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Particle swarm optimization (PSO) algorithm is an optimization technique with

remarkable performance for problem solving. The convergence analysis of the

method is still in research. This article proposes a mechanism for controlling the

velocity by applying a method involving constriction factor in standard swarm

optimization algorithm, that is called CSPSO. In addition, the mathematical

CSPSOmodel with the time step attractor is presented to study the convergence

condition and the corresponding stability. As a result, constriction standard

particle swarm optimization that we consider has a higher potential to balance

exploration and exploitation. To avoid the PSO premature convergence, CSPSO

modifies all terms of the PSO velocity equation. We test the e�ectiveness of

the CSPSO algorithm based on constriction coe�cient with some benchmark

functions and compare it with other basic PSO variant algorithms. The theoretical

convergence and experimental analyses results are also demonstrated in tables

and graphically.

KEYWORDS

PSO algorithms, convergence and stability, constriction factor, Markov chain, Monte

Carlo

1 Introduction

The optimization techniques are fundamentally important in engineering and scientific

computing. The PSO algorithm was first introduced by Kennedy and Eberhart [1] as a

stochastic optimization technique of swarm particles (population). The motivation was

primarily to model the social behavior of birds flocking. The meta-heuristic optimization

algorithms (PSO) work effectively in many areas such as robotics, wireless networks,

power systems, job-shop schedules, human healthcare, and classifying or training of ANN

(artificial neural network) [2]. In PSO, the potential solutions, called particles, fly through

the problem space (domain) by applying their intelligent collective behaviors.

The PSO algorithm is competitive in performance with the well-known huge numbers

of variants such as SPSO and CPSO algorithms and is also an efficient optimization

framework [3, 4].

Lately, researches on PSO mainly intended on algorithmic implementations,

enhancements, and engineering applications with interesting findings derived under the

system that assumes a fixed attractor [5]. Nevertheless, a comprehensive mathematical

explanation for the general PSO is still quite limited. For instance, the works on stability

and convergence analyses are two key problems of great significance that need to be

investigated in depth because many of the works have given attention for standard PSO.
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The PSO algorithm depends on three parameters (factors): the

inertia, cognitive and social weight to guarantee the stability of PSO.

Stability analysis of PSO is mainly motivated by

determining which combination of these parameters encourages

convergence [6].

The working rule of PSO method is closely tied with the

stability analysis, which investigates how the essential factors affect

the swarms dynamics, and under what conditions particle swarm

converges to some fixed value. For the first time, stability analysis

of the particle dynamics was carried out by Clerc and Kennedy [7].

The study indicates that [8] particle trajectories could converge to

a stable point. A more generalized stability analysis of the particle

dynamics was conducted using the Lyapunov stability theorem [9].

Recently, based on a weak stagnation assumption, Liu [10] studied

the order-2 stability of PSO, and a new definition of stability was

proposed with an order-2 stable region. Dong and Zhang [11]

analyzed order-3 recurrence relation of PSO kinematic equations

based on two strategies to obtain the necessary and sufficient

conditions of its convergence.

The convergence analysis determines whether a global

optimum solution can be achieved when a particle swarm

converges. Using stochastic process theory, Jiang et al. [12]

presented a stochastic convergence analysis on the standard PSO.

Combining with the finite element grid technique, Poli and

Langdon [13] set up a discrete model of Markov chain of the

bare-bones PSO. An absorbing Markov process model of PSO was

developed in Cai et al. [14]. Cai et al. [14] suggested the main factor

of convergence analysis is the attaining-state set and proposed an

improved method of convergence in terms of the attaining-state

set theorem of expansion. The basic PSO is neither a global nor a

local search algorithm, based on the convergence criterion of the

pure random search algorithm [15, 16]. To yield a lower bound

for the time required to optimize any pseudo-Boolean functions

with a unique optimum and to justify upper bounds, Dirk et al.

[17] assigned an optimum-level argument that is deep-rooted for

evolutionary algorithms of particle swarm optimization. The study

in Sun et al. [18] discussed the convergence of the quantum-

behaved particle swarm optimization (QBPSO) and proved that it

is a global convergent algorithm.

As discussed in Per and Carsten [19], stagnation of the

convergence properties for basic PSO may be disadvantageous to

finding a sufficiently good solution within a logical time, and it may

have infinite expected first hitting time on some functions.

Recently, the existing work on the convergence analyses of PSO

including documents from 2013 was surveyed by Tarekegn et al.

[6]. The stochastic approximation technique on the PSO algorithm

was use to prove convergence of swarm in Yuan and Yin [20]. The

global convergence of PSO [21] was investigated by introducing the

transition probability of particles. Several properties related to the

Markov chain were investigated, and it was found that the particle

state space is not repeated and PSO is not globally convergent

from the viewpoint of the transition probability [22]. Based on the

different models of PSO examined [23], the Markov properties of

the state sequences of a single particle and swarm one determine

the transition probability of a particle. The transition probability of

the optimal set is deduced by combining the law of total probability

with the Markov properties [24], which proves that SPSO can reach

the global optimum in probability. Although many methods in

Poli and Langdon [13] have proposed PSO convergence analysis,

most analyses are based on the assignment of stochastic systems

of the Markov process, which strongly depends on the transition

matrix and their eigenvalues. Therefore, when the population size

is large, current PSO convergence analyses are very refined and

investigate different PSO variants algorithms to obtain a solution

that converges to global minimum.

