
Frontiers in Applied Mathematics and Statistics 01 frontiersin.org

Covariate adjusted nonparametric 
methods under propensity 
analysis
Jiabu Ye1 and Dejian Lai2*
1Merck and Co., Inc., Kenilworth, NJ, United States, 2Department of Biostatistics and Data Science, 
School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, United 
States

Propensity score is one of the most commonly used score functions in adjusting 
for covariates effect in statistical inference. It is important to understand the 
impact with propensity score in case some of the prespecified covariates are 
severely imbalanced. In this article, we  performed simulation evaluation the 
empirical type 1 error and empirical power under scenario of imbalanced 
covariates in several nonparametric two sample tests with propensity score 
or with other covariate adjustments. Our results suggest common propensity 
score approaches might have type 1 error inflation at scenarios with severe 
imbalanced covariates or model is mis-specified.
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Introduction

Adjusting covariates is important not only in observational studies but also in clinical 
trials. Both United States Food and Drug Administration (FDA) and European Medicines 
Agency (EMA) have recently published guidelines for covariate adjustment (1–4). Covariate 
adjustment could minimize the impact of covariate imbalance and improve the efficiency of 
estimation. The commonly used covariate adjusting approaches include matching, 
stratification, and regression covariates methods. In practice, it is problematic when there 
are many confounding covariates need to be adjusted for. In this case, matching based on 
many covariates is not practical. Too many stratifications are also not helpful as the number 
of covariates increases, the number of subclasses grows exponentially. Regression or 
ANOCVA may have potential problem of over-fitting. And with unbalanced experiments 
with treatment effect, overfitting or misspecification of the outcome model could decrease 
precision (5).

Many efforts in previous studies were put into reducing the multiple dimensions of 
covariates into one dimensional scores. Propensity score is one of the most commonly used 
score functions in adjusting for covariates effect. Propensity score simultaneously balance 
many covariates in two treatment groups and thus reduce the bias (6). Limited research of 
propensity scores methods in randomized trials with primarily focused on inverse propensity 
score weighting (7). In recent clinical trials under real-time-review pathway, it becomes a 
critical issue to adjust covariates when comparing investigational compound with historical 
trial data where there will be severe covariate imbalance and propensity score methods may 
be potential choices for the analyses. It is important to understand the impact with these 
propensity score approaches in case some of the prespecified covariates are 
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severely imbalanced.
In this study, we  applied propensity score approaches in 

nonparametric two sample comparison tests and compared with other 
covariates adjusted approaches in the empirical type I error rate and 
empirical power.

Methodology

Propensity score methods

Let Zi  be  an indicator variable denoting the treatment 
received by subject i and Xi  be baseline covariates for subject i. The 
propensity score was defined as the probability of treatment 
assignment conditioned on observed baseline covariates: 
e Z Xi i i= =( )Pr 1|  (6). The propensity score is used to balance data. 
When subjects between the two groups have the same propensity 
score, we may assume they have the same baseline covariates. The 
propensity score methods have been widely used in both clinical 
trials and in retrospective studies. There are several methods used 
to estimate the propensity score. The most commonly used 
approach to estimate propensity score use logistic regression and 
treat treatment assignment as response variable and key baseline 
covariates as covariates. There are also several alternative 
approaches in estimating propensity (8–10).

Propensity score matching

Propensity score matching forms sets of treated and untreated 
subjects which share similar value of the propensity score (6). 
Propensity score matching implements one to one matching. Once the 
matched pairs have been formed, the treatment effect could 
be estimated by directly comparing outcomes between treated and 
untreated subjects in the matched sample.

There are different approaches to form matched pairs. The first 
consideration is either matching without replacement or matching 
with replacement. The second choice is chosen from greedy matching 
or optimal matching (11).

The selection of untreated subject whose propensity score is the 
closest to that of treated subject could be  accomplished by the 
following methods: nearest neighbor matching and nearest neighbor 
matching within a specified caliper distance (6).

