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The paper aims to utilize an integral transform, specifically the Khalouta

transform, an abstraction of various integral transforms, to address fractional

di�erential equations using both Riemann-Liouville and Caputo fractional

derivative. We discuss some results and the existence of this integral transform.

In addition, we also discuss the duality between Shehu transform and Khalouta

transform. The numerical examples are provided to confirm the applicability and

correctness of the proposed method for solving fractional di�erential equations.
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1 Introduction

Fractional calculus extends the traditional calculus operation of differentiation and

integral to non- integer orders. Although the concept finds its roots in the works of

Euler, Laplace and Fourier in the 18th and 19th centuries, it has gained significant

attention in recent years for its applications in diverse scientific and engineering fields.

Solving fractional differential can be more challenging than solving traditional differential

equations, and various numerical and analytical method [1–5] have been developed for this

purpose. An integral transform is an operation that takes a function and maps it to another

function through integration. It is often used to simplify and solve complex problems in

various fields. The basic idea behind an integral transform is to express a function in terms

of a different set of functions, making it easier to analyze and manipulate. One of the most

well-known integral transforms is the Laplace transform [6, 7], which is widely used in

control theory and signal processing. Another common integral transform is the Fourier

transform, used in fields like signal analysis and image processing. These transforms

have applications in solving differential equations, analyzing signals, and studying the

frequency components of functions. Now days many integral transforms can be used

to convert differential equations into algebraic equations, making them easier to solve

such as Sumudu transform method, Natural transform method, Kamal transform method,

Mohand transform method, Aboodh transform method, Shehu transform method [4],

and Complex integral transform method etc. [8–32]. Integral transform are employed

to solve partial differential equations governing heat transfer and fluid flow problems in

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2024.1351526
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2024.1351526&domain=pdf&date_stamp=2024-02-06
mailto:manvendra.mishra22187@gmail.com
https://doi.org/10.3389/fams.2024.1351526
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2024.1351526/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Kumawat et al. 10.3389/fams.2024.1351526

engineering, such as in solving the heat conduction equation.

The Fourier and wavelet transforms are used in image processing

to analyze and enhance images, as well as to extract features

and perform image compression [33–40]. The Khalouta integral

transform is employed in this article to drive explanatory solutions

for fractional differential equations utilizing both the both the

Riemann-Liouville integral and caputo fractional derivative. The

approach aims to provide a comprehensive understanding of the

solutions within the context of these specific fractional calculus

operators. Khalouta transform method for Atangana-Baleanu or

other derivatives can also be adapted since Sumudu transform,

Shehu transform and various other transforms exists for these

derivatives and relationship of Khalouta transform exists with

all these transforms. Applying Khalouta transform methods to

highly nonlinear fractional differential equations can pose several

challenges like analytical solutions complexity, convergence issues

and others. Khalouta transform rely on the convergence of series or

integrals. For highly nonlinear problems, convergence may be slow.

2 Pre-requisites

We present few fundamental definition and properties related

to the fractional calculus. These definitions and properties form the

basis for understanding and applying fractional calculus in various

scientific and engineering disciplines. For detailed explanations,

please refer to the cited sources [41, 42].

Definition 1 The Riemann Liouville fractional integral operator

I0
β of order β for a function f :(0,∞) → R for all β ∈ R+ is

defined as,

I0
β f (u) =

1

Ŵ (β)

∫ u

0
(u− υ)β−1f (υ)dυ, (1)

=
1

Ŵ (β)
uβ−1

∗ f (u) , β > 0, u > 0,

I0f (u) = f (u)

Where Ŵ(.) is the widely known pseudo gamma function. It is

an abstraction of factorial function,

Ŵp =

∫ ∞

0
up−1e−udu p ∈ c (2)

Definition 2 The Riemann-Liouville fractional derivative operator
RDu

β of order β for a function f :(0,∞) → R for all β ∈ R+ is

defined as,

RDu
β f (u) = Du

nIn−β f (u) =
dn

dun
In−β f (u) (3)

=
1

Ŵn− β

dn

dun

∫ t

0
(u− υ)n−β−1f (υ)dυ, u > 0. (4)

where n− 1 < β ≤ n n ∈ N.