Motivated by our recent study in Tarekegn et al. [6], this

article proposes a PSO variant known as CSPSO, an algorithm for

optimization problem solving.

A constriction factor integrated with an inertia weight are used

for the construction. Fast convergentmethod to an optimal solution

within the search space in a small time of iterations was obtained.

The rest of this study is organized as follows: Section 2 presents

related works that include the basic PSO algorithm and its existing

variants. In Section 3, the proposed CSPSO algorithm analysis is

described in detail, while Section 4 presents comparison results

on some variants of PSO such as SPSO and CPSO (implementing

with test functions) and provides an in-depth discussion, with a

conclusion in Section 5.

2 The PSO algorithm and some
related studies

In the PSO with K particles in which each particle is treated as

an individual in the D-dimensional space, the position and velocity

vectors of the i-th particle at the t-th iteration are

Xt
i = (Xt

i1,X
t
i2, . . . ,X

t
iD) and

V t
i = (V t

i1,V
t
i2, . . . ,V

t
iD), respectively.

In SPSO algorithm [25], at iteration t, the d th dimension of

particle i’s velocity and position Pti is local best position, xti is

current position, and gt is global best position. Both are updated as

V t+1
i = ωV t

i + c1r
t
1(P

t
i − Xt

i )+ c2r
t
2(g

t − Xt
i ),

Xt+1
i = Xt

i + V t+1
i ,

(1)

for 1 ≤ i ≤ K; ω is an inertia weight; and c1 and c2 are called

acceleration coefficients in real-space, R.

Vector Pti = (Pti1, P
t
i2, . . . , P

t
iD) is the best previous position

of particle i called personal best (Pbest) position and vector gt =

(gt1, g
t
2, . . . , g

t
D) is the position of the best particle among all the

particles in the population and called global best (gbest) position.

The parameters rt1 and rt2 are sequences of two different random

positive numbers in the uniform random distribution in (0, 1) i.e.,

U(0, 1).

Generally, the value of V t
id

is restricted within the interval

[−Vmax, Vmax], for each d ∈ {1, 2, . . . ,D}. Without loss of

generality, we consider the minimization problem:

Minimize f (X), such that

X ∈ S ⊂ R
D, (2)

where f (X) is an objective function continuous almost

everywhere and S is a feasible solution space. From (1),
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the non-homogeneous recurrence relation (NHRR) is obtained

as follows: [8]

Xt+1
i = − ωxt−1

i + (1+ ω)xti+

ϕt
1(P

t
i − xti )+ ϕt

2(g
t − xti ),

(3)

where ϕt
1 = c1r

t
1, ϕt

2 = c2r
t
2.

From NHRR, Pt and gt , for 1 ≤ i ≤ K, are updated,

respectively, as follows:

Pt+1
i =

{

xt+1
i : for f (xt+1

i ) < f (Pti )

Pti : otherwise;
(4)

g0 = arg min
1≤i≤k

{f (xoi )},

gt+1 = arg min
1≤i≤k

{f (xt+1
i ), f (gt)}.

From (2), (3), the process of the particle’s velocity and position

change can be obtained, respectively, as follows. They are a second-

order difference equations

V t+2
i + (ϕt − ω − 1)V t+1

i + ωV t
i = 0 (5)

Xt+1
i + (ϕt − ω − 1)xti+ωxt−1

i = ϕt
1P

t
i + ϕt

2g
t

= ϕtOt
i (6)

where, ϕt = ϕt
1 + ϕt

2

Ot
i =

ϕt
1p

t
i + ϕt

2g
t

ϕt
. (7)

The terms (ϕt − ω − 1)xti and ωxt−1
i on the left side of (6),

both memorize the past values of position (i.e, the memory item

of position). The value of the item ϕtOt
i on the right side of (6) is

obtained from the previous experience of particles (i.e, the learning

item of position) and, in particular, Ot
i is the attractor at the t th

iteration in (7).

Now, let

Qx = max
xt∈Sx⊂R

| x(t) | . (8)

For pt , gt ∈ Sx, |pt| ≤ Qx, and |gt| ≤ Qx. From (8), Ot ∈ So
means |Ot| ≤ Qo for all t.

Introducing a constriction coefficient in SPSO controls the

balance between the cognitive component (pti − xti ) and social

component (gt − xti ) in the velocity equation. The coefficient

restricts the particle velocities within a certain range to prevent

excessive exploration or exploitation.

V t+1
i = χ ∗

(

ωV t
i + ϕt

1(P
t
i − xti )+ ϕt

2(g
t − xti )

)

2.1 Convergence of some PSO variants

The importance of a hybrid method is to combine different

optimizationmethods to take advantage of the virtues of each of the

methods. In addition to standard PSO, several variants of the PSO

in Kumar et al. [5] were constructed to improve the performance

of PSO.