Propensity score stratification

Propensity score stratification stratifies subjects into mutually 
exclusive subsets based on the estimated propensity score value. 
Increasing the number of strata improves bias reduction with 
diminishing reduction in bias (12). Usually quintiles are preferred for 
adjusting confounders by dividing subjects into equal sizes (6, 12).

Within each stratum, the effect of treatment on outcomes can 
be estimated by comparing outcomes directly between treated and 
untreated subject. The overall treatment effect could be estimated by 
pool over the stratum specific treatment effect. In general, stratum 
specific estimates of effect are weighted by the proportion of subjects 
in that stratum (13). A pooled estimate of variance of average 
treatment effect could be estimated by pooling the variances estimation.

Inverse propensity score weighting

Inverse propensity score weighting (IPSW) was first proposed by 
Rosenbaum (14). More propensity score weighting schemes were 
studied (15).

Let Zi  be an indicator variable denoting whether the ith subject 
was treated; furthermore, let ei  denote the propensity score for the ith 
subject. When studies are interested in estimating average treatment 
effect (ATE) the average treatment effect is then defined as
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When studies are interested in estimating average treatment effect 
for treated, the average treatment effect for treated (ATT) is then 
defined as
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The weight may be less accurate or unstable when the subjects 
have low probability of receiving treatment. The ATE is the average 
treatment effect at population, removing an entire population from 
untreated to treated. The ATT is the average treatment effect on the 
subjects who received treatment. In non-randomized studies, ATT 
may be of greater interest when there are barriers for treatment being 
considered, while ATE may be of greater interest when there is no 
such concern. In randomized studies, these two measures of treatment 
effects coincide due to randomization, and the treated population does 
not differ systematically from overall population.

Propensity score regression

The outcome variable is regressed on a binary variable of 
treatment assignment and the estimated propensity score. Depending 
on the nature of outcome variable, the model can be  specified 
accordingly. For continuous outcome, a linear model may be selected 
(16, 17).

Covariate adjustments

The following covariate adjusted tests are evaluated at different 
covariate imbalanced scenarios for empirical type I error rate and 
empirical power.

T test

T test compare the response variable without covariate adjustment.

Wilcoxon rank sum test

Wilcoxon Rank Sum Test (18, 19) on the response variable 
without covariate adjustment. Wilcoxon Rank Sum test in its 
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original form assumes that data is from two independent random 
variables with similar shape across the two groups. It is a common 
practice that Wilcoxon Rank Sum test can also be  applied to 
residuals from models although the residuals may not 
be exactly independent.

Jaeckel, Hettmansperger-McKean test 
adjusted for treatment variable only

Jaeckel, Hettmansperger-McKean test (20, 21) is a rank based 
linear regression test. It assumes a linear regression model: 
Y X ei i i= + +β β0

'
, where Xi  is a vector of covariates. In this 

approach, the linear model is written as Y = + +β β0 1Trt e . Therefore, 
no other covariates are included.

Multiple covariates ANCOVA adjusted 
Wilcoxon rank sum test

Assume a linear model between response variable Y , and 
treatment variable Trt , and other covariates X

 Y = + + +β β β0 1Trt X e'  (3)

Trt =1 , if treated, and Trt = 0 , otherwise. After fitting the 
ANCOVA approach to adjust for other covariates X , the adjusted 
linear model between adjusted response variable 'Y , and treatment 
variable Trt  is:

 ' 0 1Y Y X Trt eβ β β′= − = + + ′

 (4)

Wilcoxon Rank Sum Test is applied to adjusted response outcome 
'Y  with null hypothesis β1 0= .

Propensity score ANCOVA adjusted 
Wilcoxon rank Sum test

First, the propensity score Pi  was computed as 
P Trt Xi i i= =( )Pr 1| . Logistic regression is: used to compute the 
propensity score.

A linear regression model between response variable Y , and 
treatment variable Trt , and propensity score Pi

 Yi iTrt P e= + + +β β β0 1 2  (5)

After fitting the ANCOVA approach to adjust for the propensity 
score, the new linear model is:

 Y Yi i iP Trt e′ = − = + + ′β β β


2 0 1  (6)

Wilcoxon Rank Sum Test is applied to adjusted response 
variable 'Y .