Definition 3 The Caputo fractional derivative of function

f :(0,∞) → R for all β ∈ R+ is defined as,

cDu
β f (u) = In−βDu

nf (u)

=
1

Ŵn− β

∫ u

0
(u− υ)n−β−1f n (υ) dυ, u > 0. (5)

=
∂n

∂un
f (u) = f n(u).

where n− 1 < β ≤ n n ∈ N.

Definition 4 The Mittag-Leffler function is abstraction of

exponential function Eβ

(

k
)

which is defined as,

Eδ(k) =

∞
∑

r=0

kr

Ŵ(δr + 1)
(6)

Eδ,γ (k) =

∞
∑

r=0

kr

Ŵ(δr + γ )
(7)

here δ, γ ∈ R+ and k ∈ c An abstraction of Mittag-Leffler function

of is introduced by Prabhaker as given [43, 44]:

Eε
δ,γ (k) =

∞
∑

r=0

(ε)r

Ŵ(δn+ γ )

kr

r!
(8)

here δ, γ , ε ∈ R+ and k ∈ c

3 Khalouta transform

The function f : u ∈ [0,∞[→ R of exponential order β > 0,

then Khalouta transform, over the set of function is defined as [45]

ς =
{

f (u) : ∃K, β > 0,
∣

∣f (u)
∣

∣ < K exp(βu), for all u ∈ [0,∞[
}

,

by the following integral

Kh
[

f (u)
]

= k(s, λ, η) = s

∫ ∞

0
exp(−su)f (ληu)du. (9)

We can also define it as,

Kh
[

f (u)
]

= k(s, λ, η) =
s

λη

∫ ∞

0
exp

(

−
su

λη

)

f (u)du

or

= lim
φ→∞

s

λη

∫ φ

0
exp

(

−
su

λη

)

f (u)du, (10)

where s, λ, η > 0 are the Khalouta transform variables. β is a real

number and the integral is taken along the limit u = φ. Equations

(1–10) give the basic details of fractional operators and of Khalouta

transform.

Since the Khalouta transform is very recently discovered so

there might be some general queries about the efficiency and

reliability of the transform but one can trust this transform as it

has fair connections with other established transforms as well.

Extending the Khalouta transform method to handle systems of
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fractional differential equations (FDEs) for improved efficiency

and accuracy involves several considerations. Efficiency and

accuracy depend on the specific characteristics of the system

and the problem at hand. Khalouta transform possesses certain

mathematical properties that make it suitable for solving problems

related to Caputo fractional derivatives like, linearity, exponential

behavior, derivatives property, initial value problem and semi

group property. It can also be used to derive approximate solutions

for fractional differential equations when exact solutions are

challenging to obtain. Dealing with fractional orders involves

performing computations related to fractional calculus. These

computations can be more complex and computationally intensive

than traditional integer-order calculus. Efficient algorithms

and numerical methods may be needed. Fractional calculus

problems may benefit from adaptive algorithms, such as adaptive

time-stepping methods. These algorithms adjust the step

size dynamically, which can impact the overall computation

requirements. It’s a complex area with challenges, and not all deep

learning frameworks readily support fractional derivatives. we may

need specialized tools or libraries designed for fractional calculus

to address such multi-dimensional problem.

Khalouta transform methods can be applied to

multidimensional problems involving partial derivatives with

fractional orders in some scientific and engineering fields. Here are

few examples: fractional heat equations, fractional wave equations

and fractional diffusion equation. There are many examples

from science and engineering where Khalouta transform has

been successfully applied to solve real-world problems involving

fractional calculus [1, 2]. The convergence properties of the

transform method in solving fractional differential equations

depend on the nature of the given problem. Generally, Khalouta

transforms, can exhibit good convergence for well-behaved

functions and problems with appropriate initial or boundary

conditions. The convergence may be influenced by the smoothness

of the solution, the decay properties of the involved functions,

In some cases, careful consideration of the choice of fractional

derivative definition (e.g., Caputo or Riemann-Liouville) is crucial

for convergence analysis. This transform can also be extended

to handle fractional integro differential equations like the first

order volterra integro- differential equation with the initial

condition and the second order volterra differential equations

with the initial condition. When dealing with singularities or

irregularities in fractional differential equations, specialized

numerical techniques like the Caputo or Riemann-Liouville

fractional differ-integration methods can be employed. These

methods are designed to handle fractional calculus operations

and may provide better performance in capturing the behavior

of systems with singularities. Additionally, techniques such as

fractional Adams-Bashforth or Adams-Moulton methods can be

useful for solving fractional differential equations numerically. This

transform may not be directly applicable to problems with variable

order derivatives. These methods are most effective for problems

with constant order derivatives. For variable order derivatives,

you might need to explore specialized techniques like fractional

calculus or other advanced mathematical tools, depending on the

specific characteristics of our problem.