The SPSO

Xt+1
i = Xt

i + V t+1
i ,

has a scalar function of position if xti = pti = gti for a particle,

that is particle’s update depends only on its previous velocity. This

can make the algorithm to stop to flow on the swarm’s global best

position, even if that position is not a local optimum. For instance,

based on (4), the guaranteed convergence PSO, GCPSO, overcomes

this problem by using a modified position and velocity update

equation for the global best particle, which forces that particle to

search for a better position in a confined region around the global

best position.

The GCPSO can be used with neighborhood topologies such

as star, ring, and Von Neumann. Neighborhoods have a similar

effect in the GCPSO [16, 19] as they do in the SPSO. Shi

and Eberhart [25] introduced the concept of linearly decreasing

inertia weight with generation number into PSO to improve the

algorithmic performance.

Particles converge to a weighted average (Ot
i ) between their

personal and local best positions [8], referred to as a so-called

theoretical attractor point (ATP). Kennedy [26] has proposed that

the entire velocity update equation is replaced by a random number

sampled from a Gaussian distribution (Gd) around the ATP, with a

deviation of the magnitude of the distance between the personal

and global best. The resultant algorithm is called the bare bones

PSO (BBPSO). Kennedy also proposed an alternative bare bones

PSO (aBBPSO) [26], where the particle sampled from the previous

Gd is reunited with the particle’s personal best position. The

performance of PSO with a small and a larger nearby region might

be better on multimodal and unimodal problems, respectively

[27]. Changing dynamically the neighborhood structures has been

proposed to avoid insufficiencies in fixed nearby regions [28].

The quantum-behaved particle swarm optimization was

proposed to show many advantages to the traditional PSO. Fang et

al. [24] proposed a quantum-behaved particle swarm optimization

(QBPSO) algorithm and discuss the convergence of QBPSO within

the framework of random algorithm’s global convergence theorem.

Inspired by natural speciation, some researchers have introduced

evolution methods into PSO [29, 30]. The problem of premature

convergence was studied on a perturbed particle swarm algorithm

presented based on the new particle updating strategy [31].

To solve optimization problems, Tang et al. [32] developed a

feedback-learning PSO algorithm with quadratic inertia weight,

ω. Hybridized PSO with a local search technique for locating

optimal solutions for multiple global and local solution in physical

fitness of more than one global optimal solution for optimization

problem using a memetic algorithm can be referred in Wang

et al. [33]. An example-based learning PSO was proposed in

Huang et al. [34] to overcome the failures of PSO by retaining

a balance between swarm diversity and convergence speed. A
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variation of the global best PSO where the velocity update

equation does not hold a cognitive component is called social PSO,

expressed as

V t+1
i = ωV t

i + ϕ2(g
t
i − xti ), (9)

The individuals are only supported by the global best position

and their previous velocity. The particles are attracted toward

the global best position, instead of a weighted average between

global best and their personal best positions, leading to very

fast convergence [19].

3 Relations of CSPSO and Markov
chain

In this section, the global convergence of CSPSO is analyzed

based on properties of Markov Chain and the transition

probabilities of particle velocity and position are also computed.

V t+1
i =



















χ ∗ (V t
i+ ϕt

1(P
t
i − xti )+

ϕt
2(g

t − xti )), for ω = 1

χ ∗ (ωV t
i+ ϕt

1(P
t
i − xti )+

ϕt
2(g

t − xti )), otherwise

(10)

In (10), the velocities of particles are updated using two main

components: the cognitive component and the social component.

The cognitive component guides a particle toward its personal-best

position, while the social component directs a particle toward the

best position found by the entire swarm.

We introduce some useful definitions, variables and

propositions (based on single particle model) which may be

important in this article [22, 23, 35, 36].

The following definitions provide a formal description of this

property based on single particle model [22, 23, 35, 36].

Definition 1. (Stochastic process and Markov property).

Assume all the variables are defined within the context of a

common probability space or probability measure.

1. The random variables Y = (Y0,Y1, . . . ,Y t) in a sequence are

called a stochastic processes.

2. Let Y t be a value in state space S, and the sequence {Y t}t≥0 is a

discrete stochastic process.

For every t ≥ 0 and il ∈ S(l− 1 ≤ t).

3. The discrete stochastic process is a Markov Chain.

If the probability Pr{Y t+1 = it+1 | Y0 = i0, Y1 = i1, . . . ,Y t =

it} = Pr{Y t+1 = it+1 | Y t = it} > 0. and Pr{Y0 = i0, Y1 =

i1, . . . ,Y t = it} > 0

Definition 2. ( State of particle). The state of particle κ t
i =

(xt−1
i , xti , p

t
i , g

t) at the t-th iteration for particle i in (3).

The state of particle space is a set of all possible states of

particle, denoted as S. κ t
i , the update probability of the state of the

particle can be calculated based on proposition-1.

