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Solving a fractional di�usion PDE
using some standard and
nonstandard finite di�erence
methods with conformable and
Caputo operators

Appanah R. Appadu*, Abey S. Kelil and

Ndifon Wikocho Nyingong

Department of Mathematics, Nelson Mandela University, Gqeberha, South Africa

Introduction: Fractional di�usion equations o�er an e�ective means of

describing transport phenomena exhibiting abnormal di�usion pat-terns, often

eluding traditional di�usion models.

Methods: We construct four finite di�erence methods where fractional

derivatives are approximated using either conformable or Caputo operators.

Results: Stability of the proposed schemes is analyzed using von Neumann

stability analysis, and conditions are established to preserve positivity.

Consistency analysis is performed for all methods, and numerical results

with fractional parameters (α) set to 0.75, 0.90, 0.95, and 1.0 are presented.

Discussion: The rate of convergence in time for the four methods is computed.

KEYWORDS

conformable derivative, Caputo derivative, finite di�erence method, consistency,

stability

1 Introduction

Fractional partial differential equations (FPDEs) are a generalization of classical partial

differential equations (PDEs) by incorporating fractional derivatives of arbitrary order,

providing a versatile framework for describing a broad range of phenomena in physical,

chemical, biological, and financial processes with anomalous transport mechanisms [1].

These equations capture non-local and non-linear aspects that are not captured by classical

PDEs [2]. Real-world physical models often entail substantial uncertainty arising from

numerous variables [3].

Solving FPDEs numerically poses challenges due to their inherently non-local and

non-linear nature [2, 4, 5].

A fractional diffusion equation can be expressed in the form [1]

0D
α
t u(x, t) =

∂2u(x, t)

∂x2
+ f (x, t), (1)

where t > 0, L ≤ x ≤ R, and 0 < α ≤ 1, with initial condition given by Equation 2:

u(x, 0) = ψ(x), (2)
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and boundary conditions: u(L, t) = f (t), and u(R, t) = g(t),

where 0D
α
t u(x, t) in Equation 1 is the Caputo fractional derivative

of order α, and is given by Equation 3 as follows:

aD
α
t u(x, t) =

1

Ŵ(m− α)

∫ t

a
(t − ξ )m−α−1 ∂

mu(x, ξ )

∂ξm
dξ , (3)

wherem − 1 < α < m, m ∈ N [6].

In the realm of FPDEs, diffusion equation via the Caputo

operator can be used in modeling transport of diffusion processes,

by offering a profound mechanism for describing memory and

hereditary properties of materials and processes. This aspect

is crucial for our work with a fractional diffusion experiment,

where the traditional integer-order models fall short in capturing

the complex dynamics of anomalous diffusion prevalent in

many natural and engineering systems. Incorporating the Caputo

operator allows for a more accurate representation of the non-local

and history-dependent behavior of diffusion processes, enhancing

the model’s ability to predict and analyze real-world scenarios

effectively [7, 8]. Furthermore, the insights from Awadalla et al.

[9] and Shaikh and Qureshi [10] shed some light on contributions

of the Caputo operator toward modeling complex dynamical

systems, including its application in fractional optimal control

models and bifurcation analysis of human syncytial respiratory

virus transmission dynamics. Awadalla et al. [9] showed the

operator’s efficacy in applications ranging from fractional optimal

control models to the bifurcation analysis of human respiratory

virus transmission dynamics, reinforcing the Caputo operator’s

indispensability in capturing some dynamics of such systems.

Mathematical modeling of pattern formation in coral reefs

using fractional differential equations shows an elegant approach

to capturing the complex dynamics of ecological systems [11].

Fractional models are particularly adept at describing phenomena

with memory effects and spatial heterogeneity, characteristics

inherent to ecological patterns observed in coral reefs. A fractional

partial differential equation modeling coral reef growth and

interaction can be expressed as [12]:

D
α
t N(x, t) = DN∇2βN(x, t)+ R(N,C)−M(N),

where N(x, t) represents the coral population density at location x

and time t, DN is the diffusion coefficient capturing the spread of

coral larvae, α and 2β denote the fractional orders of time and space

derivatives reflecting memory and spatial dispersal effects, R(N,C)

is the growth rate dependent on coral and nutrient concentration

C, and M(N) represents natural mortality. Such models allow

for understanding of how local interactions and environmental

conditions influence large-scale pattern formation, offering insights

into conservation strategies and reef resilience [13, 14].

Recent advancements in numerical methods for solving non-

linear partial differential equations (PDEs) encompass notable

techniques such as the optimal homotopy continuation method

[15], variational homotopy method [16], and a hybrid iterative

approach [17]. Qureshi et al. [18] used a three-step numerical

scheme showing ninth-order convergence in solving non-linear

equations. Comparative analyses revealed its superior efficiency

when compared to established schemes in computational science.

In addition, the authors, in [19], investigated a novel optimal

iterative algorithm with fourth-order accuracy tailored for root-

finding in real functions.

Analytic solutions of most FPDEs cannot be obtained explicitly.

In fact, the closed form solutions for many time-fractional

differential equations are not available [1, 20]. Some nonstandard

finite difference (NSFD) schemes were first devised by Mickens

[21].

The primary merit of the NSFD schemes lies in their ability

to overcome the inherent numerical instabilities associated with

classical finite difference methods [21]. The development of NSFD

methods adheres to some fundamental rules for its practical

implementation [22–26]:

(i) The order of discrete derivatives should match the order of the

corresponding derivatives in the given differential equation.

(ii) Discrete representations for derivatives typically involve non-

trivial denominator functions. For instance:

∂u

∂t
≈

Un
j+1 − Un

j

φ(k, λ)
,

where φ(k, λ) = k+O(k2).

Recently, NSFD methods have been constructed by many

researchers for solving differential equations. Agarwal and El-

Sayed proposed a nonstandard finite difference method and a

Chebyshev collocation method to solve a fractional order diffusion

equation [27]. Momani et al. [25] constructed a nonstandard

implicit Euler method for solving a class of fractional partial

differential equations. Tijani and Appadu [28] constructed an

unconditionally positive nonstandard finite difference scheme

for a mathematical model of biofilm formation on a medical

implant. The model employed uses the bistable Allen-Cahn partial

differential equation, which is a generalization of Fisher’s equation.

Appadu and Tijani [29] obtained the numerical solution of a 1-

D generalized Burgers-Huxley equation under specified initial and

boundary conditions, and they used Forward Time Central Space

(FTCS) and a nonstandard finite difference scheme. Agbavon and

Appadu [26] constructed a nonstandard finite difference schemes

to solve the FitzHugh-Nagumo equation with specified initial

and boundary conditions under three different regimes. Kehinde

et al. [30] obtained solution to a two-dimensional semilinear

singularly perturbed semilinear convection-diffusion problem by

constructing a nonstandard finite difference method. Jejeniwa

et al. [31] used three methods: the Kowalic-Murty scheme, Lax-

Wendroff scheme, and nonstandard finite difference (NSFD)

scheme, to solve 1D and 2D convective diffusion equations. They

looked at the cases when the advection velocity was much greater

than of the diffusion coefficient and when the coefficient of

diffusion was much greater than the advection velocity. They also

analyzed the dispersion properties of the three methods.

Fractional subdiffusion and superdiffusion are described by the

parameter α, which determines the anomalous nature of diffusion.

In subdiffusion, α ranges from 0 to 1 (0 < α < 1), indicating that

the mean squared displacement (MSD) increases slower than in

classical diffusion. This behavior is modeled by the time-fractional

diffusion equation:

∂αu

∂tα
= D∇2u,
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whereD is the diffusion coefficient and ∂α/∂tα represents a Caputo

derivative, which is used to incorporate memory effects into the

system [5]. This model is particularly relevant in biological and

environmental contexts where diffusion is hindered by physical

barriers and complex internal structures [32].

Conversely, for superdiffusion, the α values lie between 1

and 2 (1 < α < 2), where the MSD grows faster than it

does in normal diffusion, suggestive of long jumps and persistent

directional movement [33]. This dynamic is modeled by

∂u

∂t
= D∇αu,

where ∇α represents the fractional Laplacian of order α. This

equation is commonly applied in modeling dynamics driven by

long-range interactions, such as in environmental science for the

rapid spread of pollutants and in financial markets for capturing

the large fluctuations typical of stock prices and market indices

[34]. These applications are detailed in Anomalous Diffusion by

Metzler and Klafter, which explores the relevance of these models

in turbulent flows and financial markets [34]. See also [35] for

fractional Kinetic equations and [36] for some physical applications

of fractal operators.

