaxation fraction” and the quantity 100 c� �%  
the “percent relaxation.” Previous researchers restricted c to the 
interval [0, 1]; consequently, they could only handle the cases where 
intervention resulted in a decrease in the transmission rate. In this 
presentation, we extend c to negative values to account for an increase 
in the transmission rate.

Assume that the impact of the intervention at tk  results in a 
transmission rate, β(t), which changes exponentially for tk > 0, that is,

FIGURE 1

COVID-19 numbers and percentages from 25th March 2020 to 30th September 2020. (A) Infected. (B) Recovered. (C) Dead.

FIGURE 2

Compartmental SIRD model. The population is divided into four 
classes, denoted by; S(t), I(t), R(t), and D(t). The parameters β, γ, and δ 
denote the transmission rate, the recovery rate, and the death rate, 
respectively.
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 � t Ae t tr t t
k

k� � � ��� �,  (6)

where A and r are constants to be determined.
To determine the constants A and r in Equation (6), we impose 

the conditions

 � � � �t t ck b k m b� � � � � � �� ��; 1  (7)

We assume that when βop, in Equation (5), is reached the transmission 
rate remains constant until another intervention takes place at the 
time k mt +τ > . Consequently, applying Conditions (7) to Equation (6) 
yields the expression for the transmission rate in the following form, 
as given in Supplementary Appendix Equations (A9, A10):
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(8)
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�

�

�
�

�
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(9)

If we  substitute t tk m� �  in the second part of Equation (8), 
we obtain � �t ck m b�� � � �� �1 , consistent with Equation (5). We can 
analyze the intervention that takes place at τ by letting Ä= tk  and 
proceeding as is done in the current section. This allows us to treat 
multiple interventions until there are no more interventions. We have 
shown in Supplementary Appendix A that, in the absence of further 
interventions, the transmission rate will decay with time, if the last 
intervention is a mitigation, or grow without bounds, if the last 
intervention is a relaxation. Therefore, for practical considerations, the 
last intervention must be a mitigation.

Associated with the transmission rate, β, is the basic reproduction 
number, 0 , which denotes the average number of secondary 
infections directly generated by an infected individual in a population 
where all individuals are susceptible to infection. It is given by

 
0

β
=
γ + δ


 

(10)

where γ and δ are the rates of recovery or death from the disease, 
respectively, as indicated in Figure 2. If 0 1>  the disease will expand 
and if 0 1< , the disease will die out. A related quantity is the effective 
reproduction number, e , given by

 

( ) ( )
e

t S tβ
=

γ + δ


 
(11)

in which S(t) is the proportion of susceptible individuals at time t. The 
effective reproduction number, Equation (11) defines the potential for 

an epidemic to spread as a result of the interventions put in place. If 
1e > , the epidemic will spread at time t, and if 1e < then the 

epidemic will not spread at time t.

2.3.2 Estimation of mitigation and relaxation 
fractions

Despite the importance of the intervention fraction, c, only two of 
its values are obvious, namely, c = 0 which implies the absence of any 
control, and c = 1, which is the unlikely scenario of absolute control 
where there is no disease transmission. The other values of c are more 
complicated to determine. A possible approach is to identify all 
interventions that impact the transmission of the disease, therefore 
contributing to c, and assign weights to their impacts. The fraction c 
can then be estimated as the weighted average of the impacts. Groups 
of the impacts could then be aggregated to determine their percentage 
contribution to the disease transmission. Table  1 lists some 
intervention measures that could be  taken into account in this 
exercise. Assessing the impact of all these factors on disease 
transmission requires a truly collaborative effort involving a 
multidisciplinary team.

2.3.3 Intervention scenarios
Mitigation is the first intervention that takes place after the 

baseline dynamics; hence, it is assumed that the equations in Section 
2.2 have been solved and the appropriate baseline parameters 
obtained. Consequently, the incoming transmission rate for the 
mitigation intervention will be the transmission rate from the baseline 
solution. Relaxation occurs when mitigation ends, and hence it is 
assumed that the mitigation problem has been solved so that the 
transmission rate during mitigation can be  used as the incoming 
transmission rate for relaxation computations.

