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Tuberculosis (TB), a disease caused by bacteria Mycobacterium tuberculosis

(Mtb), remains one of the major infectious diseases of humans with 10 million

TB cases and 1.5 million deaths due to TB worldwide yearly. Upon exposure

of a new host to Mtb, bacteria typically infect one local site in the lung, but

over time, Mtb disseminates in the lung and in some cases to extrapulmonary

sites. The contribution of various host components such as immune cells to

Mtb dynamics in the lung, its dissemination in the lung and outside of the

lung, remains incompletely understood. Here we overview di�erent types of

mathematical models used to gain insights in within-host dynamics of Mtb;

these include models based on ordinary or partial di�erential equations (ODEs

and PDEs), stochastic simulation models based on ODEs, agent-based models

(ABMs), and hybrid models (ODE-based models linked to ABMs). We illustrate

results from several of such models and identify areas for future resesarch.

KEYWORDS

Mycobacterium tuberculosis, mathematical models, within-host dynamics, immune

response, antibiotic treatment, stochastic model of Mtb, agent-based models of Mtb

Introduction

Mycobacterium tuberculosis (Mtb) is a bacterium causing the infectious disease

tuberculosis (TB). One study estimated that over a billion people died due to TB in human

history [1]. TB is an airborne disease that primarily affects the lungs but can also damage

other organs as well [2]. Mtb spreads through coughing, sneezing, or close contact with

an infected person. During outbreaks, one individual with TB may infect tens of close

contacts [3, 4]. On average, however, Mtb is not a highly transmissible pathogen with

estimated country-level average number of secondary infections produced by a single

infected individual in a completely susceptible population (R0) varying between 0.2 to 4.3

[5].

Mtb causes significant morbidity and mortality, with millions of new cases and deaths

reported annually [6, 7]. Despite medical advancements, TB remains a global challenge,

particularly in regions with limited healthcare resources [8], underscoring the importance

of continued research and global cooperation in combating this infectious disease. There

is only one currently approved vaccine against TB, Bacillus Calmette-Gueŕin (BCG);

however, its efficacy is not sufficient to prevent the disease in most individuals [9]. There

are now several highly effective drug treatments for TB, but these are still relatively long

(4–6 months) and require daily taking of several antibiotics [10]. Long duration of TB
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treatment increases the risk of toxicity and patient non-compliance

[11]. Development of efficient TB vaccines and further reduction

of treatment duration, e.g., by augmenting host immune response

via so-called host-directed therapy [12], would be helped by a

better understanding of how Mtb causes the disease and how host

immunity plays a role at preventing or exacerbating the disease.

Because Mtb is transmitted primarily via aerosols [13], the lung

is the primary site where Mtb bacteria initiate the infection. Three

basic outcomes are possible following the initial exposure to Mtb:

(i) macrophages are recruited to the infection site; they engulf and

eliminate the bacteria; (ii) bacterial population may grow rapidly

due to the failure of initial innate response which leads to the

active disease, (iii) adaptive immunity contains the bacteria in a

structure called granuloma making the infection latent. The latter,

latent infection can persist for a long period, often to the whole

lifespan of host [14–16]. A previous study suggested that one-third

of the world’s population has been infected with Mtb [17], and

recent re-evaluation puts about a quarter of the world’s population

to have latent TB infection [18]. Given that following exposure

to Mtb, active disease is most likely within the first several years

[19], how much reactivation of latent TB infection decades after a

primary exposure remains largely unknown and is often based on

individual case studies (e.g., TB after using tumor necrosis factor

(TNF)-blocking treatments [20]). In addition to the infection of

the lung, in some instances, Mtb can also disseminate to other

tissues such as lymph nodes (LNs), spleen, bone marrow, and

brain; however, specifics of such dissemination (e.g., the sequence

of organ infection, how bacteria get to these tissues, etc) remain

incompletely understood [21–23].

Because studying Mtb dynamics in human lungs is nearly

impossible, various animal models such as guinea pigs, mice,

rabbits, and monkeys have been used to understand TB

pathogenesis [24, 25]. However, none of these animal models

likely represent adequately the full spectrum of human TB. Mtb

is a slow-growing bacteria (with doubling time in vivo of around

24 h, [26, 27]), and measuring bacterial numbers and immune

response in the lung of animals requires sacrificing the host that

makes experiments with Mtb long and expensive. Mathematical

modeling can be a complementary tool to help integrate limited

experimental data into a coherent framework, help identify areas

where important experimental measurements may be useful, and

help discriminate between alternative hypotheses ([28], Figure 1).

Models can also explore the impact of various interventions

(e.g., vaccination and/or drug treatment) that could be tested in

additional experiments [30].

Despite its potential importance, mathematical modeling of TB

pathogenesis has focused primarily on epidemiological spread of

Mtb; e.g., current estimates of number of TB cases and deaths

due to TB come in part from mathematical modeling-based

extrapolations of incidence in various countries to the world’s

population [6]. There has been less emphasis on mathematical

modeling of within-host dynamics of Mtb, immune response to

Mtb, and how drug treatment impacts Mtb dynamics; furthermore,

Abbreviations: Mtb, Mycobacterium tuberculosis; TB, tuberculosis; ODE,

ordinary di�erential equation; PDE, partial di�erential equation; LN, lymph

node; ABM, agent-based model; TNF, tumor necrosis factor.

recent reviews of mathematical/computational modeling of within-

host Mtb dynamics did not focus on how models can be rigorously

compared to data (e.g., [31]). Here, we fill in this gap and

discuss different types of mathematical models of within-host

dynamics of Mtb and how these models may have contributed

(or not) to a quantitative understanding of TB pathogenesis. We

also focus on issues related to comparing models to data to

estimate model parameters, especially for stochastic models. We

divide the previously published mathematical models of within-

host Mtb dynamics into two categories: spatially homogeneous and

spatially heterogeneous models. Among the spatially homogeneous

models, we discuss ordinary differential equation (ODE)-based

deterministic models and stochastic realizations of such ODE-

based models. Further, among spatially heterogeneous models, we

discuss partial differential equation (PDE)-based models, agent-

based models (ABMs), and hybrid models. We also present a

comparative analysis of the strengths and weaknesses of each

modeling approach and potential avenues for future research.

Methods to select papers for review

For papers on mathematical modeling of within-host dynamics

of Mtb, we searched primarily PubMed (https://pubmed.ncbi.

nlm.nih.gov/) and supplemented our results by searches on

Google Scholar (https://scholar.google.com/). Queries for the

search included “mathematical model,” “tuberculosis,” “within-

host,” and others. We also searched other published papers and

reviews for references to the papers relevant to the mathematical

modeling of within-host dynamics of Mtb. Because we cannot

be sure we can find all the relevant papers, our paper should

be viewed as an overview of the mathematical modeling rather

than a comprehensive review. Our paper focuses explicitly on

mathematical modeling of within-host dynamics of Mtb. Thus, we

specifically excluded studies that use mathematical modeling to

investigate various aspects of the epidemiological spread of Mtb.

For example, we got 308 hits in PubMed using the query

“‘mathematical model’ and tuberculosis” most of which were on

the epidemiological spread of Mtb. We got 27 hits in PubMed

using the query “‘mathematical model’ and tuberculosis and ‘within

host’.” We got 23 hits in PubMed using the keyword combination

“ordinary differential equation tuberculosis.” Two of these papers

are cited here. Additionally, we got 14 hits in PubMed using the

keyword combination “partial differential equation tuberculosis.”

We present seven of these papers here. Other papers on this subject

are from direct Google or Google Scholar searches (Google Scholar

typically returns thousands of hits that do not include published

papers). Papers on other topics were identified similarly.

Spatially homogeneous models

The lung and whole body are highly heterogeneous tissues

in humans and animals. However, many mathematical models of

within-host Mtb dynamics assume that such heterogeneity is not

critical for TB pathogenesis. In such models, spatial variations in

the distribution of bacteria, immune cells, and other components

are thus not explicitly considered. This simplification is often
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made for analytical and/or computational tractability and to distill

the essential dynamics governing the interaction between the

host and Mtb. Furthermore, spatially explicit experimental data

are not readily available to parameterize mathematical models,

forcing the modelers to omit spatial aspects of Mtb dynamics in

their models. Nevertheless, spatially homogeneous models have

provided a foundational understanding of the within-host Mtb

dynamics, including the estimation of key parameters such as Mtb

division and death rates in vivo. Such models also serve as a starting

point for investigating key biological processes without the added

complexity introduced by spatial heterogeneity. We will start our

review with a discussion of spatially homogeneous models, mainly

based on ODEs and on the conversion of such models to their

stochastic counterparts.

Deterministic models of within-host Mtb
dynamics

ODE-based models are typically deterministic; the model

parameters and initial conditions fully define the model

predictions. Many analytical and numeric methods are developed

for the analysis of ODE-based mathematical models, and there

are robust ways of fitting such models to data [32]. These benefits

make ODE-based mathematical models the first choice when

developing a new model of a biological system. The primary

challenge in constructing ODE-based models lies in the necessity

to rely on lateral thinking or inferential capabilities to gain a precise

understanding of how the system and its internal components

function. Steps in developing ODE models can be categorized

as model exploration, model fitting, predictions, and model

discrimination (Figure 1).

