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Scheduling is one of the many skills required for advancement in today’s modern 
industry. The flow-shop scheduling problem is a well-known combinatorial 
optimization challenge. Scheduling issues for flow shops are NP-hard and 
challenging. The present research investigates a two-stage flow shop scheduling 
problem with decoupled processing and setup times, where a correlation 
exists between probabilities, job processing times, and setup times. This study 
proposes a novel heuristic algorithm that optimally sequences jobs to minimize 
the makespan and eliminates machine idle time, thereby reducing machine 
rental costs. The proposed algorithm’s efficacy is demonstrated through 
several computational examples implemented in MATLAB 2021a. The results 
are compared with the existing approaches such as those by Johnson, Palmer, 
NEH, and Nailwal to highlight the proposed algorithm’s superior performance.
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1 Introduction

The process of scheduling constitutes a pivotal facet of resource allocation, involving the 
meticulous planning and execution of asset deployment to facilitate activity execution. 
Scheduling primarily aims to ascertain the most optimal solution, considering the imperative 
for optimal achievement of a specific purpose or outcome. Optimizing specific performance 
metrics while scheduling two or more jobs over two or more pre-defined machines is the crux 
of the flow shop scheduling problem (FSSP), a prominent scheduling challenge. In industrial 
flow shop environments, a critical constraint entails the minimization of idle time on 
machines, necessitating continuous operation once initiated. Consequently, machines are 
mandated to operate without downtime, posing a significant operational challenge. Extensive 
scholarly efforts spanning over the past 50 years have been dedicated to addressing scheduling 
predicaments. Notably, Johnson is recognized as the trailblazer in advancing a pioneering 
mathematical model (1). A notable triumph was achieved when this model—a substantial 
breakthrough across the field—reached the optimum solution. Johnson’s model has garnered 
considerable attention from scholars, sparking investigations into its efficacy. For problems 
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consisting of an assortment of m machines and n jobs, Palmer (2) 
introduced heuristic techniques to mitigate the makespan particularly. 
The discoveries of scholars offer valuable insights into the optimization 
of job sequencing to enhance the performance of overall efficiency. By 
employing this heuristic approach, Nailwal et al. (3) sought to mitigate 
the challenges posed by limited storage capacity effectively and offer 
potential solutions for improving job sequencing in situations where 
intermediate storage is not readily available. From that juncture on, 
schedule problems have begun emphasizing heavily on the NEH 
technique. Optimization of job scheduling over numerous machines 
is the main focus of the NEH method in order to reduce overall 
processing time (4). Jackson (5), Ignall (6), Campbell et al. (7), and 
Gupta and Shashi (8) have contributed significantly through the 
development and initial exploration of their research inquiries.

Arguably the top common problematic factors in task scheduling 
involves set up times, which have long been recognized to present 
significant challenges. Separating time for setup from the time it takes 
to process was the sole focus of the preliminary investigations towards 
the flow shop scheduling problem, which was launched by Yoshida 
and Hitomi (9). An expansion was implemented, enabling a more 
thorough examination, in furtherance of Johnson’s rule. In an effort to 
assess and improve the scheduling processes in an inadequate machine 
job shop, the researcher’s (10) paradigm incorporates sequence-
dependent setup times through computational simulation approaches. 
The simulation accurately represents the intricacies involved in setup 
and job sequencing processes. Through a meticulous analysis of the 
above factors, research aimed for significant perspectives on the 
intricacies of this dilemma and, conceivably, propose innovative 
resolutions or strategies for it (11).

The implementation of no-idle constraints is a component of 
no-idle flow shop scheduling. This entails the continuous operation of 
machinery, devoid of any breaks or idle periods. Researchers have 
explored different algorithms, mathematical formulations and 
optimization techniques to address the complexities associated with 
this scheduling problem. A flow shop with m machines underwent a 
pilot research into the no-idle constraint (12). Kaur et al. (13) devised 
a methodology that addresses job weighting considerations which 
aimed at reducing hiring expenses in no-idle flow shop scheduling. 
Within the framework of flow shop scheduling under no-idle 
constraint, Singla et al. (14) proposed an innovative approach aimed 
at constraining leasing costs for 2 machines. The investigators sought 
to enhance the optimization of resource allocation while concurrently 
minimizing the total expenditures associated with rentals by 
integrating transportation time and weighting components to the 
scheduling protocol. The biodiversity of the natural world provides a 
profound repository of insights, motivating creatures for developing 
adaptations to the multifaceted challenges they face. Moreover, 
researchers and professionals had adeptly leveraged this accrued 
information for confronting complex engineering predicaments, 
exemplified by the contributions of Singla et al. (15, 16) and Kumari 
(17, 18). The literature extensively scrutinizes and documents the 
statistical optimization strategies under consideration across various 
scholarly publications. Of particular note are the substantive 
contributions made by scholars such as Kumari et al. (19) and Malik 
et  al. (20) to the prevailing body of knowledge in this 
specialized domain.

