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Subnetwork inclusion and
switching of multilevel Boolean
networks preserve parameter
graph structure and dynamics

William Duncan1, Breschine Cummins2 and Tomáš Gedeon2*

1Immunetrics, Pittsburgh, PA, United States, 2Department of Mathematical Sciences, Montana State

University, Bozeman, MT, United States

This study addresses a problem of correspondence between dynamics of a

parameterized system and the structure of interactions within that system. The

structure of interactions is captured by a signed network. A network dynamics

is parameterized by collections of multi-level monotone Boolean functions

(MBFs), which are organized in a parameter graph PG. Each collection generates

dynamics which are captured in a structure of recurrent sets called a Morse

graph. We study two operations on signed graphs, switching and subnetwork

inclusion, and show that these induce dynamics-preserving maps between

parameter graphs. We show that duality, a standard operation on MBFs, and

switching are dynamically related: If M is the switch of N, then duality gives

an isomorphism between PG(N) and PG(M) which preserves dynamics and

thus Morse graphs. We then show that for each subnetwork M ⊂ N, there

are embeddings of the parameter graph PG(M) into PG(N) that preserve the

Morse graph. Since our combinatorial description of network dynamics is closely

related to switching ODE network models, our results suggest similar results for

parameterized sets of smooth ODE network models of the network dynamics.

KEYWORDS

network, gene regulation, dynamical system (DS), network motif inclusion, Boolean

model

1 Introduction

The concept of a network plays a central role in systems biology, where it encodes
interactions between the molecular species. Each directed edge has a sign, which represents
either a monotonically increasing or monotonically decreasing effect of the source on
the target. The restriction to monotone interactions suggests a possibility that there is a
relationship between structure of the network and its emergent dynamics.

There are different types of dynamics that can be associated to a network.
Some, like those generated by Boolean functions wherein each node can take on
a value of 0 or 1, are very tightly linked to the structure of the network. On
the other hand, the dynamics generated by ordinary differential equations (ODE)
models with an interaction structure given by the network strongly depends on
choice of non-linearities and parameters. Within the class of ODE network models,
the question of limitations on dynamics imposed by network structure is much
more difficult. In particular, one has to carefully define what constitutes the “same"
dynamics to compare the dynamics of different networks. Traditional definitions used
in comparison of dynamical systems include the concept of conjugate dynamics,
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or conjugate dynamics on a recurrent set � [1]. While the first
condition is stronger, both conditions are very difficult to verify. To
illustrate the difficulties, it is known that the hope that for a generic
set of Morse-Smale systems the set � is finite is false [2].

In this study, we address the question of the relationship
between network structure and its dynamics in the context ofmulti-
valued Boolean systems in which each vertex can take on a set of
integer values based on its number of out-edges. The approach
is based on [3–6] Dynamic Signatures Generated by Regulatory
Networks (DSGRN) which parameterizes the dynamics of a
network with a collection of monotone Boolean functions (MBFs)
that are compatible with its structure, that is, the monotonicity is
compatible with the signs of the network edges. These collections
are organized in a finite parameter graph PG that takes the form
of a product graph PG =

∏
u∈V PG(u) where the product is over

vertices of the network. Each node in PG represents a collection of
MBFs called a DSGRN parameter or just parameter. The edges in
PG represent adjacency within the collections of MBFs.

There is a correspondence [7] between each DSGRN parameter
and the dynamics of a switching ODE system [8–16], whose
dynamics can be captured by a finite state transition graph
(STG). A switching ODE can be approximated arbitrarily well
by a smooth ODE system; there are rigorous results [17–19] that
connect smooth ODE dynamics to that of a switching system
and thus STG. DSGRN uses a more compact description of
the dynamics of an STG in the form of a Morse graph (MG).
Nodes of a Morse graph are strongly connected components of
the STG, and the edges of MG are given by reachability within
the STG. Therefore, our description of the dynamics of network
N consists of its parameter graph PG(N) with an associated
collection of Morse graphs MG(N), one for each node. Since the
parameter graph PG(N) provides direct correspondence between
the collection of monotone Boolean functions and the continuous
time ODE dynamics of smooth approximations of switching
systems, comparing the PGs across networks provides a global
comparison between dynamic repertoires of these networks for
both discrete and continuous time dynamics.

The connection between parameterization of continuous
dynamics of switching systems and collections of multi-valued
Boolean models of the same network was also described in Abou-
Jaoudé and Monteiro [20]. While DSGRN starts with switching
ODE system and arrives at Boolean description of ODE parameter
domains, Abou-Jaoudé and Monteiro [20] starts with collection
of multi-valued Boolean models and uses switching system
parameters to generate sequences of Boolean systems. Changes in
the structure of attractors are examined as an analog of bifurcations.
The parameter graph PG is equivalent to the collection of all
monotone multi-valued Boolean systems compatible with network
N in Abou-Jaoudé and Monteiro [20]. The set of attractors is
represented as the set of leaves in the Morse graph, and therefore,
our description of dynamics using Morse graphs is more general.

With a finite characterization of network dynamics, it is natural
to ask whether homomorphisms of signed directed graphs preserve
network dynamics D(N) : = (PG(N),MG(N)). We emphasize that
we seek maps that preserve the graph structure of PG(N), where
the map preserves the relationships between nodes given by edges.
Under such a map not only dynamics at individual parameters p

is preserved, but also the changes in the dynamics (bifurcations)
between neighboring parameters p, q ∈ PG(N) are preserved.
While we do not answer this question in its full generality, we
study two important homomorphisms. First is the so-called switch

map, introduced in Zaslavsky [21], on signed directed graphs that
switches the signs of all edges incident to a set of vertices. In anODE
model, a switch can be realized via a change of variables x → −x
for all variables corresponding to this set of vertices and has been
used for monotone systems and monotone cyclic feedback systems
to bring them to a normal form [22–24]. Clearly, a switch map
preserves incidence of all edges and also the number and sign of
all closed loops [21, 25–27]. In Aracena et al. [26], it was shown
that a switch preserves the maximum number of fixed points of a
network across all strict Boolean systems for that network. Here,
we show that the maximum number of fixed points is preserved
due to the preservation of all dynamics: A switch map induces an
involution on the parameter graph PG that preserves the STG and
hence MG. This shows that the dynamics of the two networks is the
same.

The second homomorphism we study is inclusion of a network
as subgraph in another network. This is a very important example
in systems biology where gene regulatory networks cannot be
assumed to be in their final form as new experimental evidence
may reveal additional genes (nodes) and edges. Since the basis of
any scientific approach is to study small problems first before using
that knowledge to tackle larger problems, we must understand
if, and how, the dynamics D(M) of a subnetwork M persists
within the dynamics D(N) of a larger network N. Within the
DSGRN framework, at some parameters p ∈ PG, a particular
edge can be constitutively ON or constitutively OFF. We show
that at parameters p ∈ PG where all edges in N \ M are
either constitutively ON or constitutively OFF, the parameter graph
PG(M) is a subgraph of PG(N). In fact, we describe precisely the
conditions under which there are several isomorphic copies of the
parameter graph PG(M) within PG(N), where each copy carries
the same collection of dynamics MG(M).

The second homomorphism is strongly motivated by systems
biology. Gene regulatory networks do not exist in isolation and
interact with other networks. It is important to understand if and
under what conditions the dynamics of subnetworks persist within
a larger network. As a motivating example, consider [28] where
they considered the interaction of the yeast cell cycle network with
the pheromone-sensing network that stops the cell cycle in the
presence of mating pheromone. The study concludes that in the
absence of pheromone the cell cycle network drives parts of the
pheromone network, while in the presence of pheromone the cell
cycle is driven to a rest state. One can conceptualize this interaction
by assuming that the cell cycle network on its own supports a
periodic orbit corresponding to the cell cycle and the pheromone-
sensing network supports a steady state. This study shows that both
of these dynamical behaviors occur in the larger network comprised
of both subnetworks but at different parameters. This insight leads
to the conjecture that by changing parameters it is possible for one
or the other behavior to prevail within the larger network; however,
at intermediate parameters, completely new dynamics may emerge.

A further motivating example comes from examining the
subnetworks of the cell cycle itself, which support multiple
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A B C D

FIGURE 1

(A) Network N with positive loop motif PL between z and y and a negative loop motif NL x ⊣ y→ z→ x. (B) There are three monotone Boolean

functions (MBF) at node x forming parameter factor graph PG(x); (C) six MBF forming PG(y); (D) twelve MBFs forming PG(z). The set of all parameters

is PG(N) = PG(x)× PG(y)× PG(z). There are two embeddings of PG(NL) into PG(N). Both embeddings are products of PG(x) with subgraph of PG(y)

and a subgraph of PG(z). When edge e : z→ y is always ON, these subgraphs are {I,II, IV} and {10,11,12}, marked by square nodes. If the edge e : z→ y

is always OFF, the subgraphs are {IV,V, VI} and {1,2,3}, marked by circle nodes.

phenotypes. The dual view of the cell cycle as either a biochemical
“clock" vs. a set of “dominos", that is, a series of switches where
the completion of one step is required for the completion of the
next step, has been discussed for at least 35 years [29, 30]. Support
for the biochemical clock view comes, among others, from studies
that showed that even in the absence of cyclins, a cell cycle-
associated program of periodic transcription program is intact [31].
On the other hand, a bistable switch facilitates transition from G1
to S phase of the cell cycle [5, 32, 33], and other switches likely
facilitate other checkpoints. Since recent modeling work suggests
that different cell cycle phenotypes are the result of changes in
parameters [34], these two views can be reconciled by realizing that
cell cycle network [31, 34] contains multiple positive and negative
feedback loops. Since negative loops in isolation can support
periodic behavior [35], while positive loops can support bistability
[36], the cell cycle phenotype depends on particular parameters
(i.e., cellular conditions) that determine which behavior dominates.
For instance, in many cancers, the uncontrolled proliferation is
caused by defective checkpoints [37, 38]. How the checkpoint
steady state dynamics driven by positive loops interacts with
periodic behavior driven by negative loops, and the proximity of
these behaviors in the parameter space, may suggest perturbations
that restore the checkpoint function.

Apart from addressing a general question of comparison of
dynamic repertoires of networks, the work presented here provides
the capability to answer the rigorously central hypothesis of motif
theory [39–41] within systems biology. Motifs are small networks
with 3-4 nodes each that are postulated to have a particular
cellular function based on their dynamics. However, it is not clear
whether independent motif dynamics persists after embedding into
a larger network. Our work suggests conditions under which the
independent motif dynamics can be observed within the larger
network.

We illustrate our work on a small network N in Figure 1A
throughout the study. There are two motifs embedded in this

TABLE 1 Three monotone Boolean functions in PG(x) with Boolean

input Z.

Z A B C

0 0 0 1

1 0 1 1

network: a mutual activation loop PL (positive loop) between z

and y and a negative feedback loop NL x ⊣ y → z → x.
Theorems 5.4, 5.5 describe how the dynamics of these loops persists
within the larger network in Figure 1A. We outline these results
here on networkN, while leaving the details for the text that follows.

We represent all possible ways in which the network
can function by enumerating a collection of monotone
Boolean functions (MBF) (Section 2.1). These describe how
the concentration levels of the input edge(s) of each node activate
the output edges. Node x has single input and single output and
there are three MBFs (see Table 1) that describe potential activation
patterns of the output edge x ⊣ y in response to a Boolean input
Z ∈ {0, 1}: a constant function with value 0 (A), a constant function
with value 1 (C), and an identity function B. Figure 1B shows the
structure of this set of MBFs where we join by an edge any MBFs
that differ in a single value. This is the parameter factor graph

PG(x).
In Figure 1C shows PG(y) consisting of MBFs with two inputs

and one output and in Figure 1D is PG(z) of MBFs with one input
and two outputs. Their structure is explained in Tables 2, 3 later
in the study. The parameter graph of the network N is PG(N) =
PG(x)×PG(y)×PG(z), the product of the parameter factor graphs.

As a consequence of Theorem 5.5, there are two subgraphs of
PG(N) that are isomorphic to parameter graph of the negative
loop PG(NL). These are products of PG(x) with subgraphs of
PG(y) and PG(z) described in Figure 1. As explained in detail
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TABLE 2 Six monotone Boolean functions in PG(y) with Boolean inputs X

and Z.

XZ B(XZ) I II III IV V VI

11 01 0 0 0 1 1 1

10 00 0 0 0 0 0 1

01 11 0 1 1 1 1 1

00 10 0 0 1 0 1 1

Function II corresponds to logical OR function and function V corresponds to a logical AND

function.

in Appendix B, there are four such embeddings of the parameter
graph of the positive loop PG(PL) into PG(N) and consequently,
at those parameters the dynamics of N is the same as that of the
positive loop. These results make it possible to investigate relative
positions of parameters that support bistability and those that
support oscillations.

The organization of the study is as follows. In Section 2,
we review the basic concepts of DSGRN: the parameter graph,
state transition graph and Morse graph. In Section 3, we describe
homomorphisms of signed graphs and a particular example
of switching homomorphism. In Section 4, we show that the
switching homomorphism preserves dynamics by inducing a graph
isomorphism of the parameter graph that preserves dynamics.
In Section 5, we start focusing on the network embedding
as our second example of signed graph homomorphism. We
formulate our main results as Theorem 5.4 about correspondence
of dynamics at input inessential parameters and Theorem 5.5 at
output inessential parameters. These Theorems are then proved
in Sections 6 and 7, respectively. Section 8 contains discussion,
while some proofs of the more technical results are delegated to the
Section 8 and a detailed analysis of network N from Figure 1 is in
Section 9.

2 Regulatory networks

A regulatory network N = (V ,E, δ) is a directed graph with
nodes V , directed edges E, and an edge sign function δ : E →

{−1, 1}. We denote an edge from node u to node v without
indicating its sign by u ⊸ v. The edge u ⊸ v is activating if
δvu = 1 and repressing if δvu = −1. Graphically, an activating edge is
denoted by u→ v and a repressing edge by u ⊣ v. The sources and
targets of a node u are given by

S(u) : = {w ∈ V |w ⊸ u ∈ E } T(u) : = {v ∈ V | u ⊸ v ∈ E } ,

respectively.

2.1 Parameters

The parameterization of the dynamics of a network depends
on the choice of model. We discuss two different types of models
and briefly review literature on how the parameterizations of
these two types of models are related. Boolean models compatible
with regulatory network N have a long history [11, 42, 43], and

TABLE 3 Logic parameters of PG(z) corresponding to nodes 1-12 (first

row).

1 / 7 2 / 8 3 / 10 4 / 9 5 / 11 6 / 12

Y f 1z f 2z f 1z f 2z f 1z f 2z f 1z f 2z f 1z f 2z f 1z f 2z

0 0 0 0 0 1 0 0 0 1 0 1 1

1 0 0 1 0 1 0 1 1 1 1 1 1

Each logic parameter corresponds to two monotone Boolean functions (f 1z , f
2
z ) where f 1z

represents activation of the first and f 2z to activation of the second edge. Order of the edges is

determined by order parameter, which is different between nodes 1–6 and their counterparts

7–12.

their study remains an active research area [20, 44–46]. There
are two closely related but distinct types of Boolean models.
The standard Boolean network model considers a single Boolean
function fu :B

|S(u)| → B at each node u which is monotone in
each input respecting the edge sign δ. When a node is activated
via fu = 1, then this activated state, in turn, activates all edges
from u to T(u) [44, 47–49]. The parameterization of such a network
involves enumerating monotone Boolean functions fu compatible
with edge signs between S(u) and u. Often one is interested in non-
degenerate [50] or, equivalently, observable [45] functions which
are non-constant and each input affects the value of fu.

An alternative and richer set of models starts with the original
work of Thomas et al. [42]. They consider discrete dynamics where
u can selectively activate some nodes in T(u), but not others, as
this activation happens at different thresholds for different targets.
This naturally leads to the consideration of multi-level Boolean
functions, where the discrete levels of node u are related to the
number of nodes in T(u). Parameterization of all such possible
multi-valued Boolean functions compatible with the network
structure has been described by Abou-Jaoudé and Monteiro [20]
and by Cummins et al. [3, 4], and Gedeon [6], arriving at the
same concept from different perspectives. The goal of Abou-Jaoudé
and Monteiro [20] is to construct natural families of multi-valued
Boolean functions that describe changes in the dynamics as a
function of a continuous parameter. In order to do this, they
need to relate the collection of multi-valued Boolean functions
to a continuous time differential equation switching model where
the change of continuous parameter then induces a sequence of
multi-valued Boolean functions. The sequence of attractors of these
functions constitutes a logical bifurcation diagram.

As mentioned in the introduction, our work [3] starts with an
ODE switching model and realizes that the continuous parameter
space of these models decomposes to a set of domains each
of which admits the same dynamics, as described by a discrete
state transition graph. This naturally leads to the representation
of this decomposition in a form of a graph, called a parameter

graph where each node represents one such domain and edges
represent co-dimension one boundaries (immediate proximity) in
the parameter space. As we describe in more detail below, each
node of the parameter graph is specified by two sets of information:
the ordering of thresholds of edges u to T(u), which we call below
an order parameter, and the description of values of the multi-
valued Boolean function fu as a collection of monotone Boolean
functions, each describing which Boolean inputs b ∈ B

S(u) activate
a particular node v ∈ T(u). This collection is called below a
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logic parameter. This description is equivalent to the multi-valued
Boolean function description of Abou-Jaoudé and Monteiro [20]
(Definition 2).

We now start with rigorous description of the set of parameters
associated with a regulatory network N = (V ,E, δ). This set
depends on the nodes V and the edges E but not on the sign
of edges δ. For simplicity, we fix the network N and suppress
these dependencies. We will reintroduce the dependencies in later
sections as needed.

Let mu : = |T(u)| denotes the number of target nodes of
u. A u-order parameter is a bijection θu :T(u) → {1, . . . ,mu}

which defines an ordering of the out-edges of u. The set of u-
order parameters is denoted by 2(u). A collection θ : = (θu)u∈V
is an order parameter. The set of all order parameters is given by
2 : =

∏
u∈V 2(u). The target nodes are ordered based on how

easy are they to activate: As level of expression of node u increases,
the target nodes will activate in the order given by the value of the
order parameter.

Let B : = ({0, 1}; 0 ≺ 1}) be a Boolean lattice with natural order
0 ≺ 1 and letBn be a lattice of Boolean n vectors with order induced
component-wise by ≺.

To define the logic parameter, we need the following definition.

Definition 2.1. A function f :Bn → B is a positive monotone

Boolean function if b1 ≺ b2 implies f (b1) � f (b2).

A u-logic parameter is a collection of positive monotone
Boolean functions

fu = (f 1u , . . . , f
mu
u )

satisfying the ordering condition

f 1u (b) � · · · � fmu
u (b) (1)

for all b ∈ B
S(u). The purpose of the function f θu(v)u is to describe

when a given input b is above the activation threshold for the edge
θu(v), that is, if f

θu(v)
u (b) = 1 then b is above the activation threshold

for the edge u ⊸ v and if f θu(v)u (b) = 0 then b is below the activation
threshold for the edge u ⊸ v. A collection f : = (fu)u∈V is a logic
parameter. The set of all u-logic parameters is denoted L(u), while
the set of all logic parameters is L : =

∏
u∈V L(u).

The set of parameters is the product of logic and order
parameters P : = L × 2. We call P(u) : = L(u) × 2(u) the set
of u-parameters and note the parameters are given by the product
P =

∏
u∈V P(u). The following section endows the set P with

structure of a graph by defining adjacency between elements of P.
In Section 2.3, we show that the u-logic parameter fu can be

equivalently described by a single multi-valued Boolean function
gu. Such a description is used in Abou-Jaoudé and Monteiro [20].

2.2 The parameter graph

Two u-parameter nodes, (fu, θu), (gu,φu) ∈ P(u) are adjacent if
exactly one of the following conditions is satisfied.

• Order adjacency: fu = gu and the values of the order
parameters θu and φu are exchanged on a single pair of

neighboring entries on which the logic parameters agree.
Explicitly, there is an adjacent transposition π of {1, . . . ,mu}

such that θu = π ◦φu and f iu = g
π(i)
u for each i. Letting j be the

index with j + 1 = π(j), we note that f
j
u = g

π(j)
u and fu = gu

together imply f
j
u = f

j+1
u .

• Logical adjacency: θu = φu and the u-logic parameters fu
and gu differ in a single input. Explicitly, there is unique i ∈
{1, . . . ,mu} and unique b0 ∈ B

S(u) such that f iu(b
0) 6= giu(b

0).
For j 6= i, we require f

j
u(b) = g

j
u(b) for all b ∈ B

n and for
b 6= b0 we require f iu(b) = giu(b).

The u-factor graph is the undirected graph PG(u) : =
(P(u), E(u)) whose nodes are u-parameter nodes and whose edges
are given by adjacency. The parameter graph PG : = (P, E) is the
Cartesian product PG : =

∏
u∈V PG(u). That is, there is an edge

(p1, p2) ∈ E if and only if there is a unique u ∈ V such that
(p1u, p

2
u) ∈ E(u) and p1v = p2v for all v 6= u.

We illustrate the parameter graph construction on network N

in Figure 1A by constructing parameter factor graphs PG(y) in
Figure 1C and PG(z) in Figure 1D.

First consider node y with S(y) = {x, z} and T(y) = {z}.
Therefore, logic parameters are all monotone Boolean functions
fy :B

2 → B and since |T(y)| = 1 there is a single order parameter
θz with value θy(z) = 1.

We list all MBFs at node y in Table 2. Note that the fact that the
input from x is repressing is modeled by function B (see Equation 2)
whose values are in the second column of the table. The edges in
PG(y) in Figure 1C reflect parameter node adjacency.

Each node in the factor parameter graph PG(z) is a pair (fz , θz)
where fz is a logic parameter and θz is an order parameter. Since
there are two targets of z and T(z) = {x, y} there are two order
parameters θ1z mapping x → 1 and y → 2, and θ2z mapping
x → 2 and y → 1. Therefore, the logic parameter fz = (f 1z , f

2
z )

consists two MBFs, where f 1z models activation of the first target
and f 2z the second target, given by the value of the order parameter.
The order parameter θ1z corresponds to left half of PG(z) (nodes
1-6) and the order parameter θ2z to right half of PG(z) (nodes 7–
12). Within each half, the order parameter is fixed, but the logic
parameter changes and is described in Table 3.

2.3 Dynamics

The multi-valued Boolean dynamics associated with a network
N = (V ,E, δ) depends on a choice of parameter p ∈ P and the edge
sign function δ.

The dynamics occurs on the state space

X : =
∏

u∈V

Xu, Xu : = {0, 1, . . . ,mu}.

We call x ∈ X a state of the network N. The multi-valued
Boolean function at each node will update the state based on the
input that depends on the state, order parameter θ and the edge
sign function δ. The state x = (xu)u∈V is mapped to an input to a
node v via the input map

Bv :X→ B
S(v), Bv : = (Bvu)u∈S(v)
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where

Bvu(x) : =

{
0, if xu < θu(v) and δvu = 1 or xu ≥ θu(v) and δvu = −1

1, if xu ≥ θu(v) and δvu = 1 or xu < θu(v) and δvu = −1
.

(2)
Note that for activating edge u → v, if xu is below (above) the

activating threshold θu(v), then the input is 0 (1). This assignment
is reversed if the edge is repressing.

An equivalent description of the u-logic parameter fu uses a
single multi-valued Boolean function gu :Xu → Xu defined by

gu(x) =
mu∑

v=1

fmu
v (Bvu(x)).

Clearly, for every logic parameter fu = (f 1u , . . . , f
mu
u ), there

is well-defined multi-valued function gu; given gu and the order
parameter θu, one can reconstruct the collection fu. Logic parameter
description using a single multi-valued function gu is used in
Abou-Jaoudé and Monteiro [20].

Definition 2.2. The dynamics for network N at parameter (f , θ) ∈
P is defined as follows.

1. Themulti-level Boolean target point F0
:X→ X is defined by

F
0
u(x) : =

∣∣{i ∈ {1, . . . ,mu} | f
i
u(B

u(x)) = 1}
∣∣ .

This map is also called the synchronous update [51] of the
multi-level Boolean function g that corresponds to f .

2. The multi-level Boolean dynamics F :X × P ⇉ X is a multi-
valued map generated by F0 and defined by

• If F0(x) = x then F(x) = {x}.
• For any u and η ∈ {−1, 1} satisfying ηF0

u(x) > ηxu the
state

xu = xu + η, xv = xv for v 6= u

satisfies x ∈ F(x).

The map F is the asynchronous update [44, 51, 52] of the map
F
0.

The mapsF0 andF implicitly depend on the choice of network
and the associated parameters. We will explicitly include these
dependencies as arguments as needed.

The multi-level Boolean dynamics F can be represented as a a
state transition graph STG(X) with vertices given by the states X:
there is a directed edge x→ x in STG(X) if, and only if, x ∈ F(x).

2.4 The Morse graph

The recurrent dynamics ofF(·; p) are encoded by aMorse graph

MG(p). The Morse graph MG(p) = (SCC,A) is a directed graph
with nodes SCC consisting of strongly connected components of
STG(X, p). The Morse graph is the Haase diagram on SCC of
the reachability relation on the corresponding strongly connected
components within STG(X, p) SCC. We label each strongly
connected component s ∈ SCC according to the following.

• If s ∈ SCC consists of a single recurrent state, s = {x}, then x

is a fixed point of F and we label s by FP(x).
• If s ∈ SCC is not an FP, then we label s as a partial cyclePC or

a full cycle FC. The strongly connected component s is a PC if
s is constant in at least one coordinate: There is a node u ∈ V

and an integer k such that x ∈ s implies xu = k. If s is not an
FP or an PC, then s is an FC.

• If s ∈ SCC has no out-edges in MG(p), then s is stable.
Otherwise, s is unstable. The collection of stable s, that is,
the leaves of MG(p), are the attractors described in Abou-
Jaoudé and Monteiro [20]. While the attractors correspond
to observable dynamics and hence are important in biological
models, the unstable s plays a role in bifurcations under
parameter changes.

3 Homomorphisms of signed
networks

Following Naserasr et al. [27], we define a homomorphism of
signed networks to be a graph homomorphism which preserves the
signs of closed walks.

Definition 3.1. Let N = (V ,E, δ) be a network.

• A walk of N is a sequence of edges v0 ⊸ v1 ⊸ · · ·⊸ vn. It is
a closed walk if vn = v0. The sign of the walk is given by

n∏

i=1

δvivi−1

• A switching homomorphism of network N = (V ,E, δ) to a
network M = (V ′,E′, η) is a map h :V → V ′ such that
u ⊸ v ∈ E implies h(u) ⊸ h(v) ∈ E′ and a closed walk
v0 ⊸ v1 ⊸ · · · ⊸ vn is positive in N if and only if
h(v0) ⊸ h(v1) ⊸ · · ·⊸ h(vn) is positive inM.

The switching homomorphism between networks is a
homomorphism of the underlying directed graphs with the
additional constraint of preserved signs of closed walks. A
switching homomorphism is distinct from a stricter notion of
homomorphisms of signed graphs that require edge signs to be
preserved [25, 27, 53]. We will see that switching homomorphisms
are more natural in the context of network dynamics. The term
switching homomorphism comes from the switching operation
defined in Zaslavsky [21].

Definition 3.2. Let N = (V ,E, δ) be a regulatory network and
U ⊂ V . TheU-switch ofN is the network σU (N) = (V ,E, η) where

ηvu =

{
δvu, if both u, v ∈ U or both u, v /∈ U

−δvu, otherwise
.

Since this operation preserves both nodes V and edges E of
N, and only changes the signs of the edges, we will often write
η = σU (δ).

The U-switch is motivated by the following change of variables
in anODE system associated with the networkN. ToN we associate
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FIGURE 2

U-switch of network N. Original network N on the left with set

U = {A,B} in bold. The network σU(N) on the right.

a system of ODEs where a single variable represents each node and
where the type (increasing vs. decreasing) monotone interactions
between variables is represented by the sign of the edges. Then,
the U-switch corresponds to a change of variables x → −x for all
x ∈ U. Such a change of variables reverses sign of all edges adjacent
to a vertex x ∈ U (see Figure 2).

For any choice of U, the U-switch is a switching
homomorphism and an involution; therefore, it is a switching
isomorphism. In Naserasr et al. [27], it was shown that any
switching homomorphism is a U-switch followed by an edge
sign preserving homomorphism. Basic properties of the switch
operation are recorded in the following proposition.

Proposition 3.3. 1. If U = V then σU is the identity: σU = Id.
2. For all U ⊂ V , σU is an involution: σU ◦ σU = Id.
3. Given U,W ⊂ V , σU and σW commute: σU ◦ σW = σW ◦ σU .
4. Given U = {u1, . . . , un} ⊂ V , σU = σ u1 ◦ · · · ◦ σ un .

4 Switch isomorphisms preserve
network dynamics

In this section, we examine the relationship between the
dynamics of networkN and the switched network σU (N). Since the
switch operation σU fixes the nodes V and edges E, and the set of
parameter nodes P(N) does not depend on the edge signs, we have
P(N) = P(σU (N)).

Before we formulate the main result, we outline the main idea.
Define bijection λU :X→ X component-wise by

λU (x) = (λUu (xu))u∈V λUu (xu) =

{
mu − xu, if u ∈ U

xu, if xu /∈ U.

That is, λU reflects the components Xu for each u ∈ U and
is the identity on the components Xu for u /∈ U. Clearly, λU

is an involution. Then, given F
0(·; p,N) :X → X at parameter

p ∈ P(N), the map F
0,U

: = λU ◦ F0 ◦ λU is isomorphic to
F
0. Therefore, both synchronous dynamics given by iterates of

F
0 and asynchronous dynamics given by F on STG are identical.

The main result of this section precisely identifies the map on
the parameter graph DU

:P(N) → P(σU (N)) such that F0,U =

F
0(·;DU (p), σU (N)). Importantly, we show that the map DU is

graph automorphism; that is, it maps not only nodes to nodes but
also edges to edges.

Theorem 4.1. Given the U-switch σU , there is an induced
isomorphism DU

:P(N)→ P(σU (N)) and a bijection λU :X→ X

such that the the following diagram commutes

X
F

0
(·;p,N)

−−−−−−−−−−−−→ X

λU

xy

xyλU

X
F

0
(·;DU (p),σU (N))

−−−−−−−−−−−→ X

(3)

In other words, the dynamics of F
0(·; p,N) and

F
0(·;DU (p), σU (N)) is conjugate at parameters related by DU . The

map λU is a graph isomorphism between the STG representing
F(·; p,N) and the STG representing F(·;DU (p), σU (N)).
Consequently, the Morse graphs MG(p) and MG(DU (p)) are
isomorphic and corresponding Morse nodes have the same label.

A consequence of Proposition 3.3(4) is that we need only to
demonstrate that the diagram Equation 3 commutes in the case that
U = {u} consists of a single node.

4.1 The dual parameter map DU

Let u ∈ V be a node and pu = (fu, θu) ∈ P(u) be a u-parameter.
The dual parameter to pu is defined to be qu = (gu,φu) where

φu(v) = mu + 1− θu(v) and giu(b) = ¬f
mu+1−i
u (¬b), (4)

and mu = |T(u)|. The reason we say qu is the dual parameter
to pu is because giu is the dual Boolean function to f

mu+1−i
u . There

is a large literature on dualization of Boolean functions and its
computational complexity. See, for example [54].

Define du :P(u) → P(u) to be the map from a u-parameter to
its dual parameter. The following Lemma is a direct consequence of
the definition of du.

Lemma 4.2. Given any u-parameter pu ∈ P(u), its dual parameter
du(pu) ∈ P(u), that is, the map du is well-defined. Moreover, du is
an involution: du ◦ du = Id.

Proof. We show that du(pu) ∈ P(u). Clearly, φu is a valid order
parameter. We now show that gu satisfies the ordering condition
(Equation 1). Since fu satisfies the ordering condition, we have
f 1u (¬(b)) ≥ · · · ≥ f

mu
u (¬b) and therefore ¬f 1u (¬b) ≤ · · · ≤

¬f
mu
u (¬b). By Definition 4, g1u(b) ≥ · · · ≥ g

mu
u (b) so that gu

satisfies the ordering condition. Next, we show that giu is an MBF.
Let b1 ≺ b2, which implies ¬b1 ≻ ¬b2. Since fmu+1−i

u is an MBF,
we have

giu(b
1) = ¬fmu+1−i

u (¬b1) ≤ ¬fmu+1−i
u (¬b2) = giu(b

2).

This shows giu is an MBF.
The second part of the Lemma follows by inspection.

We are now ready to define the parameter graph isomorphism
corresponding to σU . Since σU fixes the nodes V and edges E, and
the set of parameter nodesP(N) does not depend on the edge signs,
we haveP(N) = P(σU (N)). Therefore, we will omit the networkN
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from the argument of the parameter set P and the parameter graph
PG.

Let U ⊂ V . The U-dual parameter map DU
:P→ P is defined

by

DU (p) = (DU
u (pu))u∈V DU

u (pu) =

{
du(pu), if u ∈ U

pu, if u /∈ U
.

Proposition 4.3. The U-dual parameter map DU is a graph
automorphism of PG for all U ⊂ V .

Proof. By Lemma 4.2 du, is an involution on P(u). Since each
component of DU is either the identity on that component or given
by du,DU is an involution onP and hence a bijection. It remains to
show that DU preserves parameter graph adjacency.

Let p = (f , θ), p = (f , θ) ∈ P be adjacent parameters. Let
q = (g,φ) = DU ((f , θ)) and q = (g,φ) = DU ((f , θ)). Furthermore,
let u be the unique node such that pu and pu are adjacent. For
w 6= u, pw = pw and therefore qw = qw.

First suppose pu and pu are order adjacent. Then there is an
adjacent transposition π such that

θu = π ◦ θu.

If u /∈ U then φu = θu and φu = θu so that qu and qu are order
adjacent. If u ∈ U, then

φu = mu + 1− θu = mu + 1− π ◦ θu = τ ◦ φu

where τ (i) : = mu + 1 − π(mu + 1 − i) is an adjacent
transposition. Order adjacency of pu and pu implies f = f and thus
g = g, so we conclude q and q are order adjacent.

Finally, suppose pu and pu are logically adjacent. If u /∈ U then
qu = pu and qu = pu so that qu and qu are logically adjacent.

If u ∈ U, then θ = θ and thus φ = φ. Let i be the unique index

and b0 be the unique input such that f iu(b0) 6= f
i

u(b0). Then

gmu+1−i
u (¬b0) = ¬f

i
u(b0) 6= ¬f

i

u(b0) = gmu+1−i
u (¬b0)

and for b 6= b0, f
j
u(b) = f

j

u(b) so that

gmu+1−i
u (¬b) = ¬fmu+1−i

u (b) = ¬f
mu+1−i
u (b) = gmu+1−i

u (¬b).

Similarly for j 6= i and any b

g
mu+1−j
u (¬b) = ¬f

mu+1−j
u (b) = ¬f

mu+1−j
u (b) = g

mu+1−j
u (¬b).

We conclude thatmu+ 1− i is the unique index and¬b0 is the
unique input such that gmu+1−i

u (¬b0) 6= gmu+1−i
u (¬b0) It follows

that q and q are logically adjacent.
Since DU is invertible and preserves both order and logical

adjacency, DU is an automorphism of PG.

4.2 Preservation of dynamics

The difference between the target point mapF0 for the network
N and the network σU (N) is due to the dependence of the input
map Bu (see the beginning of Section 2.3) on the edge signs δ.
The following lemma relates the input map Bu(·; θ , δ) for N and
the input map Bu(·;φ, σU (δ)) for σU (N). By Proposition 3.3(4), we
need only consider the case U = {u}.

Lemma 4.4. Let, u ∈ V , (f , θ) ∈ P, and (g,φ) = D{u}((f , θ)). Let
η = σ {u}(δ). Then for all w ∈ S(u),

Buw(x; θ , δ) = ¬B
u
w(λ
{u}(x),φ, η). (5)

For v 6= u and all w ∈ S(v),

Bvw(x; θ , δ) = Bvw(λ
{u}(x),φ, η). (6)

Consequently,

Bu(x; θ , δ) = ¬Bu(λ{u}(x),φ, η) and Bv(x; θ , δ) = Bv(λ{u}(x),φ, η)

for v 6= u.

Proof. To simplify notation, let λ = λ{u}.
First consider w ∈ S(u) \ {u}. Since λw = Id and φw = θw, we

have xw < θw(u) if and only if λw(xw) < φw(u). Equation (5) then
follows after observing δuw = −ηuw.

Next, we consider the case u ∈ S(u), that is, a self-edge. Note
that for all v ∈ T(u),

xu <θu(v) implies λu(xu) = mu − xu ≥ mu + 1− θu(v) = φu(v) and

xu ≥θu(v) implies λu(xu) = mu − xu < mu + 1− θu(v) = φu(v).

So, if u ∈ S(u), we have xu < θu(u) if and only if xu ≥ φu(u).
Since δuu = ηuu , Equation (5) holds with w = u.

Now, suppose v 6= u and w ∈ S(v). If w 6= u, then λw = Id,
φw = θw, and ηvw = δvw implies Equation (6) holds. If w = u, then
xu < θu(v) holds if and only if

λu(xu) = mu − xu ≥ mu + 1− θu(v) = φu(v).

Since ηvu = −δvu, Equation (6) holds.

Proof of Theorem 4.1. By Proposition 3.3(4), it is sufficient to
consider the case U = {u}. To simplify notation, we omit U as
an argument of λ and D and let η = σU (δ). Let p = (f , θ) and
(g,φ) = D(p) be the U-dual parameter.

Note that for v 6= u, λv(xv) = xv, gv = fv, and, by Lemma 4.4
also Bv(x; θ , δ) = Bv(λ(x);φ, η). Therefore

|{f iv(B
v(x; θ , δ)) = 1}| = |{giv(B

v(λ(x);φ, η)) = 1}|.

Consequently, if we denote xv = F
0
v(x; p,N) then λv(xv) =

xv = F
0
v(λ(x);D(p), σ

U (N)).
For node u itself, we have

|{giu(B
u(λ(x);φ, η)) = 1}| = |{fmu+1−i

u (¬Bu(x; θ , δ)) = 0}|

= mu − |{f
i
u(¬B

u(x); θ , δ) = 1}|
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Consequently, with xu = F
0
u(x; p,N),

F
0
u(λ(x);D(p), σ

U (N)) = mu − F
0
u(x; p,N) = mu − xu = λu(xu).

We have shown that λU verifies the conjugacy of F0(·; p,N)
and F

0(·;DU (p), σU (N)). Since F is derived from F
0, it

follows that λU is a graph isomorphism between STG(p,N)
and STG(DU (p), σU (N)). Since the STGs are isomorphic,
the corresponding Morse graphs MG(p) and MG(DU (p)) are
isomorphic.

Remark 4.5. We want to point out that when U = V the set of
all nodes, and the switch σV

:N → N is the identity, the map
DV

:P(N)→ P(N) is not necessarily an identity automorphism on
the parameter graph. As we will show in Section 8, the non-trivial
automorphism DV commutes with network projections defined in
the next section.

5 Embedding

In this section, we address the question of when the dynamics of
a subnetworkM agree with the dynamics of a larger network N. In
fact, we find it more convenient to consider the inverse operation of
removing (cutting) edges of a regulatory network N and study the
effect on the dynamics.

Definition 5.1. Let N = (V ,E, δ) be a regulatory network and
E ⊂ E be a set of edges. The E-cut of N is the network CE(N) : =
(V ,E \ E, η) where

ηvu = δvu if u ⊸ v /∈ E.

Alternatively, the map IE :(V ,E \ E, η) → (V ,E, δ) satisfying
CE ◦ IE = Id is a graph embedding (inclusion).

Since the cut operation only removes edges from N, our results
will only explicitly apply when considering subnetworks M ⊂

N which have the same number of nodes. This assumption is
convenient but not restrictive; ifM′ = (V ′,E\E, η) is a subnetwork
of N with V ′ ⊂ V , then we may add the missing nodes to M′

and consider M = (V ,E \ E, η). A missing node u ∈ V \ V ′ is
completely disconnected from every other node; its state is fixed
and plays no role in the dynamics. The dynamics of M′ and M are
therefore identical.

We outline the main ideas of this section. Our goal is to relate
the dynamics of networkN at a parameter p ∈ P(N) with dynamics
of subnetwork M at a parameter q ∈ P(M). In general, there is
no such relationship as cutting edges will result in a change in
dynamics. However, there are parameters p where one or more
edges play no role in the dynamics. This happens when an edge
is always active or always inactive, that is, one of the functions
f vu is constant. We call the corresponding edge u ⊸ v an output

inessential edge. In the context of Boolean functions, such function
f vu has been called a degenerate [50] or non-observable [45]
function. In addition, even when f vu is non-constant, there may be
cases where the edge u ⊸ v never independently causes a change
at a target node. These will be called input inessential edges (see
Definition 5.2 below). Clearly, at a parameter p ∈ P(N), there can
be multiple edges of both types and we expect that cutting any

FIGURE 3

Maps of edges in STG(N,p) under the collapse map µe. The gray

regions indicate (right) the layer Lvu about u ⊸ v in the state

transition graph of N, and (left) the collapse map of the layer, µe(Lvu),

in the state transition graph of Ce(N). Each row represents a case

from Proposition 6.1 that relates how the arrows in STG(N,p) are

altered under the collapse map. In Case 1, either both undashed

arrows or both dashed arrows are in STG(N,p), but not both.

subset of these edges would result in a network M with the same,
or similar, dynamics.

However, there are important differences between these two
types of edges. At a parameter where we remove only input
inessential edges from N to create subnetwork M, the thresholds
corresponding to cut edges do not affect the dynamics. As a
consequence, the direction of edges in pairs of domains straddling
such a threshold is the same and we can combine these pairs to
a single domain (see Figure 3). This operation results in semi-
conjugacy between the dynamics of X(N) and X(M), described in
Theorem 5.4.

On the other hand, at parameters where we remove output
inessential edges, we find that the result can be strengthened in
two important directions. First, the dynamics at p ∈ P(N) and
the dynamics at the corresponding parameter 8(p) ∈ P(M) are
conjugate, rather than semi-conjugate. In fact, we will identify
a subgraph of X(N) that is isomorphic to X(M) (see Figure 4).
More importantly, we show that the map 8 :P(N) → P(M) has
a collection of well-defined right inverses with disjoint images.
Each inverse is a graph embedding of P(M) into a subgraph of
P(N), and the images are mutually disjoint. Therefore not only
dynamics, but parameterized dynamics of M is embedded inside
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A

B

FIGURE 4

The (OFF,ON)-attractor X(OFF,ON). (A) Projection of X(N) into two dimensions; the subspace Xu(OFF,ON)× Xv (OFF,ON), outlined in bold, is an

attractor in X(N). The dashed arrows between states in STG(N,p) are implied by the fact that p ∈ P(N;OFF,ON). The solid arrows represent transitions

that are dependent on the specific choice of p ∈ P(N;OFF,ON). Boundaries corresponding to edges in OFF and ON are labeled with their

corresponding edges. Here, T(u;ON) = {z1}, T(u;OFF) = {w1,w2}, T(v;ON) = {z2, z3}, and T(v;OFF) = ∅. (B) STG(M,8(p, OFF,ON)) for network

M = CE(N) is isomorphic to the subgraph of STG(N,p) contained in X(OFF,ON).

parameterized dynamics of P(N). Furthermore, this dynamics is
embedded multiple times within the parameterized dynamics of
P(N).

We now proceed with precise description of inessential edges.

Definition 5.2. Let p = (f , θ) ∈ P be a parameter.

• The edge u ⊸ v ∈ E is output-off inessential at p if f θu(v)u ≡ 0 ,
that is, when the monotone Boolean function corresponding
to u ⊸ v is always off, and output-on inessential at p if
f
θu(v)
u ≡ 1 , that is, when the monotone Boolean function
corresponding to u ⊸ v is always on. If u ⊸ v is neither
output-off nor output-on inessential, then u ⊸ v is output
essential.

• The edge w ⊸ u ∈ E is input essential at p if there is an
i ∈ {1, . . . ,mu} and a b ∈ B

S(u) such that f iu(b) = ¬f
i
u(b+ ew)

where ew ∈ B
S(u) is defined by

eww = 1 ewv = 0 for v 6= w.

Otherwise, the edge w ⊸ u ∈ E is input inessential.
• An edge u ⊸ v ∈ E is essential at p if it is both input and

output essential and inessential otherwise. We say that the
parameter p is output or input inessential if there is an edge
which is output or input inessential at p, respectively.

While the output inessential edges u ⊸ v transmit constant
information to node v, the input inessential edge w ⊸ u does not
affect the node u in the sense that if u changed state, there must be
an input node w′ 6= w that also changed state.

Example: To illustrate the input and output inessential edges
consider PG(y) from Figure 1C. The essential parameters are II
(logical function AND) and V (logical function OR). Functions I
and VI are constant and thus both input and output inessential; I is
output-off inessential, and VI is output-on inessential. Note that the
function III copies the value of the input ¬X; this implies that the
edge x ⊣ y is input essential, but the edge z→ y is input inessential.
Similarly, function IV makes x ⊣ y input inessential but z → y

is input essential. At both parameters III and IV, the output edge
y→ z is output essential.

In parameter factor graph PG(x) in Figure 1A, the node B is
essential, while both A and C are both input and output inessential.

Finally, in parameter graph PG(z) only the nodes 4 and 9 are
essential, all others are inessential.

In the following exposition, it will be easier to consider
the cutting of input inessential and output inessential edges
independently, that is, E will either consist of a single input
inessential edge or a set of output inessential edges. Since the cut
edges E can be decomposed into these groups, and because we show
in Proposition A4 that maps defined on these independent groups
commute, the relationship between the dynamics of N and CE(N)
can be described for an arbitrary collection of inessential edges E.

We define the set of parameter nodes in p ∈ P(N) where
it is possible for the dynamics to be related to a parameter node
q ∈ P(M) by cutting a single input inessential edge e or a set
of output inessential edges. For a given set of nodes S ⊂ V let
T(u; S) = T(u) ∩ S.

Definition 5.3. Let e ∈ E be an edge u ⊸ v. Then
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• Let Pin(e) ⊂ P(N) be a set of parameters at which the edge e
is input inessential.

• LetP(OFF,ON) ⊂ P(N) be the set of parameters such that

1. each edge e ∈ OFF is output-off inessential at p,
2. each edge e ∈ ON is output-on inessential at p, and
3. for every u ∈ V , the edges in ON are ranked first by θ and

the edges in OFF are ranked last by θ :

θu(T(u;ON)) < θu(T(u;E\(OFF⊔ON)) < θu(T(u;OFF)).
(7)

Note thatPOFF(e)∩PON(e) = ∅, but thatPin(e)∩P(OFF,ON)
may not be empty as there can be parameters at which a given edge
e is both input and output inessential. Note further that it is the
last condition (3) for output inessential edges that motivated us to
define P(OFF,ON) for a set rather than for a single edge as in the
input inessential case.

We define in Section 5.1 two projections. First,

8in(·; e) :Pin(e)→ P(Ce(N))

that relates parameters with the same dynamics when we cut a
single input inessential edge e ∈ E from N. Second, consider the
case when E = OFF ⊔ ON consists of (several) output inessential
edges. We define a projection map

8(·;OFF,ON) :P(OFF,ON)→ P(COFF⊔ON(N))

that relates parameters with the same dynamics when we cut a
collection of output inessential edges. Importantly, as we show in
Proposition 8.4, these two projections commute:

8in(·; e) ◦8(·;OFF,ON) = 8(·;OFF,ON) ◦8in(·; e)

8in(·; e) ◦8in(·; ê) = 8in(·; ê) ◦8in(·; e).

The following two theorems are the main results of this
section, establishing a correspondence between the dynamics of the
networks N and CE(N).

Theorem 5.4. Let e ⊂ E be an input inessential edge and p ∈ P
in(e)

be an input inessential parameter. The projection 8in(·; e) satisfies
the following.

1. There is a surjective map µe
:X(N) → X(Ce(N)) such that

the target point map F
0(·;8in(p),Ce(N)) is semi-conjugate to

F
0(·; p,N), that is, the following diagram commutes

X(N)
F

0
(·;p,N)

−−−−−−−−−−−−→ X(N)

µe

y

yµe

X(Ce(N))
F

0
(·;8in(p),Ce(N))

−−−−−−−−−−−→ X(Ce(N))

2. TheMorse graphMG(8in(p),Ce(N)) is a subgraph ofMG(p,N).
3. There is a one-to-one correspondence between the Morse nodes

labeled FP that contain fixed points of the dynamics.

The semi-conjugacy of the dynamics is strengthened to
conjugacy when every cut edge is output inessential so that E =
OFF ⊔ON.

Theorem 5.5. Let E = OFF ⊔ ON ⊂ E and p ∈ P(OFF,ON)
be an output inessential parameter. The projection 8(·;OFF,ON)
has a collection of right inverses {9(·; ζQ, ζR, f̂ )}

(ζQ ,ζR ,f̂ )
indexed

by order parameters ζQ ∈ 2(OFF) and ζR ∈ 2(ON), and
anchoring logics f̂ ∈ A(N;OFF,ON) (Definition 7.5). For each
choice (ζQ, ζR, f̂ )

1. The target point map F
0(·;8(p),CE(N)) is conjugate to

F
0(·; p,N) restricted to a subset X(OFF,ON) ⊂ X(N), that is,

the following diagram commutes

X(OFF,ON)
F

0
(·;p,N)

−−−−−−−−−−−→ X(OFF,ON)

ρOFF,ON

y

x ρOFF,ON

y

x

|X(CE(N))
F

0
(·;8(p),CE(N))

−−−−−−−−−−→ X(CE(N))

(8)

Consequently, themap ρOFF,ON is an embedding of the state
transition graph STG(X(CE(N)),8(p)) into STG(X(N), p).

2. The Morse graph MG(8(p),CE(N)) is a subgraph of MG(p,N).
The only Morse nodes of MG(p,N) that do not correspond to
a node in MG(8(p),CE(N)) must be labeled PC and have a
successor node in the Morse graph.

3. 8(·;OFF,ON) ◦9(·; ζQ, ζR, f̂ ) = Id;
4. 9(·; ζQ, ζR, f̂ ) :P(CE(N)) → P(N;OFF,ON) is a graph

embedding.

In the remainder of the section, we will build the machinery
for the proofs of Theorems 5.4, 5.5, to be found in Sections 6, 7,
respectively.

5.1 The projection maps 8in and 8

In this section, we define the projection maps

8in(·; e)) :Pin(e)→ P(Ce(N))

8(·;OFF,ON) :P(OFF,ON)→ P(CE(N)).

where the set of cut edges is E = {e} in the first case and
E = OFF ⊔ON in the second.

Given a subset of edges E′ ⊂ E, it is useful to define

S(u;E′) : =
{
w ∈ S(u;N)

∣∣w ⊸ u ∈ E′
}
and

T(u;E′) : =
{
v ∈ T(u;N)

∣∣ u ⊸ v ∈ E′
}

(9)

to be the set of source and target nodes of u which correspond
to edges in E′, respectively.

To define either of the projections 8in,8 for given parameter
p = (f , θ) ∈ P(N), we need to construct a subnetwork parameter
(g,φ) ∈ P(CE(N)).

The idea for the construction of the order parameter φu from
θu is simple: We define φu so that the ordering of the uncut edges
is the same as the ordering given by θu. Explicitly, for (g,φ) =
8((f , θ);OFF,ON) where the set E = OFF ⊔ ON could have
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more than one element, we proceed as follows. For each u ∈ V

and v ∈ T(u), define

#u(v) : =
∣∣{i < θu(v)

∣∣ θ−1u (i) ∈ T(u;E)
}∣∣ (10)

to be the number of out-edges of u with rank less than θu(v)
which are cut from N. The u-order parameter is defined by

φu(v) = θu(v)− #u(v). (11)

For (g,φ) = 8in((f , θ); e) we proceed in the same way realizing
that E = {e} has a single element.

To construct a g ∈ L(CE(N)) from f ∈ L(N), we will replace
inputs that correspond to edges in E in function f by constant
inputs. If the edge is input inessential at parameter p, we can replace
this input by either 0 or 1; since the edge is input inessential, the
value of g does not depend on the value that is selected. On the
other hand, if the edge is output inessential, the values of these
constants depend on whether the cut edge e = (w ⊸ u) belongs
to set ON, whether it belongs to set OFF, and the sign of the
edge. We start with this latter case. Assume E = OFF ⊔ ON and
let p = (f , θ) ∈ P(OFF,ON). We construct a logic parameter
g ∈ L(CE(N)) from f as follows. For each w ∈ S(u;E), let

βu
w(OFF,ON) : =





0, if δuw = 1 and w→ u ∈ OFF

or δuw = −1 and w ⊣ u ∈ ON

1, if δuw = 1 and w→ u ∈ ON

or δuw = −1 and w ⊣ u ∈ OFF

. (12)

That is, βu
w is the constant input from w to u based on whether

the edge w ⊸ u ∈ OFF and therefore inactive or w ⊸ u ∈ ON
and therefore active. Let βu = (βu

w)w∈S(u;E) be the collection of

these inputs. The function g
φu(v)
u is constructed by evaluating the

function f
θu(v)
u . In general, there are fewer inputs to gu then to fu.

So, for a given input to gu, its value is computed by evaluating fu
on the same input with missing inputs replaced with βu. For each
b ∈ S(u;CE(N)), we define

gφu(v)
u (b) : = f θu(v)u (b,βu). (13)

The (OFF,ON)-projection of (f , θ) ∈ P(N) onto P(CE(N)) is
defined to be

8((f , θ);OFF,ON) : = (g,φ).

Assume now E = {e} and let p = (f , θ) ∈ P
in(e). Let e =

(w ⊸ u). Let βu
w ∈ {0, 1} be arbitrary. We then define g

φu(v)
u (b)

as in Equation 13. Because w ⊸ u is input inessential, gφu(v)
u is

independent of the choice of βu
w. Then, the 8in(·; e) projection of

(f , θ) ∈ P(N) onto P(Ce(N)) is defined to be

8in((f , θ); e) : = (g,φ).

Remark 5.6. An astute reader will notice that the definition of
8in and 8 only differs in choice of fixed input β ; in Equation 12
for output inessential parameters, the choice is dictated by the
membership of the cut edge in ON vs. OFF, while for input

inessential parameters β can have arbitrary value since this value
does not affect the target node. This can be expressed by

8in(p; e) = 8(p; {e}, ∅) = 8(p; ∅, {e}), (14)

that is, the 8in(p; e) agrees with 8(p) if we chose to designate
the edge e as either belonging to ON or to OFF set of edges.

Remark 5.7. Observe that although we designated the domain of
8 as the set of parameters in P(OFF,ON), the map 8 is well-
defined on the entire parameter space P(N). Using relationship
(Equation 14), the map8in is also defined onP(N). However, there
is only a well-predicted relationship between the dynamics ofN and
CE(N) for E-cuts that are composed entirely of inessential edges.
For E-cuts involving essential edges, the relationship between the
dynamics of N and the dynamics of the cut network is unknown.

In Section 8, we provide some algebraic properties of 8. In
particular, in Theorem 8.1, we show that the V-dual automorphism
DV

:P(N) → P(N), which is a result of the switch map σV that
changes the signs of all edges incident to all nodes, commutes with
8 when the identities of OFF and ON edges are switched: letting
E = E1 ⊔ E2,

DV ◦8(·;E1,E2) = 8(·;E2,E1) ◦ D
V .

We also prove that 8in(·; e) commutes with DV .

6 Input inessential parameters

6.1 Proof of Theorem 5.4

Recall that Pin(e) ⊂ P(N) denotes the set of parameters p such
that the edge e = u ⊸ v is input inessential. Define the layer

Lvu ⊂ X(N)

Lvu : =
{
x ∈ X

∣∣ xu ∈
{
θu(v)− 1, θu(v)

}}

to be the set of states which border the threshold corresponding to
u ⊸ v. Note that Lvu has “thickness” 2 in u direction as all states x
have xu with one of two values. See the gray double rectangles in the
right column of Figure 3 as an illustration of a layer surrounding a
threshold.

Given an edge e = u ⊸ v, let µe
:X(N) → X(Ce(N)) be the

map which collapses Lvu to a thickness 1 layer with single u-state:

µe(·; θ) : = (µe
w)w∈V µe

w(xw) = xw for w 6= u

µe
u(xu) : =

{
xu, if xu < θu(v)

xu − 1, if xu ≥ θu(v).

An illustration of this collapse is given by comparing the single
gray rectangles in the left column of Figure 3 to the double gray
rectangles in the right column. The left column is a portion of the
state space of Ce(N), while the right column is a portion of the state
space of N.

In Proposition 8.3, we show that µe commutes with λV , the
reflection bijection defined at the beginning of Section 4, as is
suggested by Theorem 8.1 which says 8in and DV commute.
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Proof of Theorem 5.4 (1). Let p = (f , θ) ∈ P
in(e) with e = u ⊸ v.

To simplify notation, letM = Ce(N).
For w ∈ V \ {u, v}, pw = qw and µe

w is the identity so that the
target point maps commute with the collapse map

µe
w ◦ F

0
w(·; p,N) = F

0
w(·; q,M) ◦ µe

w.

Next, we consider node u. To show that the input maps Bu to
node u (used to define the target point map in Section 2.3) for both
networks agree, let x ∈ X and w ∈ S(u;M), that is, there is an
edge w ⊸ u. If w 6= u, then µe

w(xw) = xw and θw = φw so that
Buw(x; θ ,N) = Buw(µ

e(x);φ,M). If w = u, that is, there is a self-
edge u ⊸ u, then, recalling the definition of φu Equation 11 and
comparing to µe

u, we have φu(u) = µe
u(θu(u)). Consequently,

Buu(x; θ ,N) = Buu(µ
e(x);φ,M).

If v = u, we need to compare the logic parameters fu and gu.
By assumption, f iu(b) is independent of bu since u ⊸ v is input
inessential at p. Since the inputs to fu and gu agree,

f θu(z)u (Bu(x; θ ,N)) = gφu(z)
u (Bu(µe(x);φ,M)) for all z ∈ T(u;N) \ {v}.

(15)

If f
θu(v)
u (Bu(x; θ ,N)) = 0, then Equation 15 and the

definition of F
0 imply that the u target point maps agree on

x and µe(x), that is, F0
u(x; p,N) = F

0
u(µ

e(x); q,M). Moreover,
f
θu(v)
u (Bu(x; θ ,N)) = 0 implies F

0
u(x; p,N) < θu(v), so that

F
0
u(x; p,N) = µe

u(F
0
u(x; p,N)). Similarly, if f θu(v)u (Bu(x; θ , n)) = 1,

then

F
0
u(µ

e(x); q,M) = F
0
u(x; p,N)− 1 = µe

u(F
0
u(x; p,N)),

as desired.
Finally, we consider node v, assuming v 6= u. For all w 6= u, µe

w

is the identity and φw = θw, so that Bvw(x; θ ,N) = Bvw(µ
e(x);φ,M).

Since fv(b) is independent of bu, we have

fv(B
v(x; θ ,N)) = gv(B

v(µe(x);φ,M))

which implies µe
v(F

0
v(x; p,N)) = F

0
v(µ

e(x); q,M) for all x ∈ X

since µe
v is the identity. This completes the proof.

Theorem 5.4 (2) follows from the semi-conjugacy: For any path
τ̄ in X(Ce(N)), there is at least one path τ in X(N) with µe(τ ) = τ̄ .

To prove Theorem 5.4 (3), we need the following Proposition
that shows that most of the edges in STG(N, p) can be
recovered from STG(Ce(N),8in(p)). Each case in the proposition
is illustrated in Figure 3.

Proposition 6.1. Consider a single edge E = {e = u ⊸ v}. Let
p ∈ P

in(N; e), and q = 8in(p; e). Let x → x ∈ STG(Ce(N), q). If
x, x /∈ µe(Lvu), then there are unique y, y ∈ X(N) with µe(y) = x

and µe(y) = x such that y→ y ∈ STG(N, p).
On the other hand, if x ∈ µe(Lvu) or x ∈ µe(Lvu), then there are

four cases.

1. If x = x, then there there are exactly two y1, y2 ∈ X(N) with
µe(y1) = µe(y2) = x. Either y1 → y2, y2 → y2 ∈ STG(N, p) or
y2 → y1, y1 → y1 ∈ STG(N, p).

2. If x /∈ µe(Lvu), then there is a unique edge y → y ∈ STG(N, p)
with µe(y) = x and µe(y) = x.

3. If x, x ∈ µe(Lvu) and x 6= x, then there are two edges yi → yi ∈

STG(N, p) with µe(yi) = x and µe(yi) = x for i = 1, 2.
4. If x ∈ µe(Lvu) and x /∈ µe(Lvu), then there is a unique edge

y→ y ∈ STG(N, p) with µe(y) = x and µe(y) = x. In addition,
the state y′ = y− (x− x) has an edge y′ → y ∈ STG(N, p).

Proof. First suppose x, x /∈ µe(Lvu) and x 6= x. We start by noting
that the map µe

w for w 6= u is an identity on a finite set Xw and it is
strictly monotone in that it satisfies

ηµe
w(z

1
w) > ηµe

w(z
2
w)⇐⇒ ηz1w > ηz2w (16)

for η ∈ {±1}. Furthermore, µe
u, which is not an identity, satisfies

(Equation 15) for all pairs z1, z2 /∈ Lvu, and satisfies the forward
implication in Equation 15 when z1 ∈ Lvu or z

2 ∈ Lvu.
Since µe is injective on X(N) \ Lvu, there are unique y, y ∈ X(N)

with µe(y) = x and µe(y) = x. Since x ∈ F(x; q,Ce(N)), there is
a unique node w ∈ V (recall N = (V ,E, δ)) and η ∈ {±1} with
xw = xw + η and therefore yw = yw + η. Applying Theorem 5.4 1
and Definition 2.2, we have

ηµe
w(F

0
w(y; p,N)) = ηF0

w(x; q,C
e(N)) > ηxw = ηµe

w(yw). (17)

Using Equation 15 with z1w = F
0
w(y; p,N) and z2w = yw, we

conclude that

ηF0
w(y; p,N)) > ηyw,

which implies y→ y ∈ STG(N, p) as desired.
To complete the first claim of the proof, now suppose x, x /∈

µe(Lvu) and x = x. Since µe is injective on X(N) \ Lvu, there is a
unique y ∈ X(N) with µe(y) = x. By Definition 2.2,

F
0(x; q,Ce(N)) = x.

Since the target point F0(x; q,Ce(N)) /∈ µe(Lvu), the map µe is
injective on F

0(y; p,N), and therefore by Theorem 5.4 (1), we have

µe(F0(y; p,N)) = F
0(x; q,Ce(N)) = x = µe(y),

implying F
0(y; p,N) = y, which indicates a self-edge at y ∈

STG(N, p) as desired.
Next, we consider the four cases of x ∈ µe(Lvu) or x ