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The exponentiated Teissier distribution (ETD) offers an alternative for modeling 
survival data, taking into account flexibility in modeling data with increasing 
and decreasing hazard rate functions. The most popular method for parameter 
estimation of the ETD distribution is the maximum likelihood estimation (MLE). 
The MLE, on the other hand, is notoriously biased for its small sample sizes. 
We  are therefore driven to generate virtually unbiased estimators for ETD 
parameters. More specifically, we  focus on two methods of bias correction, 
bootstrapping and analytical approaches, to reduce MLE biases to the second 
order of bias. The performances of these approaches are compared through 
Monte Carlo simulations and two real-data applications.
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1 Introduction

Time-to-event data analysis can be performed statistically using survival data analysis. The 
time until an event of interest occurs is the main result of interest in survival analysis (1). This 
could be a number of things, such as the amount of time until a patient relapses, a machine 
breaks down, or a customer leaves. Statistical modeling of survival data entails modeling and 
analyzing the amount of time until an event of interest through statistical techniques.

An essential component of survival analysis is selecting a statistical distribution to model 
survival data (2). The instantaneous failure rate at any given moment is represented by the 
underlying hazard function, about which different distributions make different assumptions. 
The properties of the survival data and the underlying biological or physical processes should 
direct the choice of distribution. Visual evaluations, domain expertise, and goodness-of-fit 
tests can all be used to guide the selection of a model (3, 4).

In the area of survival analysis, the Teissier distribution is frequently utilized for modeling 
survival data (5–7). Sharma and Singh (5) presented exponentiated Teissier distributions 
(ETDs) by adding an extra shape parameter to a well-known baseline distribution. The Teissier 
distribution is different from other distributions such as Weibull, Gompertz, gamma, and 
Maxwell distributions in modeling bathtub and upside-down bathtub failure rate functions (5).

The capacity of the Teissier distribution to represent many survival rate phases, such as 
the growing, constant, and decreasing phases seen in a bathtub failure rate function, is its main 
advantage. Because it can support many forms and changes in these stages, it is a helpful tool 
for simulating intricate survival issues.
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The Tessier distribution has the following cumulative distribution 
function (CDF):
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The ETD is defined by CDF:
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The probability density function (PDF) of the ETD is:
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2 Maximum likelihood estimation

Suppose that X x x xn= ……( )1 2, , ,  be a random sample of size n  
from the ETD distribution. The log-likelihood function of θ  and α  
is given by:
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Maximize Eq. (4) with respect to θ  and α in order to obtain the 
MLE (θ  and α ) of θ  and α , respectively. We  have the 
following equations:
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Since Eqs. (5) and (6) are non-linear, they cannot be  solved 
analytically. MLE will be biased by small sample sizes. Therefore, it gives 
misleading results, which affects the interpretation of phenomena in real-
life applications. This motivates us to consider unbiased estimates, almost 
to reduce the bias of this MLE distribution of these parameters.

3 Bias-corrected MLEs

A statistical method called bias-corrected maximum 
likelihood estimation (BC-MLE) is used to account for bias in 

parameter estimations that are derived from MLE. When the 
average value of the estimates, computed across a large number of 
samples, differs from the true parameter value, the concept of bias 
in MLE emerges. In order to give more accurate parameter 
estimates, bias-corrected (BC) approaches try to minimize or 
completely remove this systematic mistake (8–10).

To evaluate the bias and apply corrections, methods such as 
the corrective approach (CA) and bootstrapping are frequently 
used (11). This method is useful when bias could compromise the 
validity of statistical conclusions. In the literature, inspired by 
these two approaches, a large number of authors tackled the 
BC-MLE issue. Among them are: (12–41).

3.1 A corrective approach

Suppose L τ( )  is the log-likelihood function of a p-dimensional 
parameter τ τ τ τ= ……( )1 2, , , n  based on a sample of observations x . 
The joint cumulants of the derivatives of the log-likelihood function 
for i j p, , , , ,= ……1 2 3  are given by:
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where the derivatives of the joint cumulants are given by:
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The log-likelihood function is well-behaved and regular for all 
derivatives up to third order.

Cox and Snell (42) showed that when sample data are independent 
but not always identically distributed, the bias of the sth element of the 
MLE of τ is:
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  s p= ……1 2, ,. ,  (11)

where Mij is the (i, j)th element of the inverse of the Fisher information 
matrix. Then, Cordeiro and Cribari-Neto (8) observed that the bias 
expression still holds if the observations are not independent. They 
recommended the following convenient form as appropriate instead of 
Eq. (11).
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s p= …1 2, ,. ,  (12)

Since, Eq. (12) does not contain the terms of the form 
defined in Eqs. (10), (12) has a computational advantage over 
Eq. (11).