This transform method, often used for solving fractional

differential equations (FDEs). The theoretical underpinning

involves extending classical calculus to include fractional

derivatives and integrals, allowing the analysis of systems

with non-integer order derivatives. Mathematically, fractional

derivatives are defined through integral operators, such as the

Riemann-Liouville or Caputo operators. Transforming FDEs

into the frequency or Laplace domain simplifies the equations,

making them amenable to solution using standard techniques. This

approach leverages the well-established properties of Khalouta

transforms, enabling the application of existing mathematical

tools to fractional calculus. There are some basic properties where

Khalouta transform method fails to provide accurate solution

like sudden changes or discontinuities in a function can lead

to inaccuracies in transform solutions, Khalouta transforms

may not converge for certain functions, leading to divergent or

nonsensical results and incorrect or poorly defined boundary

conditions can affect the accuracy of transform. Khalouta

transform method can be generalized to address mixed fractional

differential equations involving both Caputo and Riemann-

Liouville fractional derivatives for future point of view. Till now

no such study has been conducted. The choice of initial conditions

and boundary conditions significantly influences the applicability

and success of Khalouta transform method in solving fractional

differential equations. Selecting appropriate conditions ensures

the compatibility of the method with the problem at hand,

enhancing convergence and accuracy. Incorrect choices may lead

to divergence or inaccurate solutions, emphasizing the importance

of a careful match between the problem’s characteristics and

the chosen conditions for a successful application of transform

methods. Till now, there is no practical guidelines or best

practices for researchers and practitioners when applying the

Khalouta transform method to complex problems in fractional

calculus. Integrating machine learning and AI techniques with

the transform method holds potential for enhancing solutions

to challenging fractional calculus problems. These technologies

can improve accuracy, efficiency, and adaptability in handling

complex mathematical operations, offering innovative approaches

to problem-solving in this domain. If we clearly compare this

transform with other transforms then we can say that this is

another tool we have got to address the scientific and technical

problems. The efficiency of the Khalouta transform method

compare to other numerical methods commonly used in fractional

calculus, such as the finite difference method or the Laplace

transform method is not done till now but it can be a new vertical

for the future studies as well. Since this is the newly introduced

transform so till now not much work has been done with this so

the classes of problems where Khalouta transform outperforms

other existing techniques, is not defined till now. This was the some

basic and important information about the Khalouta transform

which can help the researchers to think in some new vertical

of the solutions.

3.1 Khalouta—Shehu duality

Let k(s, λ, η) be the Khalouta transform of the function f (u) ∈

ς . If we take η = 1 then equation become,

k(s, λ, 1) =
s

λ

∞
∫

0

exp

(

−su

λ

)

f (u)du =
s

λ
Sh(s, λ) (11)
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where Sh(s, λ) denotes the Shehu transform of the function

f (u) ∈ ς .

Corollary Shehu transform of Mittag–Leffler function [46],

Eδ,γ (k) =,

∞
∑

r=0

kr

Ŵ(δr + γ )
δ, γ ∈ C, Re(δ), Re(γ ) > 0

exists and is given as

Sh (uγ−1Eε
δ,γ (wu

δ)) =

(

λ

s

)γ
(

1− w

(

λ

s

)δ
)−ε

(12)

if we take ω = −1 and ε = −1 Equation (12) becomes

Sh
(

uγ−1Eδ,γ

(

−uδ
))

=

(

λ

s

)γ
(

1+

(

λ

s

)δ
)−1

or,

Sh
(

Eδ

(

−uδ
))

=

(

λ

s

)

(

1+

(

λ

s

)δ
)−1

Using relation (Equation 11), we can find Khalouta transform

of Mittag- Leffler function as

Kh
[

Eδ(−uδ)
]