Propensity score (excluding strata variable) 
adjusted Wilcoxon rank sum test

This approach is similar to ANCOVA(p)-WRS except the strata 
variable is not used in calculating propensity score.

Adjusting covariate effect based on 
Jaeckel’s rank estimation and Wilcoxon 
rank Sum test for treatment effect

In this approach, we adjust for covariate effect first for each 
individual subjects and Y Y Xi

adj
i i X= − β



. β


X  is the solution to 
minimize the corresponding dispersion function 

D Y Trt XJ i i Trt i X− −














′

β β
  . Then the Wilcoxon Rank Sum Test is 

applied to estimate treatment effect.

Jaeckel, Hettmansperger-McKean test 
adjusted for multiple covariates

In this approach, the regression model is Y = + + +β β β0 1Trt P ei , 
because treatment variable is also included in the regression model. The 
null hypothesis for test is β1 0= , and remaining β  not specified. β 1  is 
estimated such that a dispersion function 
D Y Trt X a R Y Trt XJ i i i i i i i− −( ) = ∑ ( )( ) − −( )′ ′β β β β β1 1 , where 
Ri β( )  is the rank of Y Trt Xi i i− − ′β β1  and ( )⋅a  is non-decreasing rank 
score function. And the test statistic is the difference of the dispersion 
function under null hypothesis and the dispersion function under 
alternative hypothesis adjusted by number of parameters and scales.

Jaeckel, Hettmansperger-McKean test 
adjusted for propensity score

The propensity score Pi  is computed first. Here, we assume a 
linear regression model, Y = + + +β β β0 1 2Trt P ei . The null 
hypothesis for test is β1 0= . β



1  is estimated in the similar way as 
JHM(x) and the test statistic is computed as the difference of the 
dispersion function under null hypothesis and the dispersion function 
under alternative hypothesis. Similar to JHM(x), the test statistic is a 
function of difference of the realization of dispersion function under 
null hypothesis and the alternative hypothesis.

Aligned Jaeckel, Hettmansperger-McKean 
test adjusted for propensity score 
(excluding strata variable)

In this approach, a strata variable is also included in the true 
model and the true model under this approach is.

 Y = + + + +′β β β β0 1 2Trt X X es  (7)

The null hypothesis for test is β1 0= , and remaining β  not 
specified. In this approach, the strata effect is aligned first before Jaeckel, 
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Hettmansperger-McKean Test. The response variable is adjusted by 
alignment within each strata and the kth strata effect is estimated by the 

Walsh average δ i , δ
+  = ≤ = … 

  

 , 1, ,
2

i j
i

Y Y
median i j n , here n  is 

number of subjects in kth strata and δ= −
align
iiiY Y , where Yi  is subjects 

in the kth strata. β 1  is estimated such that a dispersion function 

D Y Trt X a R Y Trt XJ i
align

i i i i
align

i i− −( ) = ∑ ( )( ) − −( )′ ′β β β β β1 1 .

Quintile stratification of propensity score, 
then aligned rank test

The propensity score is stratified based on its quintile. The 
covariate effect is adjusted by alignment within each strata and the kth 
strata effect is estimated by the Walsh average δ



i , 

δ
+  = ≤ = … 

  

 , 1, ,
2

i j
i

Y Y
median i j n

, here n  is number of subjects in 
kth strata and δ= − align

iiiY Y , where Yi  is subjects in the kth strata. 
Then, Wilcoxon Rank Sum Test are performed on the aligned 
response. In the Simulation 2, the strata variable is excluded in 
computing propensity score.

Inverse propensity score weighted aligned 
rank test

In this approach, a strata variable is also included in the true 
model and the true model under this approach is.

 Y = + + + +′β β β β0 1 2Trt X X es  (8)

In the first modified test, the stratum variable is not used in 
calculating propensity score. This is suitable for the cases where 
clinical centers are defined as stratum.