Proposition 1. If the accelerating factors ϕt
1 and ϕt

2 in CSPSO

satisfy ϕt
1, ϕt

2 ∈ U(0, c), then the probability for particle i changes

from the position xti to the spherical region centered at xt+1
i with

radius ̺t > 0. The event Ai = {κ t+1
i | κ t

i }, defining the state of

particle i at the t-th iteration is updated to the state at the (t+ 1)-th

iteration, for each i ∈ {1, 2, . . . ,K} can be computed as

Pr(Ai) =
̺3
t

χω || xti − Xt−1
i || cχ || pti − Xt

i || cχ || gt − Xt
i ||

,

(11)

c is a constant within U(0, c) and δ → 0, where

̺ = cχ ∗

{

|| pti − Xt
i ||, for f (x

t
i )− δ ≤ f (Pti ) ≤ f (xti )+ δ

|| gt − Xt
i ||, for f (x

t
i )− δ ≤ f (gt) ≤ f (xti )+ δ

(12)

Proof. The 1-step transition probability of the i th state of particles,

Pt+1
i and gt+1, are determined by xt+1

i for transferring κ t
i to κ t+t

i

based on the following SPM-Single Particle Model [36]

xt+1
i = xti+ χ ∗ (ω(xt − xt−1

i )+

ϕt
1(P

t
i − xti )+ ϕt

2(g
t − xti )),

(13)

xt+1
i determined by χω, χϕ1, and χϕ2.

Three conditions in 1-step transition probability are:

1. f (xti ) − δ ≤ f (Pti ), f (g
t) ≤ f (xti ) + δ. xt+1

i = xti + χω(xti −

xt−1
i ) is determined uniquely by χω, where χω is unknown

constant, having

P(xt+1
i | κ t

i ) =

∫ xt+1
i + 1

2 ̺

xt+1
i − 1

2 ̺
dy

∫ xti−χω(xti−xt−1
i )

xti
dy

=
̺

χω || xti − xt−1
i ||

(14)

2. f (xti )− δ ≤ f (Pti ), f (g
t) ≤ f (xti )+ δ.

Ordering implies gt ∈ {pti , g
t}

xt+1
i = xti + χω(xt − xt−1

i )+

χϕt
2(g

t − xti )
(15)

Here, ϕt
2 is random variable because xt+1

i is determined

by χω(xt − xt−1
i ) and χϕt

2(g
t − xti )

P(xt+1
i | κ t

i ) =

∫ xt+1
i + 1

2 ̺

xt+1
i − 1

2 ̺
dy

∫ xti+χω(xti−xt−1
i )

xti
dy

∗

∫ ϕt
i+

1
2 ̺

ϕt
1−

1
2 ̺

dy

∫ xti+χc(gt−xt−1
i )

xti
dy

=
̺

χω || xti − xti ||
∗

̺

χc || gt − xti ||

(16)

3. f (xti )+ δ < f (Pti ), f (g
t) < f (xti )− δ.

xt+1
i = xti + χω(xt − xt−1

i )+ χϕt
1(P

t
i − xti )

+ χϕt
2(g

t − xti ))
(17)
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when xt+1
i ∈ R, xt+1

i is determined by χ ∗ (ω,ϕ1,ϕ2)

P(xt+1
i | κ t

i ) =

∫ xt+1
i + 1

2 ̺

xt+1
i − 1

2 ̺
dy

∫ xti+χω(xti−xt−1
i )

xti
dy

∗

∫ ϕt
1+

1
2 ̺

ϕt
1−

1
2 ̺

dy

∫ xti+χc(gt−xt−1
i )

xti
dy

∗

∫ ϕt
2+

1
2 ̺

ϕt
2−

1
2 ̺

dy

∫ xti+χc(gt−xt−1
i )

xti
dy

=
̺

χω || xti − xt−1
i ||

∗

̺

χc || Pti − xti ||
∗

̺

χc || gt − xti ||

(18)

From conditions in 1− 3,

lim
Pti→xti

̺

χω || Pti − xti ||
= 1

lim
gt→Xt

i

̺

χc || gti − xti ||
= 1.

P(Ai) =
̺3

χ(ω || xti − xt−1
i || c || Pti − xti || c || g

t − xti ||
(19)

δ is a vector approaching to zero. When

I. ̺ is the radius of xt+1
i

II. f (xti )− δ ≤ f (Pti ) ≤ f (xti )+ δ,

̺ = cχ || Pti − xti ||

III. f (xti )− δ ≤ f (gt) ≤ f (xti )+ δ,

̺ = cχ || gt − xti ||

Definition 3. (State of swarm). The state of swarm in (3), at

iteration t, denoted as ηt , is defined as ηt = (κ t
1, κ t

2, . . . , κ
t
K).

The state of swarm space is a set of all possible states of swarm,

denoted as ̟ [22].

Proposition 2. (Markov chain). The set of collection of swarm state

{ηt}t≥1 is a Markov chain[23].

Proof. The proof follows by referring to equation of position that

the state of swarm ηt+1 = (κ t+1
1 , κ t+1

2 , . . . , κ t+1
m ) at iteration t + 1

depends on only the state of swarm ηt = (κ t
1, κ t

2, . . . , κ
t
K). at

iteration t. Therefore, {ηt}t≥1 is a Markov chain.

Definition 4. Let Ŵn
1 denote the σ -field generated by particles state

κ t
1, κ t

2, . . . , κ
t
n, (K ≥ n) and define

φ((Ŵn
1 , κ t

n+1) = sup{| Pr(B\A)− Pr(B) | :

A ∈ Ŵn
1 , B ∈ σ (κ t

n+1)},
(20)

φ = sup
1≤n≤K−1

φ(Ŵn
1 , κ t

n+1) (21)

Due to the weak interdependent relationship among the

particles, φ is approximately small.