Developing an ODE-based model as a compartmental model is

common, where each compartment may represent a given within-

host population [29]. As far as we are aware, Antia et al. [33] were

the first to specifically develop a mathematical model of within-

host Mtb dynamics to explain how, after a long period of latent

infection (with low levels of bacteria), Mtb is able to reach high

levels and thus cause active disease. The authors proposed two key

elements in their model: the ability of bacteria to enter dormant,

non-replicative state and loss of Mtb-specific immune (T cell)

response due to continuous cell division and reach of the Hayflick

limit [34–36]. The Mtb dynamics during primary infection is given

by the short-term dynamicsmodel:

dP

dt
= rP − hPX − fP + gQ, (1)

dQ

dt
= fP − gQ, (2)

dX

dt
= a+ sX

(

P

k+ P

)

− dX, (3)

where P denotes the density of actively replicating pathogen, Q

is the density of dormant (non-replicating) bacteria, X represents

the immune response, h is the killing rate of Mtb by the immune

response, f and g are the rates of dormancy and reactivation of the

bacteria, s and d are the rates of T cell proliferation and death, a

is the rate of production of new T cells from the thymus, and k the

Mtb density at which the rate of T cell proliferation is half-maximal.

Parameter values were assumed ad hoc to provide a plausible

pathogen and immune response dynamics [33, 37, 38]; however, the

model predictions were not compared to actual experimental data.

In this relatively simple model, Antia et al. [33] found that slower

growth rates r lead to a smaller nadir of bacterial counts after the

peak, suggesting that slowly growing bacteria have a higher chance

of persistence. However, in this version of the model, bacteria and

host immunity reach a steady state with a relatively limited number

of bacteria that may not represent active TB (Figure 2A). Therefore,

in the model of long-term dynamics, Antia et al. [33] extended the

dynamics of T cell response (Equation 3), by tracking the number

of divisions Mtb-specific T cells have undergone and by making

the production of new T cells from the thymus to be dependent

on pathogen density (Figure 2B):

dx1

dt
=

a1

(a2)m + Pm
− s

(

P

k+ P

)

x1 − dx1, (4)

dxi

dt
= 2s

(

P

k+ P

)

xi−1 − s

(

P

k+ P

)

xi − dxi, (5)

dxn

dt
= 2s

(

P

k+ P

)

xn−1 − s

(

P

k+ P

)

xn − dxn, (6)

where a1 is the production of new T cells, m is the conversion

coefficient of the function (linear to convex), a2 be the half

saturation rate of the thymus due to the parasite, and xi is the

number of T cells that have undergone i = 1 . . . n divisions, and

n is the Hayflick limit after which T cells stop dividing. Thus, in

Equation (3) X =
∑n

i xi. In this model, T cells initially control

Mtb dynamics, but as Mtb stops production of new T cells from

the thymus and T cells reach the Hayflick limit, T cell response

collapses and Mtb density increases without control (Figure 2B).

While being innovative (the first model for within-host

Mtb dynamics), this model made several assumptions that are

oversimplified and may be irrelevant to TB pathogenesis. The

model assumed unlimited growth of Mtb while we know that Mtb

typically is limited by the availability of various resources such as

macrophages [39]. The assumption that during a latent phase, the

number of bacteria is low or undetectable, but then it rises orders

of magnitude in active disease is not always observed in animal

infections [40]. Finally, recent work suggested that T cells have an

incredible capacity for renewal [41], so the Hayflick limit probably

does not apply to the loss of Mtb control by T cell response. This

example nicely illustrates how model assumptions drive model

predictions, so it is clear how the model generates the observed

outcomes. While these assumptions were based on a contemporary

understanding of TB pathogenesis, new experimental observations

may invalidate such assumptions.

There were many further developments of ODE-based models

of within-host dynamics of Mtb. In particular, Kirschner [42]

developed a model of coinfection of a host with Mtb and HIV

and showed how infection with Mtb may result in loss of CD4

T cells and/or increase in viral load. The key assumption in

the model was that Mtb infection results in the proliferation of

T cells, fueling further HIV replication and, thus, an increase

in viral load. Wigginton and Kirschner [43] extended this basic
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FIGURE 1

A schematic diagram of developing mathematical models (based on Handel et al. [29]). Building mathematical models of a biological system involves

several steps, such as exploration of the model structure and essential details, predictions of the model stemming from its basic form and parameter

values, and more rigorous fitting of the models to data. At every step, there may be model iterations, e.g., if a given model does not accurately fit the

data, exploring additional alternative models is warranted [28].

A B

FIGURE 2

Suppression of production of new T cells by Mtb and a limit on how many divisions Mtb-specific T cells can explain progression to active TB. We

simulated the dynamics of the actively replicating pathogen P, its quiescent state Q, and immune response X using Equations (1)–(3) (A) or Equations

(1)–(6) (B). Parameter values in the short-term simulations (A) were as follows: r = 1.0, f = 0.5, g = 0.1, h = 10−3, d = 0.1, s = 1.0, k = 103, a = 0.1,

with initial conditions P(0) = 1,Q(0) = 0, and X(0) = 1. For long-term simulations (B), the Hayflick limit was set to n = 23, and the total immune

response was X =
∑n

i=1 xi. In (B), parameter values were as those in (A) except for a1 = 0.1, a2 = 100, and m = 3 [33].

model by including many additional details of the within-host

dynamics of Mtb, such as populations of intra- and extracellular

bacteria, different cytokines, macrophages, and different subsets

of Mtb-specific CD4 T cells. In total, the model consisted

of 12 ODEs and over 50 parameters. The authors reached

a number of interesting predictions, such as the importance

of the balance of different cytokines (IFNγ , IL-10, and IL-

4) in regulating Mtb-specific T cell response and how T cell

cytotoxicity and cytokine production may define the outcome

of infection.