( )= =Pr 1|i i iP Trt X . Suppose nk  subjects in stratum k. 
Y Y Ymn m n≡ +( ) / 2 , Y Ym n> , m n nk, ∈  subjects)

w
P Trt P Trt P Trt P Trtmn
m m m m n n n n

≡
−( ) −( ) +

×
−( ) −( ) +

1
1 1

1
1 1

 
(9)

Each wmn  is one to one correspond to Ymn.  The Stratum 
effect + ∆ =   



2
m n

i
Y Y

medw .

= − ∆align
iiY Y . After alignment, Wilcoxon rank sum test are 

performed on theYi
align . We denote this as WAR.

Inverse propensity score weighted aligned 
rank test

In the previous case, the two propensity scores for different 
individuals are assumed to be independent. This independence may 

be invalid for two individuals within the same stratum. The correlation 
for two individuals within stratum may need adjustment.

A natural way is to redefine P Trt X Xi i i si= =( )Pr ,1| . The 
following procedures are exactly the same as in the previous case. 
We denote this as WAR2.

Quintile stratification of propensity score, 
then van Elteren test

van Elteren test is a stratified Wilcoxon Rank Sum Test. Suppose 
we are interested in two groups of response ( )− ∆1 ~ij iX F X  for 
j = 1,…, ni1  and ( )δ− ∆ −2 ~ij i iX F X  for j = 1,…, ni2 , where ( )⋅F  
is the distribution function for the response variable of interest, ni1
and ni2  are the numbers of observations in stratum i for group 1 and 
group 2. ∆i  is the location effect of stratum i, and δi  is the group 
effect (or treatment effect) in stratum i. The null hypothesis is δi = 0  
for all strata. The alternative is at least one strata δi ≠ 0 . The test 
statistic is:
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11 .

As n ni i1 2, →∞ , the test statistic follows N 0 1,( )  asymptotically. 
In this approach, the propensity score Pi  is computed. The strata 
variable is then created based on quintile of Pi .Simulation settings

The first motivation for this simulation study is to evaluate the 
validity of various approaches for adjusting multiple covariates effects 
under linear regression setting. The second motivation is to compare 
the power of valid tests with rank regression test under linear 
regression setting. Two sets of simulations are performed. In the first 
set of simulations two normal covariates X X1 2and  and treatment 
variable Trt  are included. The following covariates adjusting tests 
are evaluated:

 1 T Test (TT);
 2 Wilcoxon Rank Sum Test (WRS);
 3 Jaeckel, Hettmansperger-McKean Test adjusted for multiple 

covariates [JHM(x)];
 4 Jaeckel, Hettmansperger-McKean Test adjusted for propensity 

score [JHM(p)];
 5 Multiple covariates ANCOVA adjusted Wilcoxon Rank Sum 

Test [ANCOVA(x)-WRS];
 6 Propensity score ANCOVA adjusted Wilcoxon Rank Sum Test 

[ANCOVA(p)-WRS];
 7 Quintile stratification of propensity score, then aligned rank 

test [AR(p5)];
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 8 Quintile stratification of propensity score, then van Elteren test 
[VE(p5)]

In the second set of simulation, there is one extra binary strata 
variable. The following covariates adjusting tests are evaluated:

 1 T Test (TT);
 2 Wilcoxon Rank Sum Test (WRS);
 3 Jaeckel, Hettmansperger-McKean Test with only treatment 

variable [JHM(n)];
 4 Jaeckel, Hettmansperger-McKean Test adjusted for multiple 

covariates [JHM(x)];
 5 Jaeckel, Hettmansperger-McKean Test adjusted for propensity 

score [JHM(p)];
 6 Aligned Jaeckel, Hettmansperger-McKean Test adjusted for 

propensity score (excluding strata variable) [JHM(x)2];
 7 Multiple covariates ANCOVA adjusted Wilcoxon Rank Sum 

Test [ANCOVA(x)-WRS];
 8 Propensity score ANCOVA adjusted Wilcoxon Rank Sum Test 

[ANCOVA(p)-WRS];
 9 Propensity score (excluding strata variable) adjusted Wilcoxon 