=

(

1+

(

λη

s

)δ
)−1

(13)

3.2 Some basic properties of Khalouta
transform

Now we are going to discuss some properties of Khalouta

transform.

a. Linear property of the Khalouta transform If λ and µ are non-

zero arbitrary constants and f (u) and g(u) are functions defined

over the set ς , then (λf (u)+ µg(u)) ∈ ς , and (Equation 14)

Kh[λf (u)± µg(u)] = λKh[f (u)]± µKh[g(u)]. (14)

b. Khalouta transform of derivatives of the functions Let f (u)

be the function, then nth derivative of the function is defined as

f n(u) ∈ ς with respect to u. For n = 1, 2, 3, ...... and its Khalouta

transform is specified,

Kh[f n(u)] =
sn

λnηn
k(s, λ, η)−

n−1
∑

k=0

( s

λn

)n−k
f k(0). (15)

Here we also define the Khalouta transform of nth partial

derivative. Let v = v(x, t) and ∂nv(x,t)
∂xn both defined in the set ς .

And suppose k(x, s, λ, η, ) be the Khalouta transform of v(x, t) and
∂nv(x,t)

∂xn is the nth derivative of the function v(x, t) with respect to x.

Then

Kh

[

∂nv (x, t)

∂xn

]

=
dn

dxn
k(x, s, λ, η) (16)

where n = 1, 2, 3, ...

c. Khalouta transform of the convolution of two functions

Suppose k1(s, λ, η) and k2(s, λ, η) are the Khalouta transforms of

f (u) and g(u), respectively, both defined in the set ς . Then the

Khalouta transform of their convolution is given by (Equation 17),

Kh
[

(f ∗ g)u
]

=
λη

s
k1(s, λ, η)k2(s, λ, η), (17)

where (f ∗ g) is convolution of two functions defined as,

(f ∗ g)(u) =

∫ u

0
f (τ )g(u− τ )dτ =

∫ u

0
f (u− τ )g(u)dτ .

d. Khalouta transform for some functions Below are the Khalouta

transforms of some standard functions:

Kh

(

up−1

Ŵp

)

=
λp−1ηp−1

sp−1

Kh [sinβt] =
βsλη

s2 + β2λ2η2
.

Kh
[

sinhβt
]

=
βsλη

s2 − β2λ2η2
.

Kh [cosβt] =
s2

s2 + β2λ2η2
.

Kh
[

coshβt
]

=
s2

s2 − β2λ2η2
.

Kh
[

e−at
]

=
s

s+ aλη

e. Khalouta transform of some fractional derivatives

3.2.1 Theorem 1
Suppose that k(s, λ, η) be the Khalouta integral transform of the

function f (u), which satisfy n ∈ Z+ and n − 1 < β ≤ n , then

the Khalouta integral transform of the Riemann-Liouville fractional

integral of f (u) of order β > 0, is

Kh
[

I0
β f (u)

]

=

(

λβηβ

sβ

)

k (s, λ, η) (18)

Proof For the function f (u) , the Riemann Liouville fractional

integral I0
β can be expressed as the convolution by I0

β f (u) =
1

Ŵβ
uβ−1 ∗ f (u). Now, by applying the Khalouta transform of the

convolution of two function (property c), we have

Kh
[

I0
β f (u)

]

= Kh

[

1

Ŵβ
uβ−1

∗ f (u)

]

=
λη

s
Kh

[

uβ−1

Ŵβ

]

Kh
[

f (u)
]

now using property (d) we get
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=
λη

s

(

λβ−1ηβ−1

sβ−1

)

k (s, λ, η)

or,

=

(

λη

s

)β

k (s, λ, η)

Hence Proved.