Among different cytokines, IFNγ plays a crucial role in

activating the classically activated macrophages (CAM) at the

time of increasing infection, while during the low microbial

load, alternatively activated macrophages (AAM) act as the first

line of defense against Mtb. The switching time is defined as

the first time when CAM becomes more dominant than the

AAM. Day et al. [44] explored how this switching time can

be optimized using a mathematical model that can be tested

experimentally.

Raman et al. [45] took a different approach to modeling

the within-host dynamics of Mtb. Instead of using ODEs, the

authors developed a Boolean network-based mathematical model

that predicts an outcome depending on which nodes are in the

ON or OFF state. The model included 75 nodes corresponding

to states of host cells and the bacteria as well as various

intracellular components such as reactive oxygen intermediates

(ROI), cathelicidin, and others. Perturbation of states of various

nodes showed the importance of phagocytosis and cytokines (IFNγ

and IL-10) in determining Mtb persistence.

Pedruzzi et al. [46] consideredMtb dynamics within its primary

target, the macrophage, and investigated the role of iron, lipids, and

nitric oxide in determining the outcome of intracellular infection.

The authors concluded that Mtb’s interference with lipid and iron

turnover in macrophages may result in the persistence of bacteria.

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2024.1355373
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Chakraborty et al. 10.3389/fams.2024.1355373

A follow-up study considered how molecules such as PGE2, LXA4,

and LTB4 may further impact within-host Mtb dynamics [47].

While previous papers typically focused on modeling Mtb

dynamics in the whole host, Gong et al. [48] were first (1) to

consider Mtb dynamics in individual subpopulations within the

lung representing different stages of granuloma formation and

(2) to explicitly model Mtb dynamics in the lung and lung-

draining LNs. One of the interesting results of the paper was

continuous/slow transition from a latent TB to active TB that was

consistent with the previously established concept of progressive

TB [49]. Importantly, Mtb dynamics in the granulomas was

considered superficially as a transition from healthy tissue to a

diseased one (both in the lung and LNs). Thus, the model was

unable to accurately predict the relationship between the number

of granulomas and the severity of the disease [50]. This limitation

was partly mediated by ABMs and hybrid models developed later

(see next section).

Several papers developed mathematical models to understand

how drug treatment impacts Mtb dynamics. In particular,

Bartelink et al. [51] were first to develop a detailed model of

distribution kinetics of various drugs in tissues of Mtb-infected

mice with impact of such drugs on Mtb elimination kinetics (so-

called pharmacokinetics (PK)–pharmacodynamics (PD) or PK/PD

models, [52]). The model, parameterized with data from Mtb-

infected mice, predicted the impact of shorter treatments on the

probability of TB relapse. The follow-up studies extended the

model to Mtb dynamics in granulomas or simplified the model to

explain Mtb dynamics in wild-type mice or mice lacking adaptive

immunity [53, 54].

Importantly, with the exception of the models on

drug treatment of Mtb infection [53, 54], most previous

models did not estimate model parameters by fitting model

predictions to data. Instead, parameters were assumed or

indirectly inferred from other published data (e.g., half-

life times of various cytokines). We next discuss several

papers that estimated key parameters determining within-

host Mtb dynamics by rigorously fitting model predictions to

data.

Following aerosol-based infection of mice with Mtb, the

number of bacteria found in murine lungs increases exponentially

until 3–4 weeks, after which the numbers stabilize and slowly

increase over time [26]. Whether the stable numbers of Mtb in

the lung after 3–4 weeks post infection are due to the bacteria

entering a dormant, non-replicative state or is due to continuous

Mtb replication and elimination by host immunity remained

unresolved. Gill et al. [26] developed a novel strain of Mtb carrying

an unstable plasmid that is lost at cell division. In the presence

of an antibiotic, plasmid-free cells are killed so that plasmids can

be maintained in the bacterial population in a culture. However,

in the absence of the antibiotic, bacteria lose the plasmid at a

rate that only depends on the number of divisions and does not

depend on the rate at which Mtb was replicating in the culture

[26]. Therefore, by measuring the frequency of plasmid-bearing

cells in the population, one can estimate the average number of cell

divisions, and by knowing the total number of bacteria, the rate of

Mtb replication and death can be estimated. To estimate these rates

rigorously, Gill et al. [26] developed a basic mathematical model

FIGURE 3

Cartoon of a general mathematical model of Mtb dynamics in mice.