Rank Sum Test [ANCOVA(p)2-WRS];
 10 Inverse propensity score weighted aligned rank test (WAR);
 11 Inverse propensity score weighted aligned rank test (WAR2);
 12 Quintile stratification of propensity score (excluding strata 

variable), then aligned rank test [AR(p5)];
 13 Quintile stratification of propensity score (excluding strata 

variable), then van Elteren test [VE(p5)]

Simulation 1: two normal covariate and 
linear regression setting

In the first simulation, two normal covariates are included for 
adjusting. The simulation is through following steps:

 1 Simulate population of 10,000 subjects with outcome Y , 
treatment variable Trt , and covariates X1  and X2  Trt  
follow Bernoulli 0 5.( )  distribution and the covariates X1  and 
X2  follow standard normal distribution.

 2 Both scenarios with outlier and without outliers are simulated. 
In the scenarios of no outlier, error follow Normal ,0 1

16






.  In 

the scenarios of outliers, error follow Normal ,0 1
16







  with 

80% chance and follow Normal ,0 10
16







  with 20% chance.

 3 Compute outcome Y  through true model 

Y ei i i i ib b Trt b X b X= + + + +0 1 2 1 3 2 . b0  is set to 0.1. b1  is 
determined so that under alternative hypothesis the power is 
close to 0.8 for most tests when the covariate X  are fully 
balanced. We tried various values of b2  and b3  in simulating 
Y. The simulated values of Y are chosen when the correlation 
coefficients between Y  and X1 and between Y and X2 are close 
to 0.3 for scenarios with moderate correlation.

 4 Create new indicator variable indX  so that if 
X median Xi1 1≥ ( ) , indXi =1 ; otherwise, indXi = 0.

 5 Sample 200 subjects from the population. Each arm has 100 
subjects. In the control arm, Pr indX Trti = =( )1 0|  is set to 0.5. 
Thus, in the control arm, there is 50% chance that covariate X  is 
greater than true population median. In the treatment arm, 
Pr indX Trti = =( )1 1|  range from 0.5 to 0.95 with increment 
0.05. Thus, in the 1st scenario, treatment arm has 50% chance that 
covariate X1  is greater than true population median. In the 2nd 
scenario, the treatment arm has 55% chance that covariate X1  is 
greater than true population median. In the next scenario, the 
probability increment is 5% more. And in the 10th scenario, the 
treatment arm has 95% chance that covariate X1  is greater than 
true population median. Thus, in the 1st scenario, the covariate 
X1  is fully balanced between the two arms. In the 2nd scenario, 
the covariate X1  is slightly imbalanced and in treatment arm has 
more large values of X1  comparing to control arm. In the 10th 
scenario, the covariate X1  is extremely imbalanced.

 6 Under each scenario, the baseline covariate t-test are computed 
for each iteration. For each covariate adjusting approaches for 
estimation of treatment effect, the empirical type I error rate 
and empirical power is computed.

 7 The empirical type I error rate is defined as the rate of p-value 
is less than 0.05 when null hypothesis is true. The empirical 
power is defined as the rate of p-value is less than 0.05 when 
alternative hypothesis is true.

Simulation 2: one strata variable and two 
normal covariate and linear regression 
setting

In the second simulation, one strata variable is included for 
adjusting. Here, the strata variable is a binary variable. The simulation 
is similar to Simulation 1 with following modifications:

 1 In Step 1, the extra binary variable Xs  follow Bernoulli (0.5).
 2 In Step  3, the true model is 

Y ei i i i si ib b Trt b X b X b X= + + + + +0 1 2 1 3 2 4  and b4  is 
determined so that the correlation is 0.3 between Y and Xs .