3.2.2 Theorem 2
Suppose that k(s, λ, η) be the Khalouta integral transform of the

function f (u), which satisfy n ∈ Z+ and n − 1 < β ≤ n , then

the Khalouta integral transform of the Riemann-Liouville fractional

derivative of f (u) of order β > 0, is

Kh
[

RDu
β f (u)

]

=

(

λη

s

)−β

k(s, λ, η)−

n−1
∑

k=0

(

s

λη

)k

[RDu
β−kf (u)]u=0

Proof Let us consider the function

g(u) = I0
n−β f (u) (19)

Now, applying Khalouta transform of Equation (19) and using

Equation (18), we have

Kh
[

g(u)
]

= Kh[I0
n−β f (u)] =

(

λη

s

)n−β

k (s, λ, η)

Kh
[

g(u)
]

= G (s, λ, η) =

(

λη

s

)n−β

k (s, λ, η) (20)

then, from the definition of Riemann-Liouville fractional derivative

(2), we have

RDu
β f (u) = Du

nI0
n−β f (u) =

dn

dun
I0
n−β f (u)

=
dn

dun
g (u)

RDu
β f (u) = g n(u) (21)

Applying the Khalouta transform on Equation (21) both the

sides,

Kh
[

RDu
β f (u)

]

= Kh
[

g n(u)
]

Now we use property (b), we have

Kh
[

RDu
β f (u)

]

=

(

sn

λnηn

)

G(s, λ, η)−

n−1
∑

k=0

(

s

λη

)n−k

[gk(u)]u=0

Kh
[

RDu
β f (u)

]

=

(

sn

λnηn

)

G(s, λ, η)−

n−1
∑

k=0

(

s

λη

)k

[gn−k(u)]u=0

this equation can also be written as

Kh
[

RDu
β f (u)

]

=

(

sn

λnηn

)

G(s, λ, η)−

n−1
∑

k=0

(

s

λη

)k

[Dt
n−kI0

n−β f (u)]t=0

Using Equation (20) and definition (2), we have

Kh
[

RDu
β f (u)

]

=

(

sn

λnηn

)

(

λη

s

)n−β

k(s, λ, η)−

n−1
∑

k=0

(

s

λη

)k

[RDu
β−kf (u)]u=0

Kh
[

RDu
β f (u)

]

=

(

λη

s

)−β

k(s, λ, η)−

n−1
∑

k=0

(

s

λη

)k

[RDu
β−kf (u)]u=0 .

Hence Proved.

3.2.3 Theorem 3
Suppose that k(s, λ, η) be the Khalouta integral transform of the

function f (u), which satisfy n ∈ Z+ and n − 1 < β ≤ n , then the

Khalouta integral transform of Caputo fractional derivative of f (u)

of order β > 0, is

Kh[cDu
β f (u)] =

(

λη

s

)−β

k(s, λ, η)−

n−1
∑

k=0

(

λη

s

)−β+k

f k(0) (22)

Proof By definition (3) of the Caputo fractional derivative of

function, we have,

cDu
β f (u) =

1

Ŵn− β

∫ u

0
(u− υ)n−β−1f n(υ)dυ

=
1

Ŵn− β

∫ u

0
(u− υ)n−β−1 g(υ)dυ

cDu
β f (u) = I0

n−β g(u) (23)

by applying the Khalouta transform on both sides of Equation (23)

and using theorem 1, as a result,

Kh
[

cDu
β f (u)

]

= Kh
[

I0
n−βg(u)

]

=

(

λη

s

)n−β

G(s, λ, η)

(24)

where G(s, λ, η) is the Khalouta integral transform of the

function g(u). Now, applying Khalouta transform and using the

property (b), we obtain

Kh [g(u)] = Kh [f n(u)]

G(s, λ, η) = Kh[f n(u)] =
sn

λnηn
k(s, λ, η)−

n−1
∑

k=0

( s

λn

)n−k
f k(0)
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Therefore, the Equation (24) becomes

Kh[cDu
β f (u)] =

(

λη

s

)n−β

[

(

sn

λnηn

)

k (s, λ, η) −

n−1
∑

k=0

(

s

λη

)n−k

f k (0)

]

Kh[cDu
β f (u)] =

(

λη

s

)−β

k(s, λ, η)−

n−1
∑

k=0

(

λη

s

)−β+k

f k(0).

(25)

where n− 1 < β ≤ n

which gives Equation (22), hence from Equation (25), we get

our result.

This article is divided into five parts. Part one is consisting of

origination of the article. Section 2 is dealing with pre-requisites

related to the paper. Khalouta transform and some properties are

discussed in segment 3 while Section 4 is having application part.