Moreover, this study relies on the Gupta and Singh (21) work by 
factoring in the job setup times. The focus of the current research 

revolves around recognizing the finest optimum sequencing of jobs to 
lessen expenses associated with renting high-cost machinery.

The application of metaheuristic algorithms in solving NP-hard 
problems has significantly increased efficiency. This is particularly 
relevant to the scheduling field, where the flow shop scheduling 
problem (FSSP) is a significant and representative benchmark. 
Researchers have developed several benchmarks to evaluate and 
compare the optimization capabilities of various approaches (22). One 
such study focused on flow shop scheduling in an energy-efficient 
fuzzy system. The researchers extended the non-dominated sorting 
genetic algorithm-II (NSGA-II) to simultaneously minimize both the 
total fuzzy energy consumption and the fuzzy make-span (23). 
Recently, a comprehensive review and study of a multi-objective 
hybrid FSSP have been conducted (24, 25). This research highlights 
the potential of metaheuristic algorithms in addressing complex 
scheduling problems with multiple objectives.

The minimisation of the makespan, or total length of time 
required to complete a set of operations, is a crucial aspect of 
resource scheduling, particularly in cloud computing. Efficient 
resource allocation is a critical concern in cloud computing, as it 
directly impacts resource utilisation, the ability to meet service level 
agreements (SLAs), and overall customer satisfaction. Various 
scheduling techniques have been proposed to address this problem, 
among which dynamic Johnson sequencing (DJS) has gained 
significant attention. DJS is a well-established scheduling technique, 
originally designed for parallel machine manufacturing. However, 
the algorithm has experienced extensive adoption in cloud resource 
scheduling, attributed to its inherent simplicity and the capability to 
yield outcomes that are computationally efficient, thereby 
approaching optimality in time utilization. The DJS algorithm 
operates by dynamically sequencing jobs based on their processing 
times, resulting in an efficient allocation of resources. However, the 
rapidly evolving world of cloud computing demands fresh resource 
scheduling strategies to address the challenges of heterogeneous 
resources, virtualisation techniques, and dynamic responses to 
changing workloads. To overcome these challenges, advanced 
scheduling algorithms with optimisation techniques, heuristic-based 
approaches, and real-time monitoring capabilities have to 
be developed. To meet the demands of modern cloud environments 
and ensure optimal resource utilization, these algorithms ought to 
be flexible enough to adjust to shifting workloads and the availability 
of resources.

Banerjee et al. (26) proposed the OptiDJS+ dynamic Johnson 
sequencing strategy, which utilises two servers, as an alternative to 
traditional scheduling techniques. The authors demonstrated that the 
proposed approach significantly enhances the reduction of the 
makespan and increases resource utilisation. The following section 
presents a practical scenario of the Flow Shop Scheduling Problem 
(FSSP) for modelling purposes.

2 Practical situation

Everyday involvement with industrial and production 
environments often presents a range of observed scenarios that are 
both exploratory and practical. These situations typically involve 
carrying out a variety of tasks that require the use of various types of 
commercial machinery. Construction companies often face varying 
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project requirements, timelines, and budgets, making equipment 
rental an attractive option. For instance, throughout the project, the 
construction firm requires a diverse range of heavy machinery such 
as excavators, cranes, concrete mixers, and bulldozers. Renting 
benefits in terms of flexibility, cost-effectiveness, mitigate financial 
risks, and maintain operational agility in a competitive 
market environment.

2.1 Assumptions

 • In the context of autonomous job processing within sequential 
machines H1 and H2, it is evident that no provision exists for 
inter-machine transfer.

 • Under the existing conditions, it is deemed impractical for two 
machines to process just one job concurrently.