Proposition 3. The transition probability from ηt to ηt+1 satisfies

| Pr(ηt+1 | ηt)−

K
∏

i=1

Pr(κ t+1
i | κ t

i ) |≤ µ (22)

whereµ can bemade small enough, therefore,µ = (2K−1−1)φ.

Proof. Based on the Definition 4, one has | Pr(B\A) − Pr(B)

|≤ φ.

The event {κ t+1
i | κ t

i } denoted as Ai means that the state of

particle i at the t-th iteration is changed to the state at the (t+ 1)-th

iteration, for each i ∈ {1, 2, . . . ,K}.

Pr(

K
∏

i=1

Ai) = Pr(ηt+1 | ηt) (23)

is the transition probability from ηt to ηt+1.

Because gt+1 depends on xti and Pti for all 1 ≤ i ≤

K, A1, A2, . . . ,AK are not independent random events.

According to (6) and the conditional probability, one has the

following cases:

Case 1:Pr(A1A2) = Pr(A1)Pr(A2 | A1) ≤ Pr(A1)[P(A2)+ φ]

≤ Pr(A1)Pr(A2)+ φ,

Case 2:Pr(A1)Pr(A2)− φ ≤ Pr(A1)[Pr(A2)− φ]

≤ Pr(A1)Pr(A2 | A1) = Pr(A1A2).

This implies

Pr(A1)Pr(A2)− φ ≤ Pr(A1A2) ≤ Pr(A1)Pr(A2)+ φ (24)

Case 3:Pr(A1A2A3) = Pr(A1)Pr(A2 | A1)Pr(A3 | A1A2)

≤ Pr(A1)[Pr(A2)+ φ][Pr(A3)+ φ]

≤ Pr(A1)Pr(A2)Pr(A3)+ 3φ,

Case 4:Pr(A1)Pr(A2)Pr(A3)− 3φ ≤

Pr(A1)[Pr(A2)− φ][Pr(A3)− φ]

≤ Pr(A1)Pr(A2 | A1)Pr(A3 | A1A2)

= Pr(A1A2A3)

Similarly, we can get

Pr(A1)Pr(A2)P(A3)− 3φ ≤ Pr(A1A2A3) ≤

Pr(A1)Pr(A2)Pr(A3)+ 3φ
(25)

Then,

K
∏

i=1

Pr(Ai)− (2K−1 − 1)φ ≤ Pr(

K
∏

i=1

Ai) ≤

K
∏

i=1

Pr(Ai)− (2K−1 − 1)φ

(26)

is the transition probability from ηt to ηt+1. Let µ = (2K−1 −

1)φ. We have

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2024.1304268
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Tarekegn Nigatu et al. 10.3389/fams.2024.1304268

| Pr(ηt+1 | ηt)−

K
∏

i=1

P(κ t+1
i | κ t

i ) |≤ µ (27)

From (1), the interdependent relationship among the particles

is weak, φ in (11) is sufficiently small so that the fact

that K is finite implies that µ is a small enough positive

number.

3.1 Probabilistic convergence analysis of
CSPSO

In this subsection, we present the convergence analysis for

the version of the standard PSO with constriction coefficient

(CSPSO), by analogy of the method of analyzing convergence

of the PSO convergence of the PSO in Kennedy and Mendes

[27]. We also based on concepts of definitions and results in

Section 3 above. Our analysis has the advantage of providing

a much easier method to realize the convergence of the PSO

with constriction coefficient (χ) in comparison to the original

analysis [12]. To conduct the convergence analysis of the SPSO

with constriction coefficient (CSPSO), we consider the time

step value △ τ to describe the dynamics of the PSO, and

rewrite the velocity and position update formulas in (1) as

follows:

V t+1
i =χ ∗ {ωV t

i + ϕ1
(Pti − xti )

△ τ
+

ϕ2
(gti − xti )

△ τ
},

(28)

Xt+1
i = Xt

i + V t+1
i △ τ , (29)

By replacing (28) into (29), we obtain the following

probabilistic CSPSO:

X1
i = Xi + χ ∗ {ωVi + ϕ1

(Pi − xi)

△ τ
+

ϕ2
(gi − xi)

△ τ
} △ τ ,

(30)

X1
i = Xi + χωVi △ τ+

χϕ

(

χϕ1Pi + χϕ2gi

χϕ
− xi

)

(31)

By rearranging the terms in (31), we obtain

X1
i = (1− χϕ)Xi + χω △ τVi+

χϕ1Pi + χϕ2gi.
(32)

In addition, by rearranging the terms in (29), we obtain

V1
i = −

χϕ

△ τ
Xi + χωVi+

χϕ1
Pi

△ τ
+ χϕ2

gi

△ τ
.

(33)

We combine the above two (32), (33) to have the following

matrix form:

(

X1
i

V1
i

)

=

(

1− χϕ χω△τ

−
χϕ
△τ

χω

)(

Xi

Vi

)

+

(

χϕ1 χϕ2
χϕ1
△τ

χϕ2
△τ

)(

Pi
gi

) (34)

which can be thought of as a discrete dynamic system

representation for the PSO in which (X V)T is the state subject

to an external input (Pi gi)
T , and the two terms on the right side

of the equation correspond to the dynamic and input matrices,

respectively [37].