Starting with the appropriate incoming transmission rate, we may 
vary the fraction c, in Equations (8, 9), as we solve Equations (4a-d), 
and thus determine the effect of an intervention on the transmission 
rate, infection levels, reproduction number, and related quantities. It 
enables us to develop scenarios as we seek to determine the levels of 
intervention necessary to achieve specific medical and public health 
goals as a consequence of the pandemic. The scenarios can form a basis 
for decision-making. For instance, modellers using different techniques 
developed two intervention scenarios for the control of COVID-19 in 
some African countries (31). The first was moderate lockdown, 
considered as the intervention that reduces transmission by 25% 
during lockdown followed by transmission at 90% of the pre-lockdown 
value. The second was hard lockdown, considered as the intervention 
that reduces transmission by 44% during lockdown followed by 
transmission at 90% of the pre-lockdown value. In our formulation, 
moderate lockdown is equivalent to mitigation with c = 0.25 followed 
by relaxation with c  =  −2.6 while hard lockdown is equivalent to 
mitigation with c = 0.44 followed by relaxation with c = −1.05.

2.3.4 Model validation
Once infection data is available, the computation can be carried 

out as described in Section 2.3.3, to determine the model infection 
curve that best fits the data. The objective of this section is to validate 
the model and not to develop scenarios. The simplest approach is to 
draw a scatter diagram of observed infections and plot it against 
infection curves obtained by using different values of the mitigation 
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or relaxation fractions, c, as appropriate. We then identify the value of 
c for which the curve closely matches the observed data. This value of 
c will be  an indicator of the fraction by which the infection has 
changed, as a result of the intervention. It can be  used, through 
Equations (8, 9), in our solution of Equations (4a-d), to obtain other 
vital information. This scatter diagram approach will yield coarse 
estimates. More robust and reliable methods are based on techniques 
that minimize errors between observed and computed infection rates 
using a variety of approaches. The parameters, β , γ  and c were 
estimated by formulating a least-squares algorithm, to minimize the 
distance between the daily and cumulative infected numbers to the 
model output. The least-squares algorithm was solved in MATLAB 
using the fminsearchbnd function, which allows for parameter 
estimation from a range of bounded parameters (32). We consider the 
root mean square error, defined by Equation (12), as the objective 
function to be minimized.

 
( ) ( )

( )2˜
1,

Mk
c o
k k

k

M

I I
R RMSE I

k
=

−

= =
∑

γ β
 

(12)

in which RMSE stands for the root mean square error; andc o
k kI I are 

the observed and computed infection proportions, respectively, at the 
time tk ; and kM  is the total number of continuous-time steps of 
observations during the period under consideration. This model 
validation process can be performed at any stage in data collection, 
and it does not need to wait until the end of the designated 
intervention period.

3 Results and discussion

We developed models and performed computation using MATLAB, 
according to the timelines specified in Section 2.1. We first present results 
for solutions of the SIRD system using the method described in Section 
2.2; then we present results for the intervention model described in 
Section 2.3. COVID-19 data were obtained from the following sources: 
Worldometer (1) and Ministry of Health, Kenya (25).

3.1 Solution of SIRD system for the baseline 
period

The first infected person was observed and tested on 13th March 
2020 and by the end of the baseline period, namely 8th April 2020, a 
total of 5,586 individuals had been tested. If the entire population of 
Kenya had been tested by 8th April 2020, the number of infected 
individuals would have increased, but in such a way that the 
proportion of infected individuals for the whole country would 
be equal to the proportion of infected individuals in the sample of 
5,586. Similar arguments can be  made for individuals in the 
susceptible, recovered, and dead compartments. Since the proportions 
of the various compartments remain the same, irrespective of the 
sample size tested by 8th April 2020, we can take the total population 
during the baseline as N = 5,586.

At the start of the epidemic, there was one infected individual, that 
is, IN(0) = 1. At this stage, there were no recoveries or deaths, which 

implies that RN(0) = DN(0) = 0, leading to SN(0) = 5,585, according to 
Equation (1). Using Equation (3) we obtain the initial conditions.

( ) ( ) ( ) ( )I 0 1.79018976E 04,R 0 0,D 0 0,S 0 0.999820981= − = = =  

The death rate was taken as � � 0 015. , as estimated from the case 
fatality rate (CFR). The solution of Equations (4a-d) was then 
obtained, as described in Section 2.2, subject to the initial conditions 
(13) and also to Equation (2), at any time t.

The solution by minimization in MATLAB yielded the following 
parameter values:

 0.189919, 0.053811β γ= =  (13)

From these results, we determined the reproduction number by 
Equation (10) and the recovery days, namely, 1/γ, to yield

 0 2.76,=  Recovery days (1/γ) = 18.6 (14)

The reproduction number and recovery days in Equation (14) are 
in good agreement with the results of other research (31).