The model is based on the dynamics of Mtb strain H37Rv carrying

an unstable plasmid pBP10 [26]. In the model (see Equations 7, 8),

plasmid-bearing (P) and plasmid-free (F) bacteria replicate and die at

rates r and δ, respectively; plasmid-free bacteria are formed during a

division of plasmid-carrying cell with the probability s [26, 27].

for the dynamics of plasmid-bearing (P) and plasmid-free (F) cells

(Figure 3):

dP(t)

dt
= [r(t)(1− s)− δ(t)]P(t), (7)

dF(t)

dt
= [r(t)− δ(t)]F(t)+ sr(t)P(t), (8)

dN(t)

dt
= [r(t)− δ(t)]N(t), (9)

where r and δ are the rates of Mtb replication and death,

respectively, that depends on the time since infection, s = 0.18 is

the segregation coefficient, determining plasmid loss and estimated

in vitro, and N(t) = P(t) + F(t) is the total number of bacteria

(Equations 7, 8, 9 are given in supplement of [26]). Because Gill

et al. [26] measured Mtb counts in the lungs of infected mice at

five-time points (1, 13, 26, 69, and 111 days post-infection), the

parameters r and δ were assumed to be constant within a given

time interval (e.g., 1–11 days post-infection) but vary between time

intervals. Gill et al. [26] used linear regression analysis to show that

the rate of Mtb replication during the chronic phase of infection is

only four–five fold lower than that during early Mtb growth. This

result suggests that the apparent constancy of Mtb numbers after

3–4 weeks of infection is due to a balance between relatively active

replication and elimination by host immunity.

McDaniel et al. [27] extended this pioneering study by (1)

considering that the segregation coefficient s could depend on

time since infection, (2) allowing a fraction of bacteria to enter

dormant, non-replicative stage, and (3) developing a method to fit

the numerical solution of the mathematical model (Equations 7,
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A B

FIGURE 4

Change in the estimated replication r and death δ rates of Mtb strain H37Rv-pBP10 in B6 mice. We fitted the model (Equations 7, 8) to the data from

Gill et al. [26] assuming di�erent values of the segregation coe�cient s and estimated the rate of Mtb replication (A) or the rate of Mtb death (B) as

the function of the di�erent time period since infection [27]. Gray boxes denote biologically-unrealistic (negative) values. Parameters for Mtb

replication and death estimated in Gill et al. [26] can be found in (A, B) at s = 0.18 (blue diamonds).

8) to all data simultaneously without subdividing the data

into different time intervals. Assuming a constant segregation

coefficient, McDaniel et al. [27] showed that a simple model with

fewer changes in the parameters with time since infection can

describe the data with similar accuracy as the whole model based on

10 parameters. Additionally, this approach allowed to investigate

how the estimated rates of Mtb replication and death may depend

on actual value of the segregation coefficient (Figure 4). Specifically,

the authors showed that the segregation coefficient cannot be

greater than s∗ = 0.204 for all estimated parameters to be positive.

Finally, McDaniel et al. [27] showed that to explain the data, most

bacteria must be replicating during the chronic stage of infection

as increasing the rate at which actively replicating bacteria become

dormant above a critical value provided significantly worse fit based

on Akaike Information Criterion [55].

Stochastic extensions of ODE-based
models of within-host Mtb dynamics

So far, the mathematical models we have considered

assume that a given set of parameters, Mtb dynamics, occurs

deterministically. One inherent assumption of such models is

that cell numbers in the model are relatively large, so intrinsic

variability in the process of cell division/death/migration/etc can be

ignored. This assumption is often justified in typical experiments

with Mtb infection of mice because it is common to infect mice

with hundreds of bacteria [26, 56]. However, the current consensus

is that infection of humans is likely to occur with few or even with

a single bacterium [13, 56]. For example, by passing the air from

a ward with many TB patients through a cage with guinea pigs

and detecting infection in the animals, one study estimated that it

would take many days of exposure for an individual to be infected

[13]. Such a low infection rate suggests that when infections

start, a single bacterium is likely responsible. In monkeys, it was

suggested that individual granulomas are found by single bacteria

[57]. In those cases, Mtb dynamics is likely to be stochastic due

to inherent randomness when bacteria divide, die, and migrate

[58].

One straightforward approach to model Mtb dynamics

stochastically is to convert an existing ODE-based model into a set

of transition rules and simulate the dynamics using the Gillespie

algorithm [59]. As far as we know, Plumlee et al. [56] was the first

to show how the simplest ODE-based model can predict stochastic

elements of within-host Mtb dynamics. One major innovation of

that study was to infect mice with an ultra-low dose (ULD) of

Mtb. By diluting the stock bacteria 50-fold, the authors found that

only 60%–70% of mice had any bacteria in their lungs a few weeks

after exposure, suggesting that the average dose of Mtb was about

one bacterium/mouse. Using barcoded strains, the authors also

showed that the number of barcodes recovered in individual mice

nicely followed a Poisson distribution, consistent with random

infection.