Supposing that no external excitation exists in the dynamic

system, [Pi, gi]
T is constant, i.e., other particles cannot find better

positions. Then, a convergent behavior could be maintained. If it

converges as τ → ∞, (X1
i V1

i )
T → (Xi Vi)

T . That is, the dynamic

system becomes:

(

0

0

)

=

(

1− χϕ χω△τ

−
χϕ
△τ

χω

)(

Xi

Vi

)

+

(

χϕ1 χϕ2
χϕ1
△τ

χϕ2
△τ

)(

Pi
gi

)

which holds only when Vi = 0 and Xi = Pi = gi, where

the convergent point is an equilibrium point if there is no external

excitation, but better points are found by the optimization process

with external excitation. For (34), Tarekegn et al. [6] has mentioned

a sufficient strategies of improved convergence via theoretical

analysis to get the relationship among χ , ω, and ϕ at the condition

of convergence.

The derived probabilistic CSPSO can utilize any probabilistic

form of prior information in the optimization process and,

therefore, the benefits from prior information can lead probabilistic

CSPSO to more probable search region and help optimize more

quickly with hierarchical use of parameters [40].

By substituting (28) into (29), is transformed into (35)

V1
i = χωVi +

χϕ

△τ

[

P(i)− xi
]

(35)

where P(i) =
ϕ1Pi+ϕ2gi

ϕ
.

Let yi = P(i)− xi, then (32), (35) can be transformed into (37),

(38)

V1
i = χωVi +

χϕ

△τ
yi (36)

Y1
i = χωVi +

(

1+
χϕ

△τ

)

yi (37)

Combining (36) an iterative equation in the form of vector is

obtained as (38)

(

V1
i

Y1
i

)

=

(

χω
χϕ
△τ

χω 1+ χϕ
△τ

)(

Vi

yi

)

(38)
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which can be viewed as a general forecasting model of Markov

chain as follows: ηt = PKt
i , where, K

t
i is a vector as presented below

(ηt)T =
[

V1
i Y1

i

]

PT =

[

χω χω
χϕ
△τ

1+ χϕ
△τ

]

,

(Kt
i )
T =

[

Vi yi

]

(38) is the model with no external excitation, which is useful in

studying the evolution of certain systems over repeated trials as a

probabilistic (stochastic) model [37].

Using theMarkov chain method, the position (ηt)T(t+1) of the

d th element of the i th particle at the (t + 1) th iteration in CSPSO

can be computed using the following formula:

(ηt)T(t + 1) = [(kti )
T(t)]XPT (39)

superscript T denotes the transposition.

Based on [20, 41] the CSPSO algorithm analysis in Markov

chain theory, the algorithm satisfies the context of almost sure

convergence as follows:

1. As the algorithm progresses and more iterations are

performed, it will converge to an optimal solution with a

probability of 1 and

2. Given sufficient time and iterations, it will find the globally

optimal solution.

3.2 Stability analysis of CSPSO

We further get insight into the dynamic system in (39). First, we

solve the characteristic equation of the dynamic system as follows:

λ2 − (1+ χω +
χϕ

△ τ
)λ + χω = 0.

The eigenvalues are obtained as follows:

λ1,2 =
(1+ χω +

χϕ
△τ

± γ )

2
,

γ =

√

(1+ χω +
χϕ

△ τ
)2 − 4χω

with λ1 ≥ λ2. The explicit form of the recurrence relation (29)

is then given by

Y1
i (t) = r1 + r2λ

t
1 + r3λ

t
2

where r1, r2, and r3 are constants determined by the initial

conditions of the system. From updated velocity

V1
i (t + 1) =

Y1
i (t + 1)− Yi(t)

△ τ
(40)

result in

V1
i (t + 1) =

r2(λ
t+1
1 − λt1)+ r3(λ

t+1
2 − λt2)

△ τ

V1
i (t + 1) = (r2

λ1 − 1

△ τ
)λt1 + (r3

λ2 − 1

△ τ
)λt2

k1 =
r1(λ1−1)

△τ
and k2 =

r2(λ2−1)
△τ

lim
t→∞

V1
i (t + 1) = lim

t→∞
k1λ

t
1 + lim

t→∞
k2λ

t
2

lim
t→∞

X1
i (t + 1) =



















lim
t→∞

x1i (t) if max(||λ1||, ||λ2||) < 1,

(k1 or k2 or k1 + k2)+ lim
t→∞

x1i (t) if

max(||λ1||, ||λ2||) = 1

(41)

(41) implies that if the CSPSO algorithm is convergent, then

velocity of the particles will decrease to zero or stay unchanged until

the end of the iteration.

3.3 Constriction factor and its impact

When the PSO algorithm is run without controlling the

velocity, the system explodes after a few iterations. To control the

convergence properties of a particle swarm system, an important

model having constriction factor and ω together is shown below:

V t+1
i = χ ∗ {ωV t

i + ϕ1(P
t
i − xti )+

ϕ2(g
t
i − xti )},

(42)

2κ = χ | 2− ϕ −
√

ϕ2 − 4ϕ |,

ϕ1 + ϕ2 = ϕ ≥ 4, 0 ≤ κ ≤ 1.