Using the parameter values in Equation (13), with δ = 0.015, to 
solve system (4), we plotted graphs of some quantities. Figure 3A 
shows the 7-day moving average of the observed and computed 
infection percentages and numbers during the baseline period. 
Figure 3B shows the observed and computed cumulative infection 
percentages and numbers. In both figures, the agreement is good 
between the computed and observed values.

The system of equations was also solved from the onset until 
stability was achieved, thus assuming that the disease spread without 
any intervention. The results are shown in Figure 4 which indicates 
that the disease would have peaked in mid-June 2020, with 26 to 28% 
of the population infected. The graph also shows that the disease, 
without intervention, would have disappeared virtually by 
mid-October 2020. The decision to introduce mitigation measures 
was largely driven by the prospect of a quarter of the population being 
infected, at the peak of infection, and the possible adverse social and 
economic consequences.

3.2 Results from modelling interventions

In this section, we give results from intervention modelling, that 
show how the mitigation measures that were introduced on 9th April 
2020 altered the dynamics of the disease. We use the parameter values 
in Equation (13), with δ = 0.015, and the methods in Sections 2.3.3 and 
2.3.4 to solve the intervention problems. We present the mitigation 
results in Section 3.2.1 and the relaxation results in Section 3.2.2.

3.2.1 Mitigation from 9th April 2020 to 8th June 
2020

Mitigation was introduced on 9th April 2020 for a period of 2 
months (Table 1). To study the effect of different mitigation strategies, 
we developed scenarios by varying the fraction c in the transmission 
rate in Equations (8–9). We took into account the fact that the Kenyan 
government had received advice from modellers to take action on 
mitigation measures, considering scenarios involving a reduction in 
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transmission by 20, 40, and 60% from the baseline (27). To extend the 
scope of scenarios, we  added three more percentages and thus 
considered the consequence of reducing the transmission by 0% (c = 0, 
no change), 10% (c = 0.1), 20% (c = 0.2), 40% (c = 0.4), 60% (c = 0.6) 
and 80% (c = 0.8). We chose the incoming transmission rate at the 
start of mitigation as the baseline transmission rate (Equation 13), 
hence βb = 0.189919. Using this value and m = 15 in Equations (8, 9), 
we solved system (4) from 9th April 2020 to stability. Figure 5 shows 
the infection curves associated with different values of c. Each curve 
shows the trajectory of the infection as a result of one-time mitigation 
on 9th April 2020, without subsequent interventions. It can be seen 
that as the value of c increases, the infection peaks reduce and occur 

later, meaning that the more stringent the mitigation measures, the 
lower the peak infections and they appear at a later time.

Table 2 shows how varying c affects the transmission rate, the 
reproduction number, and the infection. It is noted that as c increases, 
the peak infection and the reproduction number decrease. Further 
increase shows that for c = 0.8, the peak infection is 0.71% and 0
=0.55 < 1, meaning that there is no spread of the disease. This situation 
represents taking a mitigation action that is so drastic that the disease 
is suppressed; the consequences for such action can be  severe for 
society. Therefore, suppression of the disease is not a practical option. 
Table 2 also shows the infection at the end of the mitigation period, 

FIGURE 3

Observed and computed infection percentages during the baseline period, 13th March 2020 to 8th April 2020. For the model: Transmission rate, 
β =  0.188919; recovery rate, γ =  0.053811; death rate, δ =  0.015. (A) 7-day average percentages and numbers. (B) Cumulative percentages and numbers.

FIGURE 4

COVID-19 infection percentages in Kenya in the absence of 
interventions. The solution extends to stability. Transmission rate, 
β =  0.189919; recovery rate, γ =  0.053811; death rate, δ =  0.015.

FIGURE 5

Infection percentages for various mitigation scenarios. Mitigation 
started on 9th April 2020. Solutions extend to stability. Incoming 
transmission rate, βb =  0.189919; recovery rate, γ =  0.053811; death 
rate, δ =  0.015.
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namely, 8th June 2020. The model thus enables the planner to forecast, 
on 9th April 2020, the level of infection when mitigation ends.

To validate the model, we applied the methods in Section 2.3.4 to 
the mitigation data and obtained a mitigation fraction of c = 0.437. The 

result shows that the mitigation measures introduced by the 
government led to a reduction of the transmission rate by 43.7%, from 
that during the baseline (Equation 13) so that the optimum 
transmission rate during mitigation becomes βt  = 0.10692. The 
percentage reduction achieved is close to one of the scenarios, namely 
40%, that the government had been advised to choose (27). The use of 
c = 0.437, m = 15 and βb = 0.189919 in Equations (8, 9) and subsequent 
solution of system (4) produced results that are compared to the data 
in Figure 6A. There was some scatter in the data, largely attributed to 
the uncertainty in handling COVID-19 data during the early stage of 
the pandemic. This affected the quality of agreement of the model with 
the data.