This study is novel in many ways, and the study we carried out

is quite different from that by Stynes et al. [37]. Stynes et al. [37]

investigated the regularity of solutions for a general equation of the

form

D
α
t u−

∂2u

∂x2
+ c(x)u = f (x, t),

and obtained bounds for the L∞ error. They then constructed an

implicit classical finite difference scheme to solve three problems

described by the following equations:

(i) D
α
t u− ∂2u

∂x2
= 0,

(ii) D
α
t u− ∂2u

∂x2
+ (1+ x)u = t3 sin(x)+

Ŵ(4)

Ŵ(4− α)
t3−α sin(x),

(iii) D
α
t u− ∂2u

∂x2
+ (1+ x)u = x (π − x)

(

1+ t4
)

+ t2.

There is only one figure shown in the numerical profile for

problem 3 which they considered. They calculated the numerical

order of convergence using the implicit classical finite difference

scheme for α = 0.4, 0.6, and 0.8 and showed that r =
2− α
α

gives the optimal rate of convergence and that other values of α

cause some deviation between the theoretical and numerical rates

of convergence.

In this study, we have constructed four explicit finite difference

methods to solve one of the three problems considered by Stynes

et al. [37]. The first novelty is that such methods were not used

before to solve that problem. Second, we compared standard

and nonstandard finite difference methods using conformable

and Caputo operators with regard to the study of stability and

conditions for the following:

(i) Positivity,

(ii) Consistency analysis,

(iii) Numerical profiles at some different values of temporal step

sizes with spatial step size π
64 ,

(iv) CPU times,

(v) Numerical rate of convergence.

There are many concluding remarks on this study, as described

below. We find that FTCSCO and NSFDCO give issues with the

numerical rate of convergence. FTCSCA and NSFDCA are quite

reliable methods to solve the problem we considered.

We show that the range of values of the time step size (at

a given spatial step size of π
64 ) for preservation of positivity

is almost similar to that for stability for the NSFDCA scheme.

The stability analyses of FTCSCA and NSFDCA are not very

straightforward as the expressions for the amplification factors are

quite complicated.

The organization of this study is briefly explained. In Section

2, the problem chosen is elaborated upon. Section 3 provides

background information on conformable and Caputo fractional

order derivatives. In Section 4, we derive the FTCSCO scheme,

a finite difference scheme employing the conformable derivative.

A comprehensive investigation into the stability and consistency

analyses of the FTCSCO scheme is conducted. Section 5 introduces

the NSFDCO scheme; a nonstandard finite difference scheme

utilizing the conformable approximation. A thorough study

on the positivity condition and consistency of the NSFDCO

scheme is presented. Sections 6, 7 focus on construction of two

novel finite difference schemes, incorporating FTCS and Caputo

approximations (referred to as FTCSCA), and NSFD combined

with Caputo approximations to derive a scheme known to be

NSFDCA. In Section 8, we present results and tabulate the

numerical rate of convergence in time. Conclusion is provided in

Section 9.

2 Considered problem

The homogeneous time-fractional diffusion equation [5] is

given by Equation 4 below:

∂αu

∂tα
= K

∂2u

∂x2
, (4)

where 0 < α ≤ 1, 0 ≤ x ≤ L, with boundary conditions given by

Equation 5:

u(0, t) = u(L, t) = 0, where t > 0. (5)

We note that K is the diffusion coefficient, L is the length of the

domain, and α is the fractional order derivative.

In this study, we solve the non-homogeneous time-fractional

diffusion equation [37] given by Equation 6:

D
α
t u−

∂2u

∂x2
+ (1+ x)u = x (π − x)

(

1+ t4
)

+ t2, (6)

where x ∈ [0,π], t ∈ (0, 1], with the initial condition and boundary

conditions given by Equations 7 and 8 respectively:

u(x, 0) = sin(x) (7)

u(0, t) = 0, u(π , t) = 0. (8)

We chose the spatial step size as1x = π
64 . The spatial and temporal

step sizes are denoted by h and k, respectively.

We note there is no known exact solution for this problem.
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The numerical rate of convergence RT is calculated

as [28, 38, 39]

RT =

ln
( εk

ε k
2

)

ln(2)
,

and the discrete maximum norm errors given by Equation 9:

εk = ‖Uk − U2k‖, and ε k
2
= ‖Uk − U2k‖ (9)

Luchko [40] has proved the existence and uniqueness of a

classical solution to the PDE

D
α
t u− p

∂2u

∂x2
+ c(x)u = f (x, t).

Stynes et al. [37] considered the problem in Equation 6, where

the Caputo derivative is approximated by L1 scheme and a classical

finite difference operator is used to discretize ∂2u
∂x2

. They derived

bounds on the L∞ error and obtained the L∞ errors when α =
0.2, 0.4, 0.6, and 0.8.

We should point out here that our numerical simulations were

conducted using a Dell computer equipped with a Windows 11

operating system. The system specifications include an Intel Core

i5 processor and 256 GB of RAM, with 8 GB of memory.

3 Fractional derivatives

There exist several definitions of fractional derivatives of order

α > 0, with the most widely used being the Riemann-Liouville

(RL), Caputo, and conformable fractional derivatives [cf. [5, 41–

44]].

Definition 1. The Riemann-Liouville fractional integral is defined

as follows by Equation 10:

Jαt f (t) =
1

Ŵ(α)

∫ t

0
(t − τ )α−1f (τ ) dτ , (10)

where α > 0 and Ŵ(α) =
∫ ∞

0
xα−1e−x dx is the Euler Gamma

function [cf. [1]].

Definition 2. The Caputo time-fractional derivative operator of
order α > 0 (m− 1 < α ≤ m, m ∈ N) for a real-valued function
u(x, t) is defined as follows [6] by Equation 11:

0D
α
t u(x, t) = Jm−α

t

[ ∂mu(x, t)

∂tm

]

, (11)

=











1
Ŵ(m−α)

∫ t

0
(t − y)m−α−1 ∂

mu(x, y)

∂ym
dy, m− 1 < α ≤ m,

∂mu(x,t)
∂tm , α = m.

Similarly, the Caputo space-fractional derivative operator

aD
α
x u(x, t) of order α > 0 (m− 1 < α ≤ m),m ∈ N can be defined

[43, 45]. It is worth noting that if u is sufficiently smooth [46], the

fractional derivative Dα
t u recovers the typical first-order derivative

u′(t) as α → 1− [45].

Definition 3. [41] For a function g :[0,∞] → R, the conformable

fractional derivative of g of order α is defined by

D
α
{

g(z)
}

= lim
η→0

(

g(z + ηz1−α)− g(z)

η

)

. (12)

Fundamental concepts and properties of conformable calculus

are detailed in [41], and it is noteworthy that the conformable

derivative is chosen to preserve some classical properties of

standard calculus [42]. Given that other popular fractional

derivatives such as Caputo and Riemann-Liouville lack certain

natural properties of derivatives, including product rule, quotient

rule, and chain rule, some authors, such as Khalil et al. [41]

and Abdelwajad [42], motivate the study of the conformable

derivative to fill these gaps and maintain some natural properties

of derivatives [cf. [1, 45]].

Abdelwajad [42] approximated the time-fractional derivative

using conformable approximation:

∂αu(x, t)

∂tα
≃ k1−α

∂u

∂t
. (13)

We next prove Equation 13. Using Equation 12, we have

Equation 14.

∂αu(t)

∂tα
= lim
η→0

(

U(t + ηt1−α)− U(t)

η

)

. (14)

Let k = η t1−α . This gives Equation 15 and the steps involved are

shown:

∂αu(t)

∂tα
= lim

k→0
t1−α

(

U(t + k)− U(t)

k

)

= t1−α lim
k→0

(

U(t + k)− U(t)

k

)

= t1−α
∂U(t)

∂t
. (15)

Hence, we can approximate ∂αu(x,t)
∂tα by k1−α

[

Un+1
i − Un

i

k

]

, if

we choose to use a forward difference approximation for ∂u
∂t in

Equation 13.