Interestingly, bacterial numbers found in the lungs, lung-

draining LNs, and spleen were highly variable between individual

mice with a higher coefficient of variation (CV) compared to

mice infected with about 100 bacteria. The authors used a

simple model with parameter estimates from the previous study

([27], Equation 9) and simulated Mtb dynamics stochastically by

converting the ODE model into a set of rate rules. The authors

showed that higher initial doses resulted in more deterministic

change in the number of bacteria in the lungs (with a lower CV),

consistent with experimental observations.

Here, we repeated this analysis using the adaptivetau

library in R (Figure 5). By using parameters for Mtb replication and

death estimated previously ([26, 27], Figure 4) and lettingN(0) = 1

we found that less than half of all simulations (434/1,000) resulted

in productive infection indicating a substantial chance ofMtb death

upon entry into the lung. More importantly, model predictions

with parameters from Gill et al. [26] were inconsistent with the

measurements of bacterial counts found in ULD-infected mice;

the discrepancy was larger at day 26 (Figure 4B). These results

suggest the Mtb dynamics at conventional (∼100 bacteria/mouse)

and ultra-low (∼1 bacterium/mouse) doses may occur differently.

Therefore, to parameterize mathematical models of stochastic
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A B

FIGURE 5

Mathematical model parameterized using data from conventional dose infection of B6 with Mtb H37Rv does not accurately predict Mtb dynamics at

ultra-low doses. (A) The 1,000 trajectories (gray lines) from stochastic simulations of Mtb dynamics [Equation 9 with parameters in Figure 4 for

s = 0.18 and N(0) = 1] using adaptivetau library in R. Dashed red line represents the average of all trajectories, and black line represents the

predictions of the deterministic model. Data (bacterial numbers in the lung) are shown as markers [56]. Red bars denote the geometric mean. (B) The

frequency distribution of model trajectories (violin plots) in (A) for day 26 or 83 post-infection. The average number of bacteria starting the infection

in the data was nF = 1 [56].

A B C

FIGURE 6

Alternative methodologies of fitting mathematical models to data. Deterministic models are typically fit to data using least squares by minimizing the

sum of squared residuals (A). To fit stochastic predictions of a mathematical model to data, one approach is to create a histogram of data and model

predictions and compare these two histograms using least squares ((B), [61, 62]). Alternatively, the distance between cumulative distributions given in

the data and predicted by a mathematical model can be calculated using the Kolmogorov–Smirnov (KS) test (C). In (B, C), the distributions are shown

only for a one-time point t = t1, but typically, the distributions are calculated for several time points.

Mtb dynamics, we need mathematically-rigorous methods to fit

stochastic simulations-based models to data.

Methods of fitting ODE-based deterministic mathematical

models to data are well developed; typically, one uses least squares

or its extensions (e.g., Bayesian inference) to findmodel parameters

best consistent with the data ([60], Figure 6A). However, fitting

stochastic mathematical models to data is less common. Several

novel methods, for example, based on generating diffusion

approximation to the original stochastic model or generating

moments for the stochastic model, have been proposed [61–65].

Poovathingal and Gunawan [61] and later Aguilera et al. [62]

proposed an approach for fitting stochastic simulations to noisy,

high-throughput experimental data. In this method, the probability

distribution function (PDF) is constructed for the data and for the

model predictions, and the two distributions are compared using

the least squares approach (Figure 6B). The best-fit parameters are

then found by minimizing the sum of squared residuals. In our

recent work, we have developed an alternative method in which

we compare cumulative distribution function (CDF) coming from

the data and the stochastic simulations by calculating the distance

between the two CDFs, e.g., using the Kolmogorov–Smirnov test or

other similar tests (Figure 6C and Chakraborty et al., in prep).

Spatially heterogeneous models

While homogeneous, ODE-based mathematical models

provided important insights into within-host dynamics of Mtb,

they cannot predict spatially heterogeneous features of Mtb

dynamics in the lung and other tissues. In particular, the formation

of granulomas, highly organized structures in the lungs of Mtb-

infected humans and some experimental animal species [66],

would be difficult to model using spatially homogeneous ODEs.

PDE-based models, ABMs, and hybrid models are the prime

examples of spatially heterogeneous models.
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PDE-based models of within-host Mtb
dynamics

Some PDE-based models have been developed to elucidate

the formation and dissemination of Mtb-induced granulomas.

In particular, Gammack et al. [67] developed coupled reaction-

diffusion-advection PDEs to capture the dynamics of macrophages,

bacterial populations, and a bacteria-produced chemokine

(attractant). In the model, the authors integrated diverse types

of macrophages, distinguished by their killing capacity. The flux

conditions at the granuloma boundary represent the movement

of immune cells from the LNs to the granuloma. Numerical

simulations of the model revealed that the growth of the

granuloma structure is contingent upon the influx of new bacteria.

Moreover, the analytical calculations of a simplified version of the

model identified conditions under which bacterial load decreases

or increases, thereby influencing the growth or contraction of the

granuloma.