Results

In each figure, the labels in x-axis represent different scenarios. 
From the left, ‘ 0 5 0 5. : . ′  represent the scenario that covariate X has 
50% chance greater than true population median in both control arm 
and treatment arm. This represents the covariate fully balanced 
scenario. ‘ 0 55 0 5. : . ′  represent the scenario that covariate X has 55% 
chance greater than true population median in the treatment arm and 
50% chance greater than true population median in control arm. The 
other labels represent the scenarios in the similar ways. ‘ 0 95 0 5. : . ′  
represent the scenario that covariate X has 95% chance greater than 
true population median in the treatment arm and 50% chance greater 
than true population median in the control arm. This represent the 
most extreme scenario of covariate imbalance. From left to right of 
x-axis in each figure, the covariate imbalance in the scenarios 
gradually become more extreme.
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Baseline covariates

Figure 1A shows the rate of significant t test for the baseline 
continuous covariate X1  which is selectively biased in 
Simulation 1. In the first two scenarios of (‘ 0 5 0 5. : . ′  and 
‘ 0 55 0 5. : . ′ ) baseline t test can hardly identify covariate 
imbalance. In the 3rd scenario (‘ 0 6 0 5. : . ′ ), over 90% chance that 
t test is insignificant. In the 4th scenario (‘ 0 65 0 5. : . ′ ), two thirds 
of the t test is insignificant. In the 5th scenario (‘ 0 7 0 5. : . ′ ), 30% 
chance t test is insignificant. In the 6th scenario (‘ 0 75 0 5. : . ′ ), 
there are still 6% chance the t test is insignificant. Last 4 
scenarios extremely imbalanced and most t test will show 
significant results (‘ ′ ′ ′ ′‘ ‘ ‘0.8 : 0.5 , 0.85 : 0.5 , 0.9 : 0.5 ,and 0.95 : 0.5 ). 

Figure  1B shows the rate of significant t test for the baseline 
continuous covariate X2  which is not selectively biased in the 
simulation. From the plot we could find the type I error rate is 
maintained at the nominal level.

Simulation 1: two normal covariate and 
linear regression setting

As the covariates are fully balanced, the type I error rates of all 
tests after adjusting for covariates maintain at baseline level. It may 
be noticing that approaches involve propensity score have slightly 
lower type I error rates. The possible reason for this is the extra 

FIGURE 1

(A) Baseline T Test for the imbalanced covariate X1. (B) Baseline T Test for the balanced covariate X2.
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variance introduced by propensity score approaches itself. As the 
covariates imbalance getting severe, the type I  error rate of 
ANCOVA(x)-WRS gets inflated as the underlying ANCOVA 
assumption has been violated. The type I  error rate of 
ANCOVA(p)-WRS has been much lower than ANCOVA(x)-WRS 
when covariates are severely imbalanced. It shows the impact of 
violation of ANCOVA assumption on type I  error rate can 
be reduced by introducing propensity score because the propensity 

score is the conditional probability of receiving specific treatment 
for the observed covariates (Figure  2A). Even one or some 
covariates are severely imbalanced between groups, the propensity 
score could reduce the impact of the imbalance. When there is no 
covariates effect, the empirical powers of these test are close to 0.8 
and JHM(x) has highest power. As covariates imbalance get severe, 
the empirical powers of tests involving covariate adjustment will 
decrease. The empirical powers of ANCOVA(p)-WRS and JHM(x) 

FIGURE 2

(A) Simulation 1, Empirical Type I Error Rate (No Covariate Effect). (B) Simulation 1, Empirical Power (No Covariate Effect). (C) Simulation 1, Empirical 
Type I Error Rate (Moderate Covariate Effect), All Approaches. (D) Simulation 1, Empirical Type I Error Rate (Moderate Effect), Selected Approaches. 
(E) Simulation 1, Empirical Power (Moderate Covariate Effect).

https://doi.org/10.3389/fams.2024.1357816
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Ye and Lai 10.3389/fams.2024.1357816

Frontiers in Applied Mathematics and Statistics 08 frontiersin.org

decrease slightly as covariate imbalance is severe, although as the 
empirical powers of AR(p5) decrease most to 0.6 (Figure 2B).