Then, let M Mij= −{ }  It is Fisher’s information matrix of τ, and 

let a M Mij
l

IJ
l

ijl
( ) ( )= −

1
2

 they are elements A al
ij
l( ) ( )=  matrix for 

i j l p, , , , .,= …1 2 3 . We have A A A A A P= …










( ) ( ) ( ) ( )1 2 3 ..

, with A al
ij
l( ) ( )= 





.
Accordingly, the bias expression of τ  can then be  written in 

matrix form as:
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Thus, this shows that the BC-MLE of τ using the CA-MLE, 
CA MLE

τ
−



, is given by:
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where τ  is the MLE of τ , M M
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 is quadratic. Related to ETD distribution, the 
derivatives are obtained (Appendix).

Then,
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where Mijl is defined in the Appendix section. Therefore, the bias 
MLE of ETD distribution is given by:
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And then,
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3.2 Bootstrap approach

An alternative method based on the parametric bootstrap 
resampling methodology is used to produce second-order BC 
estimators (43, 44). Let X x x x xn= …( )1 2 3, , , ,..  be a random sample of 
size n  from the random variable X  with the distribution function 
F . By generating B independent bootstrap samples from distribution 
function F , the estimated bias of the MLE of τ is:
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where τ


j

∗

 is the MLE of τ from the jth  bootstrap sample generated 
from the ETD distribution. Then, the BC bootstrap (BC-Boot) 
approach is defined as:
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4 Simulation results

This simulation study’s objective is to assess how well the several 
estimators of the ETD distribution’s parameters: MLE, CA-MLE, and 
BC-Boot perform. The ETD distribution was used to generate samples 
with sizes n = 10, 30, 50, and 100, with parameters θ α= =( )1 5 2. , , 
θ α= =( )2 2 3. , , and θ α= =( )5 7, . Each case was generated with 

Monte Carlo samples 5,000 times and 1,000 bootstrap samples each 
time. To evaluate the accuracy of the parameter estimates, the bias and 
root mean squared error (RMSE) of the estimates, which are defined 
in Eqs. (21) and (22), respectively, are reported. All results of the 
averaged biases and RMSE are summarized in Tables 1–3.
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From Tables 1–3, there are a few conclusions that can be reached:

 1. For all the simulations considered, the MLE estimators of α  seem 
to be  biased in the positive direction. This illustrates how, in 
general, they overstate the parameter α  value, particularly in 

cases where the sample size is small. Furthermore, when the real 
value of the parameter θ  is equal to or larger than 1.5, the MLE 
estimators frequently exhibit a positive bias, that is, they 
continuously overestimate the true value of the parameter θ  for 
various sample sizes.

 2. The MLE estimators underperformed the CA-MLE and 
BC-Boot of α  and θ  in terms of bias and RMSE in all 
simulations for different sample sizes. Further, the BC-Boot of 
θ  and α  outperformed the CA-MLE in terms of 
RMSE. Additionally, in terms of bias, BC-Boot attained better 

TABLE 3 Average RMSE and bias when ( )5, 7θ α= = .

θ α

n MLE CA-MLE BC-Boot MLE CA-MLE BC-Boot

10 RMSE 0.5125 0.4452 0.4437 0.5083 0.4226 0.4219

Bias 0.3312 0.1226 0.1305 0.3099 0.129 0.1282

30 RMSE 0.4523 0.3852 0.3835 0.4484 0.3624 0.3617

Bias 0.3258 0.1172 0.1249 0.3046 0.1235 0.1227

50 RMSE 0.4245 0.3559 0.3544 0.4188 0.3276 0.3296

Bias 0.3244 0.1158 0.1232 0.3035 0.1221 0.1211

100 RMSE 0.3804 0.3133 0.3116 0.3762 0.2905 0.2898

Bias 0.3235 0.1149 0.1202 0.3021 0.1235 0.1198

TABLE 1 Average RMSE and bias when 
( )1.5, 2θ α= =

.

θ α

n MLE CA-MLE BC-Boot MLE CA-MLE BC-Boot

10 RMSE 0.4031 0.3358 0.3343 0.3989 0.3132 0.3125

Bias 0.2218 0.0132 0.0809 0.2005 0.0195 0.0188

30 RMSE 0.3429 0.2756 0.2741 0.3389 0.253 0.2525

Bias 0.2164 0.013 0.0755 0.1951 0.0141 0.0136

50 RMSE 0.3151 0.2465 0.245 0.3094 0.2182 0.2202

Bias 0.215 0.0144 0.0738 0.1938 0.0128 0.012

100 RMSE 0.271 0.2039 0.2022 0.2668 0.1811 0.1805

Bias 0.2141 0.0153 0.072 0.1928 0.0118 0.0111

TABLE 2 Average RMSE and bias when 
( )2.2, 3θ α= =

.