For further study on conformable fractional derivatives,

interested readers are referred to the following studies:

[41, 42, 47, 48].

4 Forward time central space scheme
using conformable operator (FTCSCO)

4.1 Derivation of FTCSCO

We consider Equation 6. We first approximate ∂αu(x,t)
∂tα

using conformable operator and then use central difference

approximations to discretize ∂2u
∂x2

. This gives the following scheme

which we term as “Forward in Time Central in Space finite
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difference method using conformable operator” abbreviated as

FTCSCO and described by Equation 16:

k1−α

(

Un+1
i − Un

i

k

)

−
Un
i+1 − 2Un

i + Un
i−1

h2
+ (1+ xi)U

n
i

= xi (π − xi)
(

1+ (tn)
4
)

+ (tn)
2. (16)

This gives

Un+1
i − Un

i −
kα

h2

(

Un
i+1 − 2Un

i + Un
i−1

)

+ (1+ xi)U
n
i k
α

= kα · xi (π − xi)
(

1+ (tn)
4
)

+ kα(tn)
2. (17)

Equation 17 is rewritten as

Un+1
i = Un

i +
kα

h2

(

Un
i+1 − 2Un

i + Un
i−1

)

− (1+ xi)U
n
i k
α

+ kα · xi (π − xi)
(

1+ (tn)
4
)

+ kα(tn)
2. (18)

4.2 Stability of the FTCSCO scheme

To study the stability of the FTCSCO scheme, we consider

Equation 6 with source term being 0. The scheme we consider is

given by Equation 19:

Un+1
i = Un

i +
kα

h2

(

Un
i+1 − 2Un

i + Un
i−1

)

− (1+ xi)k
αUn

i . (19)

We use the ansatz Un
i = ξneIiθh = ξneIiω where ξ is the

amplification factor, θ is the wave number, ω = θh, and I =
√
−1

[49]. This gives Equation 20

ξ = 1+
2kα

h2

(

cos(ω)− 1
)

− (1+ xi)k
α . (20)

We obtain 3D plots of |ξ | vs. ω ∈ [−π ,π] vs. x ∈ [0,π] for the

4 cases: α = 0.75, 0.90, 0.95, and 1.0 in Figure 1 with h = π
64 .

We start with a very small value of k, say 10−8 and increase

gradually until |ξ | is no longer less or equal to 1.0. We find the

maximum value of k for stability. The results are shown in Table 1.

One can also use the approach of Hindmarsh et al. [50] to obtain

range of k for stability of the FTCSCO scheme to solve Equation 6.

We present the results using FTCSCO using k close to

maximum k for stability and a lower value of k when h = π
64 in

Figure 2.

4.3 Consistency of the FTCSCO scheme

We consider Equation 18 and obtain Taylor’s series expansion

about (tn, xi). This gives

U + kUt +
k2

2
Utt +

k3

6
Uttt +O(k4)+ (1+ xi)Uk

α

= U +
kα

h2

[

(

U + hUx +
h2

2!
Uxx +

h3

3!
Uxxx +

h4

4!
Uxxxx +O(h5)

)

− 2U +
(

U − hUx +
h2

2!
Uxx −

h3

3!
Uxxx +

h4

4!
Uxxxx +O(h5

)

)

]

+ kα ·
[

xi (π − xi)
(

1+ t4n
)

+ t2n

]

,

which gives

kUt +
k2

2
Utt +O(k3) =

kα

h2

[

h2Uxx +
2h4

4!
Uxxxx +O(h6

)

]

+ kα ·
[

xi (π − xi)
(

1+ t4n
)

+ t2n

]

− (1+ xi) · U · kα . (21)

If we multiply both sides of Equation 21 by k−α , we obtain

Equation 22

k1−αUt +
k2−α

2
Utt +O

(

k3−α
)

=
1

h2

[

h2Uxx +
h4

12
Uxxx +O

(

h6
)

]

+
[

xi (π − xi)
(

1+ t4n
)

+ t2n

]

− (1+ xi) · U.

(22)

Since ∂αU(x,t)
∂tα ≃ k1−α ∂U

∂t , we therefore rewrite Equation 22 as

Equation 23:

∂αU

∂tα
=
∂2U

∂x2
− (1+ x)U +

(

x (π − x)
(

1+ t4
)

+ t2
)

+O
(

h2
)

+O
(

k2−α
)

. (23)

Thus, FTCSCO scheme is consistent with the PDE given by

Equation 6 and is accurate of order (2 − α) in time and of order

2 in space, respectively.. For α = 0.75, 0.90, 0.95, and 1.0, the

theoretical rates of convergence in time of FTCSCO scheme are

1.25, 1.1, 1.05, and 1, respectively.

4.4 Numerical results using FTCSCO

Figure 2 illustrates 3D plots of the numerical solution vs. x for

t ∈ [0, 1.0] at two values of time step sizes when h = π
64 .

As we increase α, the peak of the numerical solution decreases.

The profiles are different when α changes.

In the following section, we present a nonstandard finite

difference scheme employing conformable derivatives. We tabulate

the numerical rate of convergence in Tables 2–5. To ensure stability,

we varied the value of k around the maximum for stability and

opted for a lower value of k when h = π
64 .

5 Nonstandard finite di�erence
scheme using conformable operator
(NSFDCO)

Mickens is the architect of nonstandard finite difference

methods, and the rules for the construction of these methods are

given in [21]. We construct a new scheme denoted as NSFDCO

scheme. We first approximate the fractional derivative using

conformable operators, and then, nonstandard finite difference

approximations are used to approximate the derivatives. The

NSFDCO scheme is given by

k1−α

(

Un+1
i − Un

i

φ(k)

)

−
Un
i+1 − 2Un

i + Un
i−1

(

ψ(h)
)2

= (tn)
2 + xi (π − xi)

(

1+ (tn)
4
)

− (1+ xi)U
n
i , (24)
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FIGURE 1

3D plot of |ξ | vs. ω ∈ [−π ,π ] vs. x ∈ [0,π ] to find range of values of k for stability when h =
π

64
. (A) α = 0.75, k = 1.0× 10−8. (B)

α = 0.75, k = 1.0× 10−4. (C) α = 0.90, k = 1.0× 10−8. (D) α = 0.90, k = 2.0× 10−5. (E) α = 0.95, k = 1.0× 10−8. (F) α = 0.95, k = 8.0× 10−5. (G)

α = 1.0, k = 1.0× 10−8. (H) α = 1.0, k = 1.0× 10−4.
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TABLE 1 Range of values of k for stability when h =
π

64
at four di�erent

values of α using FTCSCO scheme.

Case Value of fractional
parameter α

Interval of k for
stability.

Case 1 0.75 k ∈ (0, 1.0× 10−4]

Case 2 0.90 k ∈ (0, 2.0× 10−5]

Case 3 0.95 k ∈ (0, 8.0× 10−5]

Case 4 1.0 k ∈ (0, 1.0× 10−4]

where φ(k) = ek − 1 and ψ(h) = 1− e−h.

By multiplying Equation 24 by φ(k) · kα−1, we obtain

Equation 25 and Equation 26

Un+1
i = Un

i −

(

φ(k) · kα−1

(

1− e−h
)2

)

(Un
i+1 − 2Un

i + Un
i−1)

+ (tn)
2φ(k) · kα−1 + φ(k)xi (π − xi)

(

1+ (tn)
4
)

· kα−1

− (1+ xi) · φ(k) · kα−1Un
i . (25)

Un+1
i =

[

1−
2φ(k) · kα−1

(

1− e−h
)2

− (1+ xi)φ(k) · kα−1

]

Un
i

+

(

φ(k) · (k)α−1

(

1− e−h
)2

)

(Un
i+1 + Un

i−1)

+ (tn)
2φ(k) · (k)α−1 + φ(k)xi (π − xi)

(

1+ (tn)
4
)

· (k)α−1.

(26)

5.1 Positivity condition of the NSFDCO
scheme

We choose h = π
64 . The range of k for NSFDCO to preserve

positivity of solution of the continuous model must satisfy the

inequality given by Equation 27:

1−
2φ(k) · (k)α−1

(

1− e−h
)2

− (1+ xi)φ(k) · kα−1 ≥ 0, (27)

where φ(k) = ek − 1 and xi ∈ [0,π].