By employing four distinct approaches, one of which involves

PDEs, Gammack et al. [68] investigated both global and local

immune responses to Mtb. Further, Hao et al. [69] framed a

mathematical model consisting of a collection of PDEs where a

parameter α, called the strength of the adaptive immune response,

signifies the flux rate of T cells and M1 macrophages into the

granuloma. Model simulations suggested that an increase in α (i.e.,

stronger immune response) reduced the size of the granuloma

and bacterial load. The authors further investigated the impact of

hypothetical drugs suppressing the secretion of cytokines IL-10 and

IL-13 on Mtb control. The authors also found that increasing early

recruitment of T cells and macrophages to the granuloma shortens

the time at which protectiveM1macrophages exceed the number of

detrimental M2 macrophages, thus resulting in improved bacterial

control.

Agent-based models of the within-host
Mtb dynamics

As far as we are aware, Segovia-Juarez et al. [70] developed

the first ABM to study within-host dynamics of Mtb. Specifically,

the authors studied potential mechanisms during the formation

of granulomas in the Mtb-infected lungs. The model depicted

macrophages and T cells as agents within a cellular automata-like

environment, while cytokines were represented continuously. By

using sensitivity analyses, the authors suggested important roles

of several processes such as (1) the diffusion of chemokines, (2)

prevention of macrophage overcrowding within the granuloma, (3)

the timing, location, and number of T cells within the granuloma,

and (4) the overall host ability to activate macrophages during

granuloma formation.

Ray et al. [71] developed a computational hybrid ABM to

characterize the role of TNF in controlling Mtb infection in a single

granuloma (Figure 7). This model suggested that TNF activities

have a profound impact on controlling the Mtb infection by

activating the macrophage for controlling bacterial growth. In

addition, the model suggested that bacterial numbers are a strong

contributing factor to the granuloma structure. These predictions

FIGURE 7

An example of a schematic of agent-based modeling (based on Ray

et al. [71]). The configuration of the agent-based model

environment is characterized by a grid measuring 100 × 100,

representing a 2 mm × 2 mm segment of lung tissue. Within this

grid, discrete entities consist of macrophages and T cells.

Continuous entities such as TNF, chemokines, and extracellular Mtb

are also represented. Each micro-compartment has the capacity to

house either a single macrophage or up to two T cells, in addition to

extracellular bacteria, TNF, and chemokines. Vascular sources are

identified in a randomly selected percentage of

micro-compartments, facilitating the recruitment of new

macrophages and T cells to the grid through the action of

chemokines and TNF.

are consistent with experimental observations on reactivation

of latent TB infection in individuals starting anti-TNF therapy

[72]. Fallahi-Sichani et al. [73] and Cilfone et al. [74] extended

the model of Ray et al. [71] to investigate the process which

regulates TNF concentration. Results of the analysis suggest that the

combined effects of both molecular and cellular processes control

the interplay between TNF concentration and bacterial numbers in

a granuloma. Repasy et al. [75] investigated the effect of burst size

(number of bacteria produced by an infected macrophage) on the

formation of granuloma. Bru and Cardona [76] formed an ABM

based on cellular automata. The model showed an important role

of the foamy macrophages in bacillary drainage in animal species

that poorly controlMtb, such as minipigs. Themodel also predicted

that stopping bacterial growth early after the infection by adaptive

immunity may be difficult.

Prats et al. [77] developed a model to investigate how

granulomas may be disseminated in the lung. In this model,

both local endogenous reinfection and coalescence of neighboring

lesions in the lung can give rise to new granulomas (so-called

“bubble model”). Authors modeled each lesion as a spheroid, like a

soap bubble, and imposed rules of their dissemination and growth

extracted from the experimental observations. Results showed

that three factors are important for progress toward active TB,
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a state with many and/or large granulomas: (i) an inflammatory

response, (ii) an endogenous reinfection (infection of new lung

tissues from an existing granuloma), and (iii) coalescence of lesions.

Català et al. [78] extended this work by investigating the role of

the bronchial tree in endogenous reinfection. The authors used

computed tomography (CT) scans of the lungs of five Mtb-infected

minipigs to reconstruct virtual pulmonary surfaces andmapped the

size and location of TB lesions in each animal. Model simulations

could match spatial and size distributions of TB lesions observed

experimentally, thereby emphasizing an important role of the

bronchial tree as the spatial structure guiding Mtb dynamics in the

lung.

Using an ABM called “GramSim,” Wong et al. [79] investigated

the role of anti-inflammatory cytokines, such as IL-10, on within-

host Mtb dynamics and compared model predictions with data

from Mtb infection of non-human primates (NHPs). Interestingly,

neutralization of IL-10 with monoclonal antibodies did not impact

Mtb dynamics in NHPs during the first eight weeks post-infection,

but the ABM suggested that the longer-term outcome of such

treatment may result in overall better control of Mtb. Other

studies explored the role of fibrosis and neutrophil dynamics

in the formation of granulomas in Mtb-infected NHPs [80–82].