Under these assumption conditions, the particle’s trajectory in

the CSPSO system is stable [6].

ωt+1 = ωmax −

(

ωmax − ωmin

tmax

)

t,

ωmax > ωmin

(43)

where, ωmax and ωmin are the predefined initial and final

values of the inertia weight, respectively, tmax is the maximum

iteration number, and t is the current iteration number for a linearly

decreasing inertia weight scheme.

3.4 Global convergence analysis of
QBCSPSO

A sequence generated by the iterative PSO algorithm converges

to a solution point. Several PSO variants were proposed to enhance

convergence performance of PSO [5, 24], which combines quantum

results with CSPSO, denoted as QBCSPSO. In this subsection, the

global convergence of QBCSPSO is investigated.
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From the Monte Carlo method, the current velocity for the

position xt+1
i of the d th element of the i th particle at the (t+ 1) th

iteration in QBCSPSO can be obtained using the following formula:

V t+1
i = Y t

i ± Lti ln(u
−(t+1)
i ),

ut+1
i ∼ U(0, 1)

(44)

where Ut
i ∈ (0, 1). Referring to Sun et al. [18, 24], where δ the

(wave) function

δ(Y t+1
i ) =

1
√

Lti

exp(−Y t+1
i /Lti )

with Y t+1
i =| xt+1

i − Pti |, and

the characteristic length Lti is obtained by

Lti = γ |xti − Ct| (45)

the term Ct used in (45) is Ct = 1
K

∑K
i=1 P

t
i . [24].

The contraction-expansion coefficient γ can be adjusted to balance

the trade-off between global and local exploration ability of the

particles during the optimization process for two main purposes

[38]:

• a larger γ value enables particles to have a stronger exploration

ability but a less exploitation ability.

• a smaller γ allows particles a more precise exploitation ability.

Notice that in this article, most of the (1)-(45) represent

velocities or positions or both of them.

4 Results and discussions

To demonstrate the working of the CSPSO algorithm, two well-

known test functions in a global optimization were widely used

in evaluating performance of evolutionary methods, and have the

global minimum at the origin or very close to the origin. We

compare the performance of PSO, SPSO, CPSO, and CSPSO.

Example 1. Unimodal function

min f (xi) =

K
∑

i=1

x2i

Subject to− 10 ≤ xi ≤ 10.

(46)

Example 2. Multi modal function

min f (x) =

K
∑

i=1

−xisin(
√

| xi |)

Subject to− 10 ≤ xi ≤ 10.

(47)

In the experiments, inertia weight decreases from 0.9 to 0.4 and

the generation stops when Ei =| Fgt(xi) − Fpt(xi) |≤ tolerance

satisfied. Here, Fp is the function value of the best personal in

current iteration and Fg denotes the global optimum and c1 =

c2 = 1.49 and c1 = c2 = 2 are used in PSO and CSPSO,

respectively.

For all algorithms, results are averaged over 100 independent

runs and iterations while the population size is 50.

Following the recommendations of the original references, the

best function value settings of some compared algorithms are

summarized in Table 1.

The mean velocity vt+1 of (46) is shown using Table 1 and

graphically (Figures 1–3) for the algorithms in Table 1. Figure 1

shows the convergence of PSO without controlling factor inertia

weight exploded. One of the main limitations of PSO is that

particles prematurely converge toward a local solution.

The evaluation results of the compared algorithms are shown

in Figures 2, 3 for decreasing and increasing inertia weight,

respectively. Figure 2 shows the evolution of inertial weight of

the compared algorithms over the running time. The main

disadvantage is that once the inertia weight is decreased, the

FIGURE 1

Basic PSO with no inertia weight for (46) on example 1.

TABLE 1 Comparison of algorithms on optimization test functions.

No Best fun Algorithm Best run Best variables ω ∈ range

1. 10.2213 Basic PSO 35 [0.3809, 1.4531, 3.1164]

2. 9.3944 SPSO 4 [0.4381, 1.4566, 3.1052] [0.9, 0.4]

3. 9.3945 SPSO 27 [0.4384, 1.4564, 3.1051] [0.4, 0.9]

4. 9.3941 CSPSO 29 [0.4379, 1.4568, 3.1053] [0.9, 0.4]

5. 9.3941 CSPSO 28 [0.4381, 1.4567, 3.1052] [0.4, 0.9]
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swarm loses its ability to search new areas [39]. Figure 3 shows the

evolution of convergence characteristic for CSPSO based on inertial

weight during the run. CSPSO can avoid premature convergence

by performing efficient exploration that can help to find better

solutions as the number of iterations increases and can avoid

premature convergence by balancing exploration and exploitation.

The algorithm CSPSO has shown fast convergence speed on

unimodal functions.

In order to confirm the performance onmulti-modal functions,

we carry out a similar simulation by using (47).

The same set of parameters is assigned for all algorithms of

Table 2 as in (46). Where in this function the number of local

minima increases exponentially with the problem dimension. Its

FIGURE 2

Evaluation of SPSO for (46) on example 1.