Table 6 gives the range of values of k for which NSFDCO

preserves positivity of solution of the continuous model when h is

chosen as π
64 .

We note that for NSFD-based methods, the condition(s)

for positivity is/are, in general, similar to condition(s) for

stability [24].

5.2 Numerical results using NSFDCO

Since the numerical rate of convergence using FTCSCO and

NSFDCO is not close to the theoretical rate of convergence

for α = 0.75, 0.90, and 0.95 as depicted in Tables 2–4, we

propose to construct other methods where fractional derivative

are approximated by Caputo operators. We propose to construct

FTCSCA and NSFDCA. FTCSCA is obtained by approximating

fractional derivative using Caputo operators, and then, forward

difference approximation is used for approximating ∂u
∂t and a

central difference approximation is used for ∂
2u
∂x2

.

6 Forward time central space scheme
using caputo operator (FTCSCA)

6.1 Derivation of FTCSCA

To numerically solve Equation 6, we use an explicit forward

in time and central in space finite difference scheme. We first

approximate the time-fractional derivative using Caputo operators

and then use forward difference approximations for ∂u
∂t and second-

order central difference approximations for ∂
2u
∂x2

.

Murio [51] derived an implicit scheme for a time-fractional

diffusion equation. He approximated ∂αu
∂tα at the point (tn, xi) as

follows:

∂αu(xi, tn)

∂tα
=

1

Ŵ(1− α)

∫ tn

0

∂u(xi, t)

∂t

1

(tn − t)α
dt

=
1

Ŵ(1− α)

n
∑

j=1

∫ jk

(j−1)k

[

U
j
i − U

j−1
i

k
+2(k)

]

(

nk− t
)−α

dt

=
1

Ŵ(1− α)

n
∑

j=1

{(

U
j
i − U

j−1
i

k

)

[ (nk− t)−α+1

−(1− α)

]t=jk

t=(j−1)k

}

+
1

Ŵ(1− α)

n
∑

j=1

{

[ (nk− t)−α+1

−(1− α)

]t=jk

t=(j−1)k

}

·2(k),

After some mathematical steps, it can be shown that [52]

∂αu(xi, tn)

∂tα
≃

k−α

Ŵ(2− α)

n
∑

j=1

{

(

U
j
i − U

j−1
i

)

·
[

(

n− j+ 1
)1−α −

(

n− j
)1−α

]

}

.

Appadu and Kelil [52] approximated ∂αu(xi ,tn)
∂tα in a different

way to Murio [51], and they obtained an explicit scheme in doing

so. The authors in [52] approximated ∂αu(xi ,tn)
∂tα as described briefly

below.

∂αu(xi, tn)

∂tα

=
1

Ŵ(1− α)

n
∑

j=1

{

∫ jk

(j−1)k

[

U
j+1
i − U

j
i

k
+2(k)

]

(

nk− τ
)−α

dτ

}

.

After some steps, they obtained [52]

∂αu(xi, tn)

∂tα
≃

1

Ŵ(2− α)
k−α

n
∑

j=1

(

U
j+1
i − U

j
i

)

·

[

(

n− j+ 1
)1−α −

(

n− j
)1−α

]

.

=
k−α

Ŵ(2− α)
(

Un+1
i − Un

i

)

+
k−α

Ŵ(2− α)

{

n−1
∑

j=1

(

U
n−j+1
i − U

n−j
i

)

[

(j+ 1)1−α − j1−α
]

}

.

(28)
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FIGURE 2

3D plots of numerical solution vs. x ∈ [0,π ] vs. t ∈ [0, 1] using FTCSCO scheme at h = π
64
. (A) α = 0.75, k = 1.0× 10−4. (B) α = 0.75, k = 1.0× 10−5.

(C) α = 0.90, k = 2.0× 10−5. (D) α = 0.90, k = 2.0× 10−6. (E) α = 0.95, k = 5.0× 10−5. (F) α = 0.95, k = 5.0× 10−6. (G) α = 1.0, k = 1.0× 10−4.

(H) α = 1.0, k = 1.0× 10−5.
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TABLE 2 Numerical rate of convergence in time for the four schemes

using α = 0.75 at time 1.0.

Time
step (k)

Value of εk Numerical rate of convergence
in time (FTCSCO)

1.0× 10−4 − −

5.0× 10−5 1.460912×10−2 −

2.5× 10−5 1.255425×10−2 0.218693

1.25× 10−5 1.075254×10−2 0.223497

Time
step (k)

Value of εk Numerical rate of convergence
in time (NSFDCO)

1.0× 10−4 − −

5.0× 10−5 1.419285×10−2 −

2.5× 10−5 1.219344×10−2 0.2190597

1.25× 10−5 1.044096×10−2 0.2238504

Time
step (k)

Value of εk Numerical rate of convergence
in time (FTCSCA)

Using Equation 28, FTCSCA when used to discretize Equation 6 is

given by

k−α

Ŵ(2− α)
(

Un+1
i − Un

i

)

+
k−α

Ŵ(2− α)

n−1
∑

j=1

(

U
n−j+1
i − U

n−j
i

)

[

(j+ 1)1−α − j1−α
]

−
Un
i+1 − 2Un

i − Un
i−1

h2
+ (1+ xi)U

n
i

= xi (π − xi)
(

1+ (tn)
4
)

+ (tn)
2. (29)

Multiplying Equation 29 by kα Ŵ(2− α) gives

Un+1
i − Un

i +
n−1
∑

j=1

(

U
n+1−j
i − U

n−j
i

)

[

(j+ 1)1−α − j1−α
]

− kα Ŵ(2− α)
(

Un
i+1 − 2Un

i + Un
i−1

h2

)

+ kα · Ŵ(2− α) · (1+ xi) · Un
i

= kα Ŵ(2− α)xi(π − xi)[1+ (tn)
4]

+ kα Ŵ(2− α)(tn)2. (30)

Equation 30 can be rewritten as

Un+1
i = Un

i −
n−1
∑

j=1

(

U
n+1−j
i − U

n−j
i

)

[

(j+ 1)1−α − j1−α
]

+ kα Ŵ(2− α)
(

Un
i+1 − 2Un

i + Un
i−1

h2

)

− kα Ŵ(2− α)(1+ xi)U
n
i

+ kα Ŵ(2− α)xi(π − xi)[1+ (tn)
4]

+ kα Ŵ(2− α)(tn)2. (31)

TABLE 3 Numerical rate of convergence in time for the four schemes

using α = 0.90 at time 1.0.

Time
step (k)

Value of εk Numerical rate of convergence
in time (FTCSCO)

1.0× 10−4 − −

5.0× 10−5 1.602861×10−2 −

2.5× 10−5 1.549841×10−2 0.048529

1.25× 10−5 1.495561×10−2 0.051434

Time
step (k)

Value of εk Numerical rate of convergence
in time (NSFDCO)

1.0× 10−4 − −

5.0× 10−5 1.566740×10−2 −

2.5× 10−5 1.514415×10−2 0.049005

1.25× 10−5 1.460798×10−2 0.052004

Time
step (k)

Value of εk Numerical rate of convergence
in time (FTCSCA)

5.0× 10−4 − −

2.5× 10−4 1.902791×10−4 −

1.25× 10−4 9.711961×10−5 0.970282

6.25× 10−5 4.948724×10−5 0.972706

Time
step (k)

Value of εk Numerical rate of convergence
in time (NSFDCA)

5.0× 10−4 − −

2.5× 10−4 1.568253×10−4 −

1.25× 10−4 8.036684×10−5 0.964486

6.25× 10−5 4.109778×10−5 0.967540

Remark 1. For the case α = 1.0, we obtain the scheme given by

Equation 32:

Un+1
i = Un

i +
k

h2

(

Un
i+1 − 2Un

i + Un
i−1

)

− k (1+ xi)U
n
i

+ kxi(π − xi)
[

1+ (tn)
4
]

+ k (tn)
2. (32)

6.2 Stability of FTCSCA scheme

To study the stability, we consider the following scheme given

by Equation 33:

Un+1
i = Un

i −
n−1
∑

j=1

(

U
n+1−j
i − U

n−j
i

)

[

(j+ 1)1−α − j1−α
]

+ kα Ŵ(2− α)
(

Un
i+1 − 2Un

i + Un
i−1

h2

)

− kα Ŵ(2− α)(1+ xi)U
n
i . (33)

We substitute Un
i by ξneIθ ih or ξneIiω , where ω = θh, to obtain

ξn+1eIiω = ξneIiω −
n−1
∑

j=1

(

ξn+1−j − ξn−j
) [

(j+ 1)1−α − j1−α
]

eIiω

+
kα

h2
Ŵ(2− α) ξneIiω

(

eIω − 2+ e−Iω
)

− kα Ŵ(2− α) (1+ xi) ξ
n eIiω . (34)
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TABLE 4 Numerical rate of convergence in time for the four schemes

using α = 0.95 at time 1.0.