 • Until the job is completed beyond human possibility, all 
modifications to the machines’ instructions are strictly forbidden.

 • Calculations of usage fail to account for the time required for 
setup or equipment breakdown.

2.2 Rental policy

Our rental policy allows for machines to be utilized as required 
and returned when no more needed. To be more precise, the first 
machine used in the job processing process was acquired via the rental 
contract. As soon as the initially hired machine’s first job is finished, 
another machine is to be acquired through rent.

3 Problem formulation

Consider the scheduling problem of job processing, where a set of 
jobs, denoted as j (with j ranging from 1 to n) are to be executed on 
two distinct machines, H1 and H2, with probabilistic processing times 
with setup times. Specifically, the processing time for job j on 
machines H1 and H2 are denoted by hj1 and hj2, respectively, and are 
associated with probabilities pj1 and pj2. Additionally, the setup times 
for job j on machines H1 and H2 are denoted by sj1 and sj2, respectively, 
and are associated with probabilities qj1 and qj2. To mathematically 
represent the model, we  propose a matrix-based format which is 
expressed in Table  1. The objective is to determine the optimum 
sequence of jobs {s1} to minimize capital expenditures for 
rented equipment.

4 Algorithm

Step 1: Calculate the processing times for machines H H1 2and  
as follows:

 H h p s qj j j j j1 1 1 2 2= ´ - ´  (1)

 H h p s qj j j j j2 2 2 1 1= ´ - ´  (2)

where H Hj j1 2and  are the processing times of job j for 
machines H H1 2and .

Step 2: Implement Johnson’s method (1) to obtain the optimum 
sequence s1 of jobs that minimizes the total elapsed time.

Step 3: Construct a flow in-out table for the optimum sequence s1 
to calculate the total elapsed time.

Step 4: Determine

 
l T Hj

n
j2 2

1

2= -
=

¥

å
 

(3)

Step 5: Use the starting point l2 as the starting point for processing 
jobs on machine H2 to construct a flow IN-OUT table.

Step 6: The utilization times, u1 (s1) and u2 (s1) for machines 
H H1 2and are determined by the following calculations:

 
u s H

n
j1 1

1
1( ) =

=

¥

å
 

(4)

 u s T lj2 1 2 2( ) = -  (5)

Step 7: Finally, calculate.

 r s u s c u s c1 1 1 1 2 1 2( ) = ( ) * + ( ) *  (6)

5 Numerical illustration

Consider the sequencing problem of five jobs (j = 1, 2, 3, 4, 5) to 
be two machines H H1 2and ,where the processing times for each job 

TABLE 1 Matrix formulation of the mathematical format.

Job Machine H1 Machine H2

j hj1 pj1 sj1 qj1 hj2 pj2 sj2 qj2

1 h11 p11 s11 q11 h12 p12 s12 q12

2 h21 p21 s21 q21 h22 p22 s22 q22

3 h31 p31 s31 q31 h32 p32 s32 q32

.. .. .. .. .. .. .. .. ..

n hn1 pn1 sn1 qn1 hn2 pn2 sn2 qn2
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on respective machines are specified in Table 2. The hiring cost of 
machines H H1 2and is four and six units of time, respectively. The 
objective is to determine optimum sequence of jobs to minimize the 
total cost of rented equipment.

5.1 Solution

Step 1 outlines an analysis of the projected processing times on 
two machines H H1 2and  as per Equations (1) and (2). Table  3 
displays the projected process times on two machines H H1 2and .  
The table shows the anticipated processing times for jobs 1 through 
5 on both machines, represented as H Hi i1 2and .

The optimal sequence s1, where s1 4 315 2= { }, , , , , is determined in 
Step 2 of the research methodology to minimize the total elapsed time. 
To provide a comprehensive overview, Table 4 displays the cumulative 
inflow and outflow of jobs for each machine based on Step 3 based 
on the s1.

Thus, total elapsed time Cmax = 14.0

As per Step 5; by using Equation (3), l2 = 14.0–12.3 = 1.7.

The IN-OUT table that incorporates the inflow and outflow of 
jobs is essential tool for solving the optimized scheduling problem as 
presented in Table  5. This table should be  incorporated into the 
research methodology as outlined in Step 6.