3.2.2 Relaxation from 9th June 2020 to 8th 
August 2020

As a result of the adverse effects of mitigation, the government 
relaxed some of the mitigation measures from 9th June 2020 to 8th 
August 2020. To study the effect of different relaxation strategies, 

TABLE 2 Scenarios involving changes in the fraction c under mitigation 
from baseline.

c β
0

% Peak
infection

% Infection
8 June

0 0.18992 2.76 27 27.0

0.1 0.17093 2.484 23.2 23.2

0.2 0.15194 2.208 19.0 19.0

0.4 0.1140 1.656 9.65 9.6

0.6 0.0760 1.104 1.2 1.3

0.8 0.0380 0.552 0.71 0.75

The following parameter values are used βb = 0.18992, γ = 0.053811, and δ = 0.015.

FIGURE 6

Observed and computed infection percentages during various periods of intervention. Recovery rate, γ =  0.053811; death rate, δ =  0.015. (A) Mitigation, 
9th April to 8th June 2020, incoming transmission rate, βb =  0.188919 (B) Relaxation, 9th June 2020 to 8th August 2020, incoming transmission rate, 
βb =  0.10692 (C) Extended relaxation, 9 August 2020 to 3rd September 2020, transmission rate, βt =  0.14113. The orange vertical line intersects the data 
at the start of the second wave.
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we developed scenarios by varying the fraction c in the transmission 
rate in Equations (8, 9). We took into account the fact that the Kenyan 
government had received advice from modellers to take action on 
relaxation measures considering scenarios involving an increase in 
transmission by 20, 40, and 60% from the mitigation period (27). To 
extend the scope of scenarios, we added three more percentages and 
thus considered the consequence of increasing the transmission by 
0% (c = 0, no change), 10% (c = −0.1), 20% (c = −0.2), 40% (c = −0.4), 
60% (c = −0.6) and 80% (c = −0.8). The negative values of c are by the 
explanations given in Section 2.3.1. We  chose the incoming 
transmission rate for relaxation as the mitigation value, namely 
βb = 0.10692 as given in Section 3.2.1. Using this value and m = 15 in 
Equations (8, 9), we solved system (4) from 9th April 2020 to stability. 
Figure 7 shows the infection curves associated with different values 
of c. Each curve shows the trajectory of the infection as a result of a 
one-time relaxation on 9th June 2020, without subsequent 
interventions. The infection peaks are seen to increase with the 
increase in c . There is no significant difference in when the peaks 
appear, depending on c, as was the case for mitigation.

Table  3 shows how varying c affects the transmission rate, 
reproduction number, and infection. It is noted that as c increases, the 
peak infection and the reproduction number increase. Further increase 
in c leads to a situation where, for c = −0.8 or 80% relaxation, we have 
0 2 98= . , thus exceeding the basic reproduction number of 2.76. This 
reflects the fact that the rapid lifting of mitigation measures can result in 
an outbreak of faster spreading COVID-19, as has been reported in 
several countries since the outbreak of the disease. Public health advice 
is that mitigation measures should not be relaxed too rapidly. Table 3 also 
gives the infection at the end of the relaxation period, namely, 9th August 
2020. The model thus enables the planner to forecast, on 9th June 2020, 
the level of infection when relaxation ends.

To validate the model, we applied the methods in Section 2.3.4 to 
the relaxation data and obtained a relaxation fraction of c = −0.32. The 
result shows that the lifting of the mitigation measures introduced by 
the government led to an increase in the transmission rate by 32%, 
over that during the mitigation period, so that the optimum 
transmission rate during relaxation becomes βt  = 0.14113. The 
achieved percentage increase is almost halfway between the lowest 
scenarios, namely 20 and 40%, that the government had been advised 
to choose (27). The use of c  = −0.32, m  = 15  and β  = 0.10692 in 
Equations (8, 9) and subsequent solution of system (4) produced 
results that are compared to the data in Figure 6B. There was still some 
scatter in the data, and the quality of agreement of the model with the 
data was still affected.