Time
step (k)

Value of εk Numerical rate of convergence
in time (FTCSCO)

1.0× 10−4 − −

5.0× 10−5 9.301334×10−3 −

2.5× 10−5 9.243480×10−3 0.009002

1.25× 10−5 9.182398×10−3 0.0095652

Time
step (k)

Value of εk Numerical rate of convergence
in time (NSFDCO)

1.0× 10−4 − −

5.0× 10−5 9.126345×10−3 −

2.5× 10−5 9.070112×10−3 0.0089168

1.25× 10−5 9.009024×10−3 0.0097495

Time
step (k)

Value of εk Numerical rate of convergence
in time (FTCSCA)

5.0× 10−4 − −

2.5× 10−4 1.676281×10−4 −

1.25× 10−4 8.529786×10−5 0.974683

6.25× 10−5 4.336865×10−5 0.975857

Time
step (k)

Value of εk Numerical rate of convergence
in time (NSFDCA)

5.0× 10−4 − −

2.5× 10−4 1.342722×10−4 −

1.25× 10−4 6.860288×10−5 0.968819

6.25× 10−5 3.501196×10−5 0.970422

Dividing Equation 34 by eIiω , we obtain

ξn+1 = ξn−
n−1
∑

j=1

(

ξn+1−j − ξn−j
) [

(j+ 1)1−α − j1−α
]

+
kα

h2
Ŵ(2− α) ξn (2 cos(ω)− 2)

− kα Ŵ(2− α) (1+ xi) ξ
n. (35)

On fixing n = 3 in Equation 35, we get Equation 36:

ξ 4 = ξ 3−
2
∑

j=1

(

ξ 4−j − ξ 3−j
) [

(j+ 1)1−α − j1−α
]

+
kα

h2
Ŵ(2− α) ξ 3 (2 cos(ω)− 2)

− kα Ŵ(2− α) (1+ xi) ξ
3. (36)

Case 1: We choose h = π
64 and α = 0.75 and obtain solutions for

the amplification factor when xi = 0, π4 ,
π
2 ,

3π
4 , π .

We have four solutions for ξ say ξ1, ξ2, ξ3, and ξ4 when xi = 0. We

then obtain 3D plots of |ξ1| vs. k vs. ω ∈ [−π ,π] and find range of

k such that |ξ1| ≤ 1.

We repeat the process with |ξ2|, |ξ3|, and |ξ4|. For stability, we need
|ξ1| ≤ 1, |ξ2| ≤ 1, |ξ3| ≤ 1, |ξ4| ≤ 1 and in that situation, we need

0 < k ≤ 0.000134.

TABLE 5 Tabulation comparing the numerical schemes’ CPU time at

maximum possible value of k with h =
π

64
.

Methods Values of α Values of
k used

CPU time in
seconds

0.75 1.25× 10−4 1.005395

0.90 5.70× 10−4 0.691415

FTCSCO 0.95 8.00× 10−4 0.482748

1.0 1.20× 10−3 0.462948

0.75 1.20× 10−4 0.07226

NSFDCO 0.90 5.20× 10−4 0.079250

0.95 8.00× 10−4 0.083445

1.0 1.14× 10−3 0.021394

0.75 1.0× 10−4 634.464881

0.90 5.50× 10−4 21.099736

FTCSCA 0.95 8.40× 10−4 8.385330

1.0 1.20× 10−3 0.293575

0.75 1.20× 10−4 912.419123

0.90 5.00× 10−4 24.960356

NSFDCA 0.95 8.50× 10−4 8.017095

1.0 1.20× 10−3 0.238868

We then change the value of xi and repeat the same steps. We still

obtain 0 < k ≤ 0.000134 for stability.

For the cases 2, 3, and 4, we change the value of the fractional

parameter α and repeat the steps as done for Case 1 to obtain the

range of k for stability.

We would like to point out that we could not work with a larger

n as this cause the solution for the amplification factor to be too

complicated and long. Moreover, Maple in that situation is not able

to give explicit solutions for ξ when n > 3.

6.3 Consistency of FTCSCA

We now rewrite the scheme in Equation 31 as

Un+1
i = Un

i −

[

(Un
i − Un−1

i )(21−α − 11−α)

+ (Un−1
i − Un−2

i )(31−α − 21−α)

+ (Un−2
i − Un−3

i )(41−α − 31−α)+ · · · + (U2
i − U1

i )

(n1−α − (n− 1)1−α)

]

+
kα

h2
Ŵ (2− α)

[

Un
i+1 − 2Un

i + Un
i−1

]

− kα Ŵ (2− α)(1+ xi)U
n
i

+ kα Ŵ (2− α)xi(π − xi)[1+ (tn)
4]+ kα Ŵ (2− α)(tn)2.

(37)

Expanding Equation 37 using Taylor series expansion
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TABLE 6 Range of values of k for NSFDCO to be positivity preserving.

Case The fractional
parameter α

Range of k for scheme to be
positivity preserving when
h = π

64 .

Case 1 0.75 k ∈ (0, 1.20× 10−4]

Case 2 0.90 k ∈ (0, 5.40× 10−4]

Case 3 0.95 k ∈ (0, 8.00× 10−4]

Case 4 1.0 k ∈ (0, 1.14× 10−3]

U + kUt +
k2

2!
Utt +

k3

3!
Uttt + · · · = U −

{

[

U − (U − kUt +
k2

2
Utt −

k3

6
Uttt + . . . )

]

(21−α − 11−α)

+
[

(U − kUt +
k2

2
Utt −

k3

6
Uttt + . . . )− (U − 2kUt +

(2k)2

2
Utt −

(2k)3

6
Uttt)

]

(31−α − 21−α)+
[

[U − 2kUt +
(2k)2

2
Utt −

(2k)3

6
Uttt]− (U − 3kUt +

(3k)2

2
Utt −

(3k)3

6
Uttt)

]

(41−α − 31−α)+ · · ·+
(

[

U − (n− 2)kUt +
((n− 2)k)2

2
Utt −

((n− 2)k)3

6
Uttt

]

−

[

U − (n− 1)kUt +
((n− 1)k)2

2
Utt −

((n− 1)k)3

6
Uttt

]

)

(n1−α − (n− 1)1−α)

}

+

kα

h2
Ŵ (2− α)

[

U + hUx +
h2

2
Uxx +

h3

6
Uxxx − 2U + U − hUx +

h2

2
Uxx −

h3

6
Uxxx

]

−kα Ŵ (2− α)(1+ xi)U + kα Ŵ (2− α)xi(π − xi)(1+ (tn)
4)+ kα Ŵ (2− α)(t2n).

(38)

We simplify Equation 38 to get Equation 39:

U + kUt +
k2

2
Utt +

k3

6
Uttt + . . . = U −

{

(

kUt −
k2

2
Utt +

k3

6
Uttt + . . .

)

(21−α − 11−α)

+
(

kUt −
3k2

2
Utt +

7k3

6
Uttt + . . .

)

(31−α − 21−α)

+
(

kUt −
5k2

2
Utt +

19k3

6
Uttt + . . .

)

(41−α − 31−α)+ . . .