As per Step-6; by using Equations (4, 5), we get u1(s1) = 11.4.

 ( )2 1 14.0 –1.7 12.3.= =u s

As per Step-7; by using Equation (6), i.e., r(s1) = u1(s1) ∗ 
c1 + u2(s1) ∗ c2.

 = + =* *
11 4 4 12 3 6 119 4. . . .units

The previously computed results are therefore recorded in Table 6 
for machine route H1 → H2 of the optimized sequence s1 = {4,3,1,5,2}. 
Thus, as Table  6 illustrates, the heuristic algorithm suggested for 
machine route H1 → H2 produces the lowest feasible utilization time 
and rental cost for the optimal solution s1.

6 Computational experiments

A multitude of samples have been selected for the purpose of 
examining the proposed algorithmic method, with each set 
comprising a random amount of jobs. Job sizes 5, 10, 20, 30, 40, 50, 
60, and 80 are divided into eight distinct groups. Then, five unique 
trials that had been generated at random were applied to each group 
and observed. Palmer (2), Johnson (1), NEH (4), and Nailwal’s (3) 
existing make-span strategies have been compared to the proposed 

TABLE 3 Anticipated processing time on machines H1 and H2.

j H j1 H j2

1 2.3 5.0

2 4.0 0.7

3 1.8 4.2

4 1.3 1.4

5 2.0 1.0

TABLE 4 Inflow and outflow table for schedule S1.

j H1 H2

4 0.0–1.3 1.3–2.7

3 1.3–3.1 3.1–7.3

1 3.1–5.4 7.3–12.3

5 5.4–7.4 12.3–13.3

2 7.4–11.4 13.3–14.0

TABLE 2 Problem instance parameters for job sequencing problem.

Jobs Machine H1 Machine H2

j hj1 pj1 sj1 qj1 hj2 pj2 sj2 qj2

1 14 0.2 4 0.2 29 0.2 5 0.1

2 29 0.2 8 0.3 31 0.1 9 0.2

3 30 0.1 6 0.2 27 0.2 4 0.3

4 9 0.3 1 0.1 5 0.3 7 0.2

5 12 0.2 3 0.2 8 0.2 2 0.2
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algorithm’s average entire rental cost. As seen in Figure 1, a graph has 
been created to depict the comparison, and the findings are reported 
in Table 7. These findings reveal that the path of the curve connected 

to the proposed method is quite a bit lower aside from of the rest of 
the curves. Of particular note lies the far greater elevation curve that 
Palmer’s algorithm exhibits in contrast with competing current 

TABLE 6 Comparative analysis of the outcomes.

Machine path Utilization time of H2 (units) Rental costs (units)

Proposed algorithm H H1 2®( ) 12.3 119.4

Johnson algorithm H H1 2®( ) 12.7 121.8

FIGURE 1

Comparative analysis of computational outcomes.

TABLE 5 In-out table for the optimized flow shop scheduling model.

Jobs Machine H1 Machine H2

In1-Out1 In2-Out2

4 0.0–1.3 1.7–3.1

3 1.3–3.1 3.1–7.3

1 3.1–5.4 7.3–12.3

5 5.4–7.4 12.3–13.3

2 7.4–11.4 13.3–14.0

TABLE 7 Results of computational experiments.

Job size (n) Palmer algorithm Johnson 
algorithm

NEH algorithm Nailwal algorithm Proposed 
algorithm

5 198.43 175.65 161.05 176.25 149.45

10 799.65 693.73 585.88 655.91 425.5

20 3408.1 2948.83 2505.07 2608.35 2076.18

30 7293.85 6968.08 6425.65 7044.70 5919.75

40 13137.43 12454.88 11668.60 12568.75 10499.45

50 40441.12 39775.15 38665.97 40273.01 37537.9

60 29597.9 28203.62 26106.20 29339.42 23853.5

80 52716.22 45098.40 43850.75 47365.22 42442.78
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methods. Furthermore, in comparing the curve of NEH (4) to other 
curves, it is observed that the curve of NEH (4) exhibits a closer 
proximity to the curve of the proposed algorithm.

Error percentage, serves as an evaluative measure for assessing the 
effectiveness and efficiency of the new algorithm in terms of rental 
cost optimization. The formula for computing the error percentage is 
given by:

 E R R Rrr = -( )éë ùû ´d q q/ 100

Where: Rd  =The sum of all rental costs calculated by the existing 
algorithms. Rq = The total rental cost computed using the 
new algorithm.