FIGURE 3

Evaluation of CSPSO for (46) on example 1.

global optimum value is approximately −5.74, as we see from

Table 2.

FIGURE 4

CPSO when ω = 1 for (47) on example 2.

FIGURE 5

Evaluation of SPSO for (47) on example 2.

TABLE 2 Comparison of algorithms on optimization test functions of multi-modal.

No Algorithm Best fun Best run Best variables ω ∈ range

1. CPSO –6.12 01 [ 1.79, 0, 3.20] ω = 1

2. SPSO –6.73 32 [ 1.79, 0, 3.21] [0.4, 0.9]

3. SPSO –8.133 89 [ 1.79, 0, 3.21] [0.9, 0.4]

4. CSPSO –11.83 69 [5.23, 5.23, 5.23 ] [0.9, 0.4]

5. CSPSO –5.74 39 [ 1.79, 0, 3.21] [0.4, 0.9]
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FIGURE 6

Evaluation of CSPSO for (47) on example 2.

Figures 4, 5 are simulations obtained from Table 2 results,

and all the figures meet the objective of the CSPSO algorithm

for the optimization problem given in (47) and its evaluation

in Figure 6.

5 Conclusion

This article mainly concerns the convergence and stability

analysis of the CSPSO algorithm and its performance improvement

for different constriction coefficients. We first investigated the

convergence of the SPSO algorithm by relating it to the Markov

chain in which the stochastic process and Markov properties

employ quantum behaviors to improve the global convergence and

proveMarkov chain transition probability, showing that the CSPSO

algorithm converges to the global optimum in probability. We

also compared the proposed algorithm with basic PSO, SPSO, and

CPSO algorithms evaluating the optimal value (fitness value) based

on the range of ω. The proposed algorithm is fast and efficient, and

the run plans of CSPSO for ω linearly decreasing from 0.9 to 0.4 are

easy to implement. The CSPSO algorithm performs better because

it regenerated those results to minimize the test functions. On the

other hand, the proposed heuristic algorithm did not seek solutions

that minimized the delay time or cost function, and the adjustment

process would be stopped if no ω was identified as regular. The

CSPSO algorithm is verified to be a global convergent algorithm.

These promising results motivate other researchers to apply CSPSO

to solve optimization problems. And in the future we will make

further investigations on convergence and stability of PSO variants.
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Appendix

Matlab codes

tic

clc

clear all

close all

rng default

LB=[0 0 0]; UB=[10 10 10];

m=3; n=50;

wmin=0.9; wmax=0.4; c1=2; c2=2;

maxite=100; maxrun=100;

for run=1:maxrun

run

for i=1:n

for j=1:m

x0(i,j)=round(LB(j)+(UB(j)-LB(j))*rand());

end

end

x=x0; v=0.1*x0;

for i=1:n

f0(i,1)=ofun(x0(i,:));

end

pbest=x0;

[fmin0,index0]=min(f0);

gbest=x0(index0,:);

ite=1;

tolerance=1;

rho=0.9;

while ite <=maxite && tolerance > 10−12

w =wmax-(wmax-wmin)*ite/maxite;

kappa=1; phi1=2.05; phi2=2.05;

phi=phi1+phi2;

chi = 2 ∗ kappa/abs(2− phi− sqrt(phi2 − 4 ∗ phi));

a=1/w;

for i=1:n

for j=1:m

v(i,j)=chi*[w*v(i,j)+c1*rand()*(pbest(i,j)-

x(i,j))+c2*rand()*(gbest(1,j)-x(i,j))];

end

end

for i=1:n

for j=1:m

x(i,j)=x(i,j)+v(i,j);

end

end

for i=1:n

for j=1:m

if x(i,j)<LB(j)

x(i,j)=LB(j);

elseif x(i,j)>UB(j)

x(i,j)=UB(j);

end

end

end

for i=1:n

f(i,1)=ofun(x(i,:));

end

for i=1:n

if f(i,1)<f0(i,1)

pbest(i,:)=x(i,:);

f0(i,1)=f(i,1);

end

end

[fmin,index]=min(f0);

ffmin(ite,run)=fmin;

ffite(run)=ite;

if fmin<fmin0

gbest=pbest(index,:);

fmin0=fmin;

end

if ite>100;

tolerance=abs(ffmin(ite-100,run)-fmin0);

end

if ite==1;

disp(sprintf(’Iteration Best particle objective fun’));

end

disp(sprintf(’

ite=ite+1;

end

gbest;

fvalue=-x(1)*sin(sqrt(abs(x(1))))-x(2)*sin(sqrt(abs(x(2))))-

x(3)*sin(sqrt(abs(x(3))));

fff(run)=fvalue;

rgbest(run,:)=gbest;

disp(sprintf(’——–’));

end

disp(sprintf(”));

disp(sprintf(’************’));

disp(sprintf(’Final Results——’));

[bestfun, bestrun] = min(fff )

bestvariables = rgbest(bestrun, :)

disp(sprintf(’**********’));

toc

plot(ffmin(1:ffite(bestrun),bestrun),’–b’,’linewidth’,2);

xlabel(’Iteration ’);

ylabel(’fitness function value’);

title(’CSPSO convergence characteristic’)
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