+
(

kUt −
(2n− 3)

2
Utt +

3n2 − 9n+ 7

6
Uttt + . . .

)

(n1−α − (n− 1)1−α)

}

+
kα

h2
Ŵ (2− α)

(

h2Uxx +O(h4)
)

− kα Ŵ (2− α)(1+ xi)U
n
i

+ kα Ŵ (2− α)xi(π − xi)(1+ (tn)
4)+ kα Ŵ (2− α)(tn)2. (39)

Further simplification gives

kUt +
k2

2
Utt +

k3

6
Uttt + · · · = −kUt(n

1−α − 11−α)

− k2Utt

(

21−α − 11−α

2
+ 3

31−α − 21−α

2
+

5

2
(41−α − 31−α)+ . . .

)

+
kα

h2
Ŵ (2− α)h2Uxx +O(h2kα)− kα Ŵ(2− α)(1+ xi)U

n
i

+ kα Ŵ(2− α)xi (π − πi)(1+ (tn)
4)+ kα Ŵ(2− α)(tn)2. (40)

Dividing Equation 40 by Ŵ (2− α) kα to get Equation 41:

k(1−α)n(1−α)Ut/Ŵ(2− α)− Uxx + (1+ xi)U

= xi (π − xi)(1+ (tn)
4)+ (tn)

2 +O(h2)+O(k2−α). (41)

Thus, the scheme is accurate of order 2 in space and of order

(2− α) in time. We display profiles in Figure 4.

6.4 Numerical results using FTCSCA

The rate of convergence in time for FTCSCA displayed in

Tables 2–4 (for α = 0.75. 0, 90, and 0.95 ) are close to the theoretical

rate of convergence, hence a major advantage of FTCSCA over

FTCSCO and NSFDCO. We therefore construct NSFDCA with

hope that its numerical rate of convergence will also be close to

theoretical one and that it will be easy to obtain condition for

scheme to be positivity preserving as it is constructed using some

nonstandard finite difference techniques.

7 Nonstandard finite di�erence
scheme using caputo operator
(NSFDCA)

7.1 Derivation of NSFDCA

We derive the nonstandard finite difference scheme where

the fractional derivative is approximated by Caputo’s operator,

and then, nonstandard finite difference techniques are used to

approximate
∂u

∂t
and

∂2u

∂x2
.

We first obtain an approximation for ∂
αu(xi ,tn)
∂tα in Equation 42.

NSFDCA when used to discretize Equation 6 is given by

Equation 43
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FIGURE 3

3D plots of numerical solution vs. x ∈ [0,π ] vs. t ∈ [0, 1] using NSFDCO scheme. (A) α = 0.75, k = 1.0× 10−4. (B) α = 0.75, k = 1.0× 10−5. (C)

α = 0.90, k = 5.0× 10−4. (D) α = 0.90, k = 5.0× 10−5. (E) α = 0.95, k = 8.0× 10−4. (F) α = 0.95, k = 8.0× 10−5. (G) α = 1.0, k = 1.0× 10−3. (H)

α = 1.0, k = 1.0× 10−4.
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FIGURE 4

3D plots of numerical solution vs. x ∈ [0,π ] vs. t ∈ [0, 1] at h = π
64

using FTCSCA. (A) α = 0.75, k = 1.0× 10−4. (B) α = 0.75, k = 5.0× 10−5. (C)

α = 0.90, k = 5.0× 10−4. (D) α = 0.90, k = 5.0× 10−5. (E) α = 0.95, k = 8.0× 10−4. (F) α = 0.95, k = 8.0× 10−5. (G) α = 1.0, k = 1.0× 10−3. (H)

α = 1.0, k = 1.0× 10−4.
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∂αu(xi, tn)

∂tα
=

1

Γ (1− α)

∫ tn

0

∂u(xi, τ )

∂τ
(tn − τ )−αdτ , where tn = nk,

=
1

Ŵ(1− α)

n
∑

j=1

{

∫ jk

(j−1)k

[

U
j+1
i − U

j
i

φ(k)
+2(k)

]

(

nk− τ
)−α

dτ

}

=
1

Ŵ(1− α)

n
∑

j=1

{[

U
j+1
i − U

j
i

φ(k)
+2(k)

]

∫ jk

(j−1)k

(

nk− τ
)−α

dτ

}

=
1

(1− α) Ŵ(1− α)

n
∑

j=1

{(

U
j+1
i − U

j
i

φ(k)
+2(k)

)

[

− (nk− τ )−α+1
]τ=jk

τ=(j−1)k

}

≃
k1−α

Ŵ(2− α)

(

Un+1
i − Un

i

φ(k)

)

+
k1−α

Ŵ(2− α)

n−1
∑

j=1

(

U
j+1
i − U

j
i

φ(k)

)

·
[

(

n− j+ 1
)1−α −

(

n− j
)1−α

]

,

≃
k1−α

Ŵ(2− α)
Un+1
i − Un

i

φ(k)

+
k1−α

Ŵ(2− α) · φ(k)

n−1
∑

j=1

(

U
j+1
i − U

j
i

)

·
[

(

n− j+ 1
)1−α −

(

n− j
)1−α

]

,

≃
k1−α

φ(k)

1

Ŵ(2− α)
(

Un+1
i − Un

i

)

+
k1−α

φ(k)

1

Ŵ(2− α)

n−1
∑

j=1

(

U
n+1−j
i − U

n−j
i

)

·
[

(

j+ 1
)1−α −

(

j
)1−α

]

. (42)

k1−α

φ(k)

1

Ŵ(2− α)
(

Un+1
i − Un

i

)

+
k1−α

φ(k)

1

Ŵ(2− α)

n−1
∑

j=1

(

U
n+1−j
i − U

n−j
i

)

·
[

(

j+ 1
)1−α −

(

j
)1−α

]

−
Un
i+1 − 2Un

i + Un
i−1

[

ψ(h)
]2

+ (1+ xi)U
n
i

= xi(π − xi)(1+ (tn)
4)+ (tn)

2, (43)

where φ(k) = ek − 1 and ψ(h) = 1 − e−h. Using Equation 43, we

get Equation 44

Un+1
i = Un

i −
n−1
∑

j=1

(

U
n+1−j
i − U

n−j
i

)

·
[

(

j+ 1
)1−α −

(

j
)1−α

]

,

+
φ(k) Ŵ(2− α)

k1−α

(

Un
i+1 − 2Un

i + Un
i−1

[

ψ(h)
]2

)

−
φ(k) Ŵ(2− α)

k1−α
(1+ xi)U

n
i

+
φ(k) Ŵ(2− α)

k1−α
xi(π − xi)

[

1+ (tn)
4
]

+
φ(k) Ŵ(2− α)

k1−α
(tn)

2. (44)

Remark 2. For α = 1.0, we obtain the scheme as

Un+1
i = Un

i + φ(k)

(

Un
i+1 − 2Un

i + Un
i−1

[

ψ(h)
]2

)

− φ(k) (1+ xi)U
n
i

+ φ(k) xi(π − xi)
[

1+ (tn)
4
]

+ φ(k) (tn)2. (45)

7.2 Stability of NSFDCA scheme

To study the stability, we consider the following scheme given

by Equation 46:

Un+1
i = Un

i −
n−1
∑

j=1

(

U
n+1−j
i − U

n−j
i

)

·
[

(

j+ 1
)1−α −

(

j
)1−α

]

+
φ(k) Ŵ(2− α)

k1−α
Un
i+1 − 2Un

i + Un
i−1

[

ψ(h)
]2

−
φ(k) Ŵ(2− α)

k1−α
(1+ xi)U

n
i . (46)

We substitute Un
i by ξneIθ ih or ξneIiω , where ω = θh, to obtain

Equation 47:

ξn+1eIiω = ξneIiω − eIiω
n−1
∑

j=1

(

ξn+1−j − ξn−j
) [

(j+ 1)1−α − j1−α
]

+
φ(k) Ŵ(2− α)

k1−α
ξneIiω

(

eIω − 2+ e−Iω
)

[ψ(h)]2

−
φ(k)

k1−α
Ŵ(2− α) (1+ xi) ξ

n eIiω . (47)

Dividing Equation 47 by eIiω , we obtain

ξn+1 = ξn −
n−1
∑

j=1

(

ξn+1−j − ξn−j
) [

(j+ 1)1−α − j1−α
]

+
φ(k)

k1−α
Ŵ(2− α)

ξn

[ψ(h)]2

(

2 cos(ω)− 2
)

−
φ(k)

k1−α
Ŵ(2− α) (1+ xi) ξ

n. (48)
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On fixing n = 3 in Equation 48, we Equation 49

ξ 4 =ξ 3 −
2
∑

j=1

(

ξ 4−j − ξ 3−j
) [

(j+ 1)1−α − j1−α
]

+
φ(k) Ŵ(2− α)

k1−α
ξ 2

[ψ(h)]2

(

2 cos(ω)− 2
)

−
φ(k) Ŵ(2− α)

k1−α
(1+ π)ξ 3. (49)

Case 1: We choose h =
π

64
and α = 0.75 and obtain solutions for

the amplification factor when xi = 0,
π

4
,
π

2
,
3π

4
, π . We have 4

solutions for ξ , say ξ1, ξ2, ξ3, ξ4 when xi = 0.