θ α

n MLE CA-MLE BC-Boot MLE CA-MLE BC-Boot

10 RMSE 0.4592 0.3915 0.39 0.4546 0.3689 0.3682

Bias 0.2775 0.0689 0.1365 0.2562 0.075 0.0745

30 RMSE 0.3986 0.3313 0.3298 0.3946 0.3089 0.3081

Bias 0.272 0.0635 0.1312 0.2508 0.0698 0.0691

50 RMSE 0.3708 0.3022 0.3009 0.3651 0.2739 0.2759

Bias 0.2707 0.0621 0.1295 0.2495 0.0685 0.068

100 RMSE 0.3268 0.2596 0.2579 0.3224 0.2369 0.236

Bias 0.2698 0.0611 0.128 0.2485 0.0675 0.0669

https://doi.org/10.3389/fams.2024.1351651
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Ahmed et al. 10.3389/fams.2024.1351651

Frontiers in Applied Mathematics and Statistics 05 frontiersin.org

performance than CA-MLE for θ . Conversely, CA-MLE 
attained better performance than BC-Boot for α .

 3. The biases and RMSEs of all examined estimators will naturally 
decline as sample size n increases. This is mostly because most 
estimators in statistical theory perform better as sample size n 
increases. As previously stated, for small sample numbers, both 
CA-MLE and BC-Boot show extremely significant reductions in 
bias and RMSE. For instance, from Table 3, in the case of n = 10, 
it can be seen that the reduction in RMSE of both CA-MLE and 
BC-Boot was approximately 13.13 and 13.42% for θ , and 62.96 
and 60.63% for α  lower than that of the MLE. On the other 
hand, the reduction for the same case of both CA-MLE and 
BC-Boot in terms of bias was 16.86 and 16.99% for θ , and 58.37 
and 58.63% for α  lower than that of the MLE, respectively.

 4. Finally, although the two approaches, CA-MLE and BC-Boot, are 
equally efficient, BC-Boot is computationally easier than CA-MLE.

5 Real data application

In this part, we use two real datasets with a small sample to 
demonstrate the usefulness of the suggested BC estimators for the 
ETD distribution. The first dataset represents the life time failure 
of 18 electronic devices (45). This data was further analyzed by 
Wang and Wang (38). The second dataset represents the tubes that 
show leaks under a 120 psi stress level (46). The sample size of this 
data is 30. This data was further analyzed by Çetinkaya and 
Bulut (17).

To check whether the first and second data belong to the ETD 
distribution, the Kolmogorov–Smirnov test as a goodness-of-fit is 
used. The result of the test for the first data set is 6.281, with a p-value 
of 0.611. On the other hand, the result of the goodness-of-fit for the 
second data set equals 8.068, with a p-value of 0.744. These results 
indicate that the ETD distribution can fit very well with these data.

Tables 4, 5 show the estimated values for the parameters of the alpha 
power exponential distribution. Tables 4, 5 demonstrate that the 
CA-MLE and BC-Boot estimates of θ  and α  are less than the MLE 
estimate, indicating that the MLE approach overestimates this parameter.
The analysis of the ETD distribution pdf in relation to Tables 4, 5 for θ  
and α  values of both datasets is shown in Figures  1, 2, respectively. 
We  suggest using CA-MLE and BC-Boot estimates for both datasets 
because the density shape based on the MLE method may be deceptive, 
as this figure illustrates.

6 Conclusion

In order to obtain straightforward closed-form equations for the 
second-order biases of the MLE of the parameters of the ETD distribution, 
the corrective method was proposed in this paper. Namely: CA-MLE and 
BC-Boot. The newly proposed estimators converge to their real value 
significantly faster than the MLE, as evidenced by their biases being of 
order O n−( )2 as opposed to O n−( )1 for the MLE. The suggested 
approaches exceed the MLE in terms of bias and RMSE, as demonstrated 
by the numerical data, making them highly appealing. The suggested BC 
estimators are highly advised, particularly in cases where the sample size 
is small.

TABLE 5 Point estimates of the θ  and α  of ETD distribution for the show leak data.

θ α

MLE 2.813 5.567

CA-MLE 2.744 5.516

BC-Boot 2.761 5.458

FIGURE 1

Estimated fitted density functions of the first dataset.

TABLE 4 Point estimates of the θ  and α  of ETD distribution for the electronic device data.

θ α

MLE 1.4811 3.9823

CA-MLE 1.4263 3.7708

BC-Boot 1.3112 3.7579
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