As seen in Figure 2, the outcomes are graphically represented in 
the subsequent figure.

In the analysis conducted, we investigate the performance of 
four different algorithms, namely NEH (4), Johnson (1), Palmer 
(2), and Nailwal (3), in terms of their ability to minimize rental 
costs. This observation is supported by the error curve, 
which demonstrates a consistent downward trend in rental costs 

when employing the NEH algorithm as shown in Figure 2. As the 
evidence by the data presented in Table  8 illustrates that the 
amount of jobs performed has no bearing on the detected error. 
Specifically, the mean percentage error for the group 
comprising 20 jobs in Johnson’s algorithm is 58.4 units. In this 
research study, we investigate the impact of job size on a specific 
data set of problems. Specifically, we  examine the effect of 
increasing the job size to 40 units. Our computational 
experiments reveal that with this larger job size, the overall 
reduction in units achieved is 31.1. In the context of job size, an 
interesting observation can be made. The unit count climbs to 
30.69 units when the job size increases to 60. However, the 
corresponding unit lowers once more to 18.37 units when the job 
size is 50. A noteworthy remark has been made as well regarding 
the NEH algorithm, where the mean error for various job 
categories does not fluctuate in a similar pattern as with the 
Palmer and Johnson algorithms.

Moreover, the error generated by the Palmer (2) algorithm is 
considerably greater than that of the Johnson (1) algorithm, as shown 
in Table 9. NEH (4) approaches the precise and optimum solution to 
reduce the rental cost of machines.

FIGURE 2

Average error percentage.

TABLE 8 Average error percentage.

n Johnson algorithm Palmer algorithm NEH algorithm Nailwal algorithm

5 32.41 50.87 18.03 27.41

10 78.9 90.1 25.62 33.03

20 58.43 77.65 19.25 27.34

30 30.19 35.7 14.41 21.13

40 31.1 37.6 14.13 21.04

50 18.37 20.14 12.77 20.09

60 30.69 36.57 13.51 20.43

80 30.75 36.68 13.29 20.77
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7 Conclusion

This study presents the ideal outcome of reducing renting 
expenses using the suggested heuristic approach. A number of factors 
are weighed by the algorithm, such as separated setup times and 
processing times. Our main goal in this inquiry was to get the 
intended result for numerous job sizes. The scope of the variable “n” 
was confined to the interval of (1 ≤ n ≤ 5) in previous research because 
of the intricacy of the computation for small-scale jobs. However, 
we expanded to include jobs of a moderate size, where n is between 
6 and 30.

In addition, we  tried to achieve our objective for jobs of a 
significant magnitude, where n may have a value between 31 and 80. 
The present investigation encompassed a succession of effective 
computational evaluations. Palmer (2), Johnson (1), NEH (4), and 
Nailwal (3) all proposed heuristics that were surpassed by the 
devised heuristic algorithm, as demonstrated by the outcomes of 
these tests. Moreover, a number of factors, including the impact of 
weightage of job, fuzzy trapezoidal numbers, job block etc., might 
be  included in this work to broaden it further. Additionally, the 
concept of Neutrosophic programming can be  incorporated in 
future studies.
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Glossary

j job index, where j = 1, 2,…,n

s1 optimization of sequences using Johnson’s method

hj1 the time it takes for the jth job to be processed via the first machine

hj2 the time it takes for the jth job to be processed via the second machine

In1 Inflow of jobs to machine H1

In2 Inflow of jobs to machine H2

Out1 Outflow of jobs from machine H1

Out2 Outflow of jobs from machine H2

pj1 The probability correlated with hj1

pj2 The probability correlated with hj2

sj1 Setup time of first machine H1

sj2 Setup time of second machine H2

qj1 Probability pertaining to sj1

qj2 Probability pertaining to sj2

Tj2 The time it takes for the jth job with the second machine to be completed

u1(s1) machine H1’s utilization time period within sequence s1

u2(s1) machine H2’s utilization time period within sequence s1

c1 Time-based fees for rental of machine H1

c2 Time-based fees for rental of machine H2

l2 The most recent time for renting machine H2 in order to cut down idle time

r(s1) Rental cost for sequence s1
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