Wessler et al. [83] extended these previous studies to include the

dynamics of multiple granulomas within an infected lung in a

model called “MultiGran.” MultiGran was capable of reproducing

several patterns of in vivo local and non-local Mtb dissemination

and suggested an essential role for multifunctional CD8+ T cells

and dynamic macrophage behaviors in preventing the spread of

Mtb in the lung. An important role of CD8α-expressing cells such

as CD8 T cells and innate lymphocytes for early (first eight weeks)

Mtb dynamics has been recently observed in NHPs [84, 85].

Hybrid models of the within-host Mtb
dynamics

In addition to the aforementioned ABMs, several ODE-based

mathematical models have described cellular trafficking between

distinct organs such as the lung and LNs [86, 87]. However, these

models could not accurately describe the spatial aspects of the

granuloma dynamics. Therefore, Marino et al. [88] introduced a

multi-organ, hybrid model incorporating an ABM to represent the

lung compartment and a non-linear system of ODEs to depict the

LN compartment. Such a hybrid model suggested an essential role

of migration of different types of cells, such as antigen-presenting

cells, between the lung and the LNs, for establishing protective

immunity. Notably, the migration rates of major immune cells

emerge as a key factor regulating the entire spectrum of infection

outcomes from latency to active disease. Furthermore, the study

posits that effector CD4+ T cells play a rescuing role in the

system, intervening to shift from a persistent infection to successful

clearance once a granuloma attains full maturation. Using the same

approach, other studies explored the role of dendritic cells in Mtb

infection and kinetics ofMtb-specific T cell response as a biomarker

for disease progression following Mtb infection [89, 90].

One major drawback of spatially heterogeneous mathematical

models, e.g., ABMs or hybrid models, is the need for detailed

experimental data to estimate their parameters rigorously. Most

parameters of ABMs are typically guessed or derived by analyzing

independent datasets (e.g., the rate of lymphocyte migration

between various tissues, [91]). Methods to systematically compare

predictions of ABMs with experimental data are an active area of

current research [92–94].

Outlook and future directions

Mathematical modeling is themost rigorous way to follow from

assumptions to predictions. By building a mathematical model

for a given biological system in question, we may identify what

aspects of the system are well understood and quantified and which

require further experimental work. TB is a highly heterogeneous

disease, and any single mathematical model is unlikely to describe

such heterogeneity accurately. We have reviewed studies that

used mathematical modeling to gain insights into the within-host

dynamics of Mtb. This field has matured from the first paper

published in 1996 [33], but there are still ways to improve the

current models.

One major limitation is that the size of the latest mathematical

models, defined, for example, as the number of model parameters,

typically dramatically exceeds the amount of quantitative

experimental data available for parameter estimation. For

example, it is relatively typical to measure the number of

bacteria in several organs of infected animals (e.g., in individual

granulomas of the lung, in whole lungs, in lung-draining LNs,

etc.). However, many parameters related to immune response

(e.g., number of alveolar and interstitial macrophages, recruited

neutrophils, monocytes, NK cells, and T cells) are rarely measured

in the same experiments. Development of more biologically

realistic mathematical models with parameters estimated

directly from experimental data by rigorously fitting models

to data is needed to further improve our understanding of TB

pathogenesis.

The number of time points and the number of animals

used in experiments is also relatively limited. Methods that

integrate different types of experimental data (e.g., flow cytometry,

PET/CT, microscopy, etc) in a rigorous manner are needed.

Using mathematical modeling to predict the sampling times and

the number of samples per time point (a.k.a. power analysis)

could be extremely useful to design the most informative (for

mathematical modeling) experiments [95, 96]. For models with

a large number of parameters (e.g., more than 20), methods

helping identify parameters most critical to key model predictions

would be extremely useful [97, 98]. It is typical in mathematical

modeling to identify parameter values and model structures that

best match experimental data. However, finding situations when

a biologically reasonable model is not consistent with the data

could be highly informative—such a model would suggest which

biological mechanisms are important to explain the data [28].

Another interesting future aspect of modeling Mtb dynamics

is to estimate efficacy of TB vaccines. Mathematical models

can incorporate various parameters like transmission rates,

immune system parameters, and vaccine-induced effects. By

adjusting these parameters, researchers can simulate different

scenarios and predict the potential impact of a vaccine on
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Mtb infection dynamics. This results in assessing the vaccine

efficacy, optimizing dosing strategies, and understanding potential

outcomes before conducting expensive and time-consuming

clinical trials. Finally, as mathematical modelers are now nearly

required to learn about the details of experiments and experimental

data, experimentalists need to meet modelers in the middle

and learn about the basics of mathematical modeling. Such

training is vital to recognize when mathematical modeling brings

novel insights into the Mtb dynamics and when it acts as a

“therapeutic illusion” [99]. Ultimately, mathematical modeling

of within-host Mtb dynamics will significantly benefit from

further sustained collaborations between experimental biologists

and modelers following the translational systems biology approach

[100].
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