When there is true covariate effect, t test and Wilcoxon Rank Sum 
Test will have type I error rate inflated as covariates get imbalanced 
(Figure  2C). Like scenarios when there are no covariates effects, 
approaches involve propensity score have type I error rate lower than 
nominal level when covariates are fully balanced. Only the type I error 
rate of ANCOVA(x)-WRS gets inflated as covariate imbalance get 
severe (Figure 2D). When there are moderate covariates effects, the 
empirical power of propensity score approaches are much lower when 
covariates are fully balanced. As covariates imbalance get severe, the 
power of JHM(p) and the power of ANCOVA(p)-WRS get close level 
of JHM(x), although the two stratification approaches will still have 
lower power comparing to the other three valid approaches (Figure 2E).

Simulation 2: one strata variable and two 
normal covariate and linear regression 
setting

When covariates are fully balanced, the type I  error rates are 
maintained at the nominal level.

As covariates imbalance get severe, AR(p5) inflates as covariate 
imbalance get severe (Figure 3A). It is not appropriate to use propensity 
score as a covariate in rank regression-based test. This suggest excluding 
strata variable is problematic. Three ANCOVA related approaches 
(ANCOVA(x)-WRS, ANCOVA(p)-WRS, and ANCOVA(p)2-WRS) 
also have inflation of type I error rate as covariate imbalance get severe 
as the ANCOVA assumption is violated (Figure 3A). JHM(x)-WRS also 
have type I error rate inflated as covariate imbalance get severe. One 
possible reason as covariate imbalance get severe, the covariates in two 
group do not share the same coefficient and adjust covariate effect based 
on Jaeckel’s Rank estimation may introduce bias to the adjusted 
response variable.

For other approaches, the type I  error rate is maintained at 
nominal level (Figure 3A).

From Figure  3B, when there is true covariate effect, the type 
I error rates of approaches without adjust for covariate effects [TT, 
WRS, and JHM(n)] are inflated as covariates imbalance get severe. The 
type I error rate of two inverse weighted Hodges Lehmann estimator 
involved approach (WAR, WAR2) are inflated dramatically as 
covariate imbalance get severe. Inverse weighting approaches are 
problematic when covariate imbalance. The type I error rate of AR(p5) 
also inflates. This suggest the strata variable should be included in 
computing the propensity score. Besides, the type I  error rate of 
ANCOVA(x)-WRS and JHM(x)-WRS also inflate as the assumptions 
are violated as covariate imbalance get severe. ANCOVA(p)-WRS and 
JHM(p) are conservative when there is true covariate effect. Only 
JHM(x) and JHM(x)2 maintain type I error rate at nominal level. 
JHM(x)2 align the strata effect before apply Jaeckel, Hettmansperger-
McKean test (Figure 3C).

Under no covariate effect, the empirical power for the all the valid 
test statistics are presented in Figure 3D. The power is around 0.8 
when the imbalance is not severe (Figure  3D). When there is a 
moderate covariate effect, the empirical power of JHM(x) and 
JHM(x)2 are also very close. Although the only valid propensity score 
approach, VE(p5) has empirical power only range from 0.4 to 0.2 as 
covariate imbalance get severe (Figure 3E).

Conclusion

It is problematic when the response variable is correlated with 
multiple covariates, and the covariates imbalance is severe. Propensity 
score could reduce the dimension of covariates into a scalar number. 
However, some tests after adjusting for propensity score approaches 
are invalid based on simulation result.

When quintile stratification of propensity score is applied to 
adjust for covariates effects, it is important to include all correlated 
covariates. Excluding a correlated imbalanced covariate would lead to 
the test to be invalid.

The type I  error rates of proposed inverse propensity score 
weighting approaches inflate as covariates imbalance get severe. 
Propensity score could reduce the impact of covariate imbalance in 
ANCOVA adjusted Wilcoxon rank sum test. Also, propensity score 
could be treated as covariate in Jaeckel, Hettmansperger-McKean test. 
However, in both approaches, the power loss is dramatic comparing to 
non-propensity rank score approaches. Residuals after adjustments 
may induce correlation structure that makes the simulations of type 
I and power less accurate. Many of the issues observed after propensity 
score adjustments may be overcome with entropy balancing (22).
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