Paper is concluded in Section 5. List of references is attached at the

end to acknowledge the researchers and mathematicians.

4 Applications

In this segment, we are going to discuss some particular

applications of Khalouta transform in solving the fractional

differential equations. Using fractional order, here we take a linear

ordinary differential equation [46].

cDu
β y(u) =

n
∑

j=1

bj y
(j)(u)+ g(u) (26)

with initial conditions

y(j)(0) = aj, j = 0 , ... n− 1,

aj, bj ∈ R, g(u) ∈ A
(27)

we take Khalouta transform of Equation (26), and we secure

Kh
[

cDu
βy(u)

]

= Kh





n
∑

j=1

bjy
(j)(u)+ g(u)





now by the linearity property of Khalouta transform, we have

Kh
[

cDu
βy(u)

]

=
n
∑

j=0
bjKh

(

y(j)(u)
)

+ Kh
(

g(u)
)

Kh
[

cDu
βy(u)

]

= b0y(u)+
n
∑

j=1
bj Kh

(

y(j)(u)
)

+ Kh
(

g(u)
)

Using theorem 3 and property (b), we obtain

(

λη
s

)−β

Y(s, λ, η)−
n−1
∑

k=0

(

λη
s

)−β+k
yk(0) = b0Y(s, λ, η)+

n
∑

j=1
bj+

[

sj

λjηj
Y(s, λ, η)−

j−1
∑

k=0

(

s
λη

)j−k
yk(0)

]

+ Kh
(

g(u)
)

+

(

λη
s

)−β

Y(s, λ, η)−
n
∑

j=0
bj

sj

λjηj
Y(s, λ, η) =

n−1
∑

k=0

ak

(

λη
s

)−β+k

−
n
∑

j=1
bj

j−1
∑

k=0

ak

(

s
λη

)j−k
+ Kh(g(u))

or by using Equation (27), we have,

Y(s, λ, η) =

(

(

λη
s

)−β

−
n
∑

j=0
bj

sj

λjηj

)−1

×

(

n−1
∑

k=0

ak

(

λη
s

)

−β+k

−
n
∑

j=1
bj

j−1
∑

k=0

ak

(

s
λη

)j−k
+ Kh(g(u))

) (28)

By using inverse Khalouta transform on of Equation (28), and

we secure result of Equation (26) as,

y(u) = Kh−1





(

(

λη
s

)−β

−
n
∑

j=0
bj

sj

λjηj

)−1

×

(

n−1
∑

k=0

ak

(

λη
s

)

−β+k

−
n
∑

j=1
bj

j−1
∑

k=0

ak

(

s
λη

)j−k
+ Kh(g(u))

)]

(29)

4.1 Example 1

When n = 1, b0 = −1, b1 = g(u) = 0 we secure [47],

cDu
β y(u) + y(u) = 0, 0 < β ≤ 1, u > 0 (30)

with initial condition y(0) = 1

Solution Substituting n, b0, b1 , and g in Equation (29), we get

y(u) = Kh−1









(

λη

s

)−β

−

1
∑

j=0

bj
sj

λjηj





−1
(

λη

s

)−β





or,

y(u) = Kh−1





(

1− (−1)

(

λη

s

)β
)−1





or

y(u) = Kh−1

(

1+

(

λη

s

)β
)−1

Thus, by Khalouta transform of Mittag-Leffler function of

Equation (13), we have

Y (s, λ, η) = Kh
(

Eβ (−uβ )
)

We get absolute result of Equation (30) as (Figure 1),

y(u) = Eβ (−uβ )

4.2 Example 2

Let we take homogeneous ordinary differential equation with

fractional order [48].

cDu
1
2 y(u) + y(u) = u2 +

Ŵ (3)

Ŵ
(

5
2

)u
3
2 , u > 0 (31)

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2024.1351526
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Kumawat et al. 10.3389/fams.2024.1351526

FIGURE 1

Graph of solution obtained in example 1.

with initial condition y(0) = 0.