3.2.3 Extended relaxation from 9th august 2020 
to 30th September 2020

The relaxation measures introduced on 9th June 2020 were 
intended to last for 2 months. However, no major changes in 
intervention were introduced after 8th August 2020. In Section 2.3.1, 
we  assumed that an intervention remains in effect until another 
intervention takes place. We consequently treated the period after 8th 
August 2020 as an extension of the relaxation period in Section 3.2.2. 
Therefore, the dynamics of the disease was governed by the optimum 
transmission rate during relaxation, namely, βt = 0.14113. The use of 
this value to solve Equations (4a-d) during this period yielded model 
results that are compared with the data in Figure 6C. There was little 
scatter of the data, and the model agreed quite well with the data, 
except towards the end. The divergence at the end was due to the 

second wave of COVID-19 that emerged in early September 2020. 
From that moment on, the dynamics of the disease was largely driven 
by the new variants of interest.

3.2.4 Consolidated results
The actual trajectory followed by the disease is obtained by 

combining various graphs (Figures 3A, 6A–C) to yield Figure 8 where 
the modelled 7-day moving averages of percent infection are 
compared with data. The agreement between the model and data is 
good, although there was noise in the data at some stages, particularly 
towards the beginning, when there was still a lot of uncertainty about 
the collection and processing of information about the new pandemic.

In Figure 9 we show graphs of the infection trajectories for the 
following three scenarios.

3.2.4.1 Scenario 1 (Baseline dynamics)
What would have happened if COVID-19 had erupted in Kenya 

on 13th March 2020 and had been allowed to spread without 
any intervention?

3.2.4.2 Scenario 2 (Baseline  +  mitigation dynamics)
What would have happened if COVID-19 had erupted in Kenya 

on 13th March 2020 and had spread without any intervention, but was 
followed by one-time mitigation on 9th April 9, 2020?

FIGURE 7

Infection percentages for various relaxation scenarios. Relaxation 
started on 9th June 2020. Solutions extend to stability. Incoming 
transmission rate, βb =  0.10692; recovery rate, γ =  0.053811; death 
rate, δ =  0.015.

TABLE 3 Scenarios involving changes in the fraction c under relaxation.

c β
0

% Peak 
infection

% Infection
8 August

0 0.10692 1.554 7.8 6.6

−0.1 0.11761 1.82 9.3 8.0

−0.2 0.12830 1.99 10.9 9.3

−0.4 0.14969 2.32 14.5 11.3

−0.6 0.17107 2.65 17.9 12.1

−0.8 0.19246 2.98 21.1 11.9

The following values are used; βb = 0.10692, γ = 0.053811, and δ = 0.015.
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3.2.4.3 Scenario 3 (Baseline  +  mitigation  +  relaxation 
dynamics)

What would have happened if COVID-19 had erupted in Kenya 
on 13th March 2020 and had spread without any intervention, but was 
followed by one-time mitigation on 9th April 2020 and one-time 
relaxation on 9th June 2020?

These graphs show how the infection peak is reduced due to 
mitigation and then raised due to relaxation, but not to the same level it 
could have reached if the disease had been allowed to spread without 
intervention. The third scenario occurred, as shown in Figure 8, but was 
interrupted by the emergence of the second wave in September 2020.

4 Conclusion

In this study, we developed a mathematical model for intervention 
that takes into account mitigation, which leads to a decrease in the 

disease transmission rate, and relaxation, which leads to an increase 
in the transmission rate. Previous researchers had developed models 
that could only handle mitigation. We computed the dynamics of 
COVID-19, using the SIRD model and baseline data of COVID-19 in 
Kenya and obtained parameter values that yielded a reproduction 
number, 0 2 76= . . This result agrees well with solutions by other 
methods (31). We focused on the case where the death rate was known 
so that we needed to estimate the transmission and recovery rate only. 
However, this method can be extended to estimate the death rate. Our 
model produces an infection curve that closely follows the observed 
trends. The model depends on the mitigation and relaxation fractions, 
which can be assigned to various scenarios while investigating the 
effects of intervention on disease infection. From the observed 
infection values, we validated the model by computing the mitigation 
and relaxation fractions. We determined that the mitigation measures 
enacted on 9th April 2020 resulted in a reduction of 43.7% of the 
disease burden from the baseline while there was an increase of 32% 
due to the relaxation measures enacted on 9th June 2020.

As currently formulated, the model does not detect sub-waves and 
spikes within the period of intervention. This is partly due to a 
constant intervention ratio. We propose to vary this ratio, according 
to fluctuations in the wave, to enable us to detect the sub-waves and 
spikes. It is also necessary to investigate how the model can 
be modified to allow accurate prediction of disease trends as data 
collection proceeds. Another area of investigation is how the model 
can be extended to detect the formation of the 2nd and subsequent 
waves and to simulate their development.
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