We then obtain 3D plots of |ξ1| vs. k vs. ω ∈ [−π ,π] and find the

range of k such that |ξ1| ≤ 1. We repeat the process with |ξ2|, |ξ3|,
|ξ4|.
For stability, we need |ξ1| ≤ 1, |ξ3| ≤ 1 , |ξ4| ≤ 1 and for case 1, we

have 10−7 < k ≤ 1.25× 10−4.

We then change the values of xi and repeat the steps. We find

that the range of vlaues of k for stability is unchanged; that is,

10−7 < k ≤ 1.25× 10−4.

Cases 2 and 3:

For these cases, we change the values of the fractional parameter

and repeat the required steps to obtain range of values of k when

h = π
64 for α = 0.90 and 0.95.

For case 4, we use scheme given by Equation 45 and obtain range of

values of k for stability.

The results are summarized in Table 7.

7.3 Condition for positivity preserving

We consider the NSFDCA scheme, which is given by

Un+1
i =

[

1−
2φ(k) Ŵ(2− α)
k1−α[ψ(h)]2

−
φ(k) Ŵ(2− α)(1+ xi)

k1−α

]

Un
i +

[

φ(k) Ŵ(2− α)
k1−α[ψ(h)]2

]

Un
i+1

+
[

φ(k) Ŵ(2− α)
k1−α[ψ(h)]2

]

Un
i−1 +

[

φ(k) Ŵ(2− α)
k1−α

]

(tn)
2

+
[

φ(k) Ŵ(2− α)
k1−α

]

xi (π − xi)
[

1+ (tn)
4
]

−
n−1
∑

j=1

(

U
n+1−j
i − U

n−j
i

)

·
[

(

j+ 1
)1−α −

(

j
)1−α

]

. (50)

We express

n−1
∑

j=1

(

U
n+1−j
i − U

n−j
i

)

·
[

(

j+ 1
)1−α −

(

j
)1−α

]

= (Un
i − Un−1

i )[21−α − 11−α]+ (Un−1
i − Un−2

i )[31−α − 21−α]

+ (Un−2
i − Un−3

i )[41−α − 31−α]+ . . .
+ (U3

i − U2
i )((n− 1)1−α − (n− 2)1−α)+ (U2

i − U1
i )(n

1−α − (n− 1)1−α)

= Un
i

(

21−α − 1
)

− Un−1
i

(

21−α − 1
)

+ Un−1
i

(

31−α − 21−α
)

− Un−2
i

(

31−α − 21−α
)

+ Un−2
i

(

41−α − 31−α
)

+ Un−3
i

(

41−α − 31−α
)

+ . . .− U2
i

(

(n− 1)1−α − (n− 2)1−α
)

+ U2
i

(

n1−α − (n− 1)1−α
)

− U1
i

(

n1−α − (n− 1)1−α
)

. (51)

Using Equation 51, we rewrite Equation 50 as

TABLE 7 Range of values of k for stability for the NSFDCA scheme at

some fixed values of α when h =
π

64
.

Value of α Range of value of k for which
NSFDCA is stable when h = π

64 .

0.75 k ∈ (10−7 , 1.25× 10−4]

0.90 k ∈ (10−7 , 5.60× 10−4]

0.95 k ∈ (10−7 , 8.60× 10−4]

1.0 k ∈ (0, 1.20× 10−3]

TABLE 8 Range of values of k for stability for the NSFDCA scheme at

some fixed values of α when h =
π

64
.

Value of α Range of value of k for which
NSFDCA is stable when h = π

64 .

0.75 k ∈ (10−7 , 1.05× 10−4]

0.90 k ∈ (10−7 , 5.40× 10−4]

0.95 k ∈ (10−7 , 8.20× 10−4]

1.0 k ∈ (0, 1.20× 10−3]

We rewrite

n−1
∑

j=1

(

U
n+1−j
i − U

n−j
i

)

·
[

(

j+ 1
)1−α −

(

j
)1−α

]

as

Un
i

(

21−α − 1
)

+ Un−1
i

(

31−α − 2 · 21−α + 1
)

Un−2
i

(

41−α − 2 · 31−α + 21−α
)

+ · · · + U2
i

(

n1−α − 2(n− 1)1−α + (n− 2)1−α
)

.

Hence, the NSFDCA scheme from Equation 50 can be rewritten as
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Un+1
i =

[

1−
2φ(k) Ŵ(2− α)
k1−α[ψ(h)]2

−
φ(k) Ŵ(2− α)(1+ xi)+ 1− 21−α

k1−α

]

Un
i

+
[

φ(k) Ŵ(2− α)
k1−α[ψ(h)]2

]

Un
i+1 +

[

φ(k) Ŵ(2− α)
k1−α[ψ(h)]2

]

Un
i−1

+
[

φ(k) Ŵ(2− α)
k1−α

]

xi(π − xi)
[

1+ (tn)
4
]

+
[

φ(k) Ŵ(2− α)
k1−α

]

(tn)
2

+ Un−1
i

(

2 · 21−α − 31−α − 1
)

+ Un−2
i

(

2 · 31−α − 41−α − 21−α
)

.

.

.

+ U2
i

(

2 · (n− 1)1−α − (n)1−α − (n− 2)1−α
)

. (52)

From Equation 52, we find that the coefficients of Un
i+1,

Un
i−1 and Un−1

i , Un−2
i , · · · , U2

i along with the expressions
[

φ(k) Ŵ(2− α)
k1−α

]

xi(π−xi)
[

1+ (tn)
4
]

, and

[

φ(k) Ŵ(2− α)
k1−α

]

(tn)
2

are non-negative, using Maple software.

Hence, we require

1−
2φ(k) Ŵ(2− α)
k1−α[ψ(h)]2

−
φ(k) Ŵ(2− α)
k1−α(1+ xi)

+ 1− 21−α

for the scheme to be positivity preserving. Table 8 gives range of

values of k for scheme to be positivity preserving.

7.4 Consistency of NSFDCA

To check the consistency of the NSFDCA scheme
(Equation 45), we first need to rewrite the scheme as Equation 53:

Un+1
i = Un

i −
n−1
∑

j=1

(

U
n+1−j
i − U

n−j
i

)

·
[

(

j+ 1
)1−α −

(

j
)1−α

]

+
φ(k) Ŵ(2− α)

k1−α

(

Un
i+1 − 2Un

i + Un
i−1

[

ψ(h)
]2

)

−
φ(k) Ŵ(2− α)

k1−α
(1+ xi)U

n
i

+
φ(k) Ŵ(2− α)

k1−α
xi(π − xi)

[

1+ (tn)
4
]

+
φ(k) Ŵ(2− α)

k1−α
(tn)

2. (53)

We can express this scheme as

Un+1
i = Un

i − (Un
i − Un−1

i )[21−α − 11−α]

+ (Un−1
i − Un−2

i )[31−α − 21−α]

+ (Un−2
i − Un−3

i )[41−α − 31−α]+ . . .
+ (U2

i − U1
i )(n

1−α − (n− 1)1−α)

+
φ(k)

[ψ(h)]2 k1−α
Ŵ (2− α)

[

Un
i+1 − 2Un

i + Un
i−1

]

−
φ(k)Ŵ (2− α)

k1−α
(1+ xi)U

n
i

+
φ(k) Ŵ(2− α)

k1−α
xi(π − xi)

[

1+ (tn)
4
]

+
φ(k) Ŵ(2− α)

k1−α
(tn)

2. (54)

By expanding Equation 54 using Taylor series, we obtain

U + kUt +
k2

2!
Utt +

k3

3!
Uttt + . . .

= U −
[

(U − kUt +
k2

2!
Utt −

k3

3!
Uttt + . . . )

]

[21−α − 11−α]

+
[

(U − kUt +
k2

2!
Utt −

k3

3!
Uttt + . . . )

−(U − 2kUt +
(2k)2

2!
Utt −

(2k)3

3!
Uttt+)

]

[31−α − 21−α]

+
[

[U − 2kUt +
(2k)2

2!
Utt −

(2k)3

3!
Uttt]

−(U − 3kUt +
(3k)2

2!
Utt −

(3k)3

3!
Uttt)

]

[41−α − 31−α]

+
φ(k)

[ψ(h)]2 k1−α

[

U + hUx +
h2

2!
Uxx +

h3

3!
Uxxx

−2U + U − hUx +
h2

2!
Uxx −

h3

3!
Uxxx

]

+
φ(k) Ŵ(2− α)

k1−α
xi(π − xi)

[

1+ (tn)
4
]

+
φ(k) Ŵ(2− α)

k1−α
(tn)

2.

(55)

We simplify Equation 55 using the approximationsψ(h) = 1−
e−h ≈ h for small h, while retaining the function φ(k) = ek−1 ≈ k,

which yields Equation 56 shown below:

U + kUt +
k2

2!
Utt +

k3

3!
Uttt + . . .

= U −
[

(kUt −
k2

2
Utt +

k3

6
Uttt + . . . )

]

[21−α − 11−α]

+
[

(kUt −
3k2

2
Utt +

7k3

6
Uttt + . . . )

]

[31−α − 21−α]

+
[

(kUt −
5k2

2
Utt +

19k3

6
Uttt + . . . )

]

[41−α − 31−α]

+ . . .

+
(

kUt −
(2n− 3)

2
Utt + . . . ..

)

(n1−α − (n− 1)1−α)

+
kα

h2
Ŵ (2− α)(h2Uxx +O(h4))− kα Ŵ (2− α)(1+ xi)U

n
i

+ kα Ŵ (2− α)xi (π − πi)(1+ (tn)
4)+ kα Ŵ (2− α)(tn)2. (56)

Further simplification gives

kUt +
k2

2!
Utt +

k3

3!
Uttt + · · · = −kUt(n

1−α − 11−α)

+ k2Utt

(

21−α − 11−α

2
+ 3

31−α − 21−α

2

+
5

2
(41−α − 31−α)+ . . .

)

+
kα

h2
Ŵ (2− α)h2Uxx +O(h2kα)− kα Ŵ(2− α)(1+ xi)U

n
i

+ kα Ŵ(2− α)xi (π − πi)(1+ (tn)
4)+ kα Ŵ(2− α)(tn)2.

(57)
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FIGURE 5

3D plots of numerical solution using NSFDCA vs. x ∈ [0,π ] vs. t ∈ [0, 1] with h = π
64
. (A) α = 0.75, k = 1.0× 10−4. (B) α = 0.75, k = 5.0× 10−5. (C)

α = 0.90, k = 5.0× 10−4. (D) α = 0.90, k = 5.0× 10−5. (E) α = 0.95, k = 8.0× 10−4. (F) α = 0.95, k = 8.0× 10−5. (G) α = 1.0, k = 1.0× 10−3. (H)

α = 1.0, k = 1.0× 10−4.
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TABLE 9 Range of values of k for stability of FTCSCA when h =
π

64
at four

di�erent values of α.

Value of α Range of value of k for which FTCSCA
is stable when h = π

64 .

0.75 k ∈ (0, 1.34× 10−4]

0.90 k ∈ (0, 5.85× 10−4]

0.95 k ∈ (0, 8.60× 10−4]

1.0 k ∈ (0, 1.20× 10−3]

Dividing Equation 57 by Ŵ (2 − α) kα−1φ(k), we obtain

Equation 58

n1−α k1−α

Ŵ(2− α)
Uαt − Uxx + (1+ xi)U = xi (π − πi)(1+ (tn)

4)

+ (tn)
2 +O(h2)+O(k2−α).

(58)

Thus, the NSFDCA scheme is accurate of order 2 in space

and of order (2 − α) in time. We also point out that the idea

to prove consistency for both Caputo-based schemes shares a

similar approach.

7.5 Numerical results using NSFDCA

The results using NSFDCA are displayed in Figure 5.

8 Numerical rate of convergence for
the four schemes.

8.1 Discussion of results

Figures 2–5 present 3D plots of of numerical solutions using

FTCSCO, NSFDCO, FTCSCA, and NSFDCA schemes. These

figures illustrate the variations across the spatial domain x ∈ [0,π]

and time interval, namely, t ∈ [0, 1], respectively.

Tables 1, 6, 7, and 9 gives the range of values of k for stability

using FTCSCO, NSFDCO, FTCSCA, and NSFDCA schemes when

h = π
64 .

Remark 3. We note that for α = 0.75, the FTCSCO and NSFDCO

methods exhibit remarkably similar convergence rates, affirming

the robustness of these approaches. However, the FTCSCA and

NSFDCA methods demand significantly more computational time

to determine the temporal rate of convergence at α = 0.75

and t = 1.0. This heightened computational requirement likely

stems from the intricate summative expressions employed to

approximate the Caputo fractional derivative in both the FTCSCA

and NSFDCA schemes.

Table 3 shows the temporal numerical rate of convergence

obtained from the four numerical methods using h = π
64 and α =

0.90, whereas Table 4 illustrates the numerical rate of convergence

when α = 0.95.

Table 5 presents a comparison of computational times at the

maximum value of k for stability with a step size of h = π
64 . It

is pertinent to note that in each scenario, the iteration count is

precisely maintained as an integer.

Our findings indicate a markedly quicker computational

performance of the NSFDCO scheme in comparison with the

FTCSCO, under identical conditions of k and h. The NSFDCA

and FTCSCA schemes demonstrate approximately equivalent CPU

times for the same parameter configurations.

Furthermore, the analysis conducted on the numerical rate of

convergence reveals a closely matched performance between the

FTCSCO and NSFDCO schemes, a pattern that is echoed in the

comparison between NSFDCA and FTCSCA.

9 Conclusion

In this study, we have constructed four methods, namely,

FTCSCO, FTCSCA, NSFDCO, and NSFDCA, to solve a time-

fractional diffusion partial differential equation with specified

initial and boundary conditions, and considered five different

values for the fractional parameter. Analyses of stability and

consistency of the methods were done, and CPU times were

computed. Numerical profiles vs. x vs. t were displayed. The

numerical results obtained from these different schemes provide

valuable insights into their performance and convergence behavior.

From the analysis of NSFDCO, we conclude that it offers an

easily obtainable condition for positivity with significantly lower

CPU time compared to FTCSCO. While both schemes exhibit

similar profiles, for smaller coefficients of Uxx, FTCSCO may

introduce dispersive oscillations and potential blow-up.

FTCSCA, utilizing previous time levels Caputo operator,

provides a more accurate representation of non-local and history-

dependent diffusion processes. Although stability is somehow not

easy, with n = 3, we identified an approximate stability range for

k at h = π
64 . However, due to the complexity of ξ , explicit solution

beyond n = 3 remains elusive. That is, it is not possible to use n > 3

due to ξ being very complex and long expression for ξ and Maple

cannot solve explicitly for ξ .

NSFDCA, focusing on stability and preserving the positivity

of solutions, demonstrates comparable CPU times to FTCSCA

for α close to 1.0. It is anticipated to exhibit less susceptibility

to non-physical oscillations than FTCSCA, particularly for small

coefficients of dissipation and stiff problems.

We note that dispersion analysis of explicit finite difference

methods discretizing fractional partial differential equations using

conformable and Caputo approximations is not straightforward as

conformable approximation involves an approximation and hence

a source of error. Moreover, the amplification factor gets very

complicated when we construct an explicit FDM with Caputo

approximation.

In our future study, we will delve into scenarios involving

coefficients of dissipation much smaller than 1, obtaining

solution for which intila profiles is still, pattern formations in

coral reefs, and employing alternative operators to approximate

fractional derivatives. These endeavors aim to further enhance our

understanding and application of fractional diffusion schemes in

diverse scientific contexts.
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