Solution Now we have to find absolute result of Equation (31),

so we take Equation (29), for n = 1, b0 = −1, b1 = 0 and

g(u) = u2 + Ŵ(3)

Ŵ
(

5
2

)u
3
2 , we get

y(u) = Kh−1





(

(

λη

s

)−
1
2

− (−1)

)−1

Kh

(

u2 +
Ŵ (3)

Ŵ 5
2

u
3
2

)





or,

y(u) = Kh−1





(

(

λη

s

)−
1
2

− (−1)

)−1 (

2

(

λη

s

)2

+
Ŵ (3)

Ŵ
(

5
2

)

(

λη

s

)
3
2

Ŵ

(

5

2

)

)





or,

y(u) = Kh−1









(

2

(

λη

s

)2
)









(

(

λη
s

)−
1
2
+ 1

)

(

(

λη
s

)−
1
2
− (−1)

)

















or,

y(u) = Kh−1

(

2

(

λη

s

)2
)

or, finally we get (Figure 2)

y(u) = u2

4.3 Example 3

Consider the wave equation [49].

∂2u (x, t)

∂t2
− 4

∂2u (x, t)

∂x2
= 0 (32)

with initial conditions

u(x, 0) = sinπx, ut(x, 0) = 0 and x, t > 0 (33)

Solution Taking the Khalouta transform of Equation (32) and

using Equations (15, 16) of Property (b), we obtain

d2

dt2
k (x, s, λ, η)

− 4

[

s2

λ2η2
k (x, s, λ, η) −

s2

λ2η2
u (x, 0) −

s

λη
ut (x, 0)

]

= 0

(34)

Using initial conditions (Equation 33) and simplifying the

Equation (34), we obtain

d2

dt2
k (x, s, λ, η) − 4

s2

λ2η2
k (x, s, λ, η) + 4

s2

λ2η2
sin (πx) = 0

or,

λ2η2

4s2
d2

dt2
k (x, s, λ, η) − k (x, s, λ, η) = − sin (πx) (35)

Which is linear ordinary differential equation with second

order, so that the overall result of Equation (35) can be put down,

k (x, s, λ, η) =
− sin (πx)
λ2η2

4s2
D2 − 1

=
− sin (πx)

λ2η2

4s2

(

−π2
)

− 1

or,

=
s2

(

π
2

)2
λ2η2 + s2

sin (πx)

by using the inverse Khalouta transform of above, the absolute

result of Equation (32) (Figure 3) is

u(x, t) = cos
π

2
t. sin(πx).
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FIGURE 2

Graph of solution obtained in example 2.

FIGURE 3

Graph of solution obtained in example 3.

4.4 Example 4

Let we take the homogeneous heat equation [49].

4
∂u (x, t)

∂t
=

∂2u (x, t)

∂x2
(36)

with initial condition

u(x, 0) = sin
π

2
x, x, t > 0 (37)

Solution Applying the Khalouta transform on Equation (36),

we have

Kh

[

4
∂u (x, t)

∂t

]

= Kh

[

∂2u (x, t)

∂x2

]

Using Equations (15, 16) of property (b), and we obtain,

d2

dx2
k (x, s, λ, η) − 4

[

s

λη
k (x, s, λ, η) −

s

λη
u(x, 0)

]

= 0 (38)

Using the initial conditions (Equation 37) and simplifying the

Equation (38), we obtain

d2

dx2
k (x, s, λ, η) − 4

s

λη
k (x, s, λ, η) = −4

s

λη
sin

π

2
x (39)

which is linear ordinary differential equation with second order.

The overall result of Equation (39) can be put down

k(x, s, λ, η) =
−

4s
λη

sin π
2 x

D2 −
4s
λη

=
−

4s
λη

sin π
2 x

−
π2

4 −
4s
λη

or,

k(x, s, λ, η) =
s

π2

16 λη + s
sin

π

2
x

by using the inverse Khalouta transform of the above, the absolute

result of Equation (36) (Figure 4) is reported by

u(x, t) = e−
π2

16 t . sin
π

2
x
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FIGURE 4

Graph of solution obtained in example 4.

5 Conclusion

The Khalouta transform method appears to be a valuable

approach for addressing Riemann-Liouville fractional derivatives

and integrals, as well as Caputo fractional derivatives. The

successful application of this mehod in resolving examples suggests

its efficacy and efficiency in obtaining exact solutions for fractional

differential equations involving Caputo derivatives and partial

derivatives. This could contribute to advancements in solving

complex mathematical problems in the realm of fractional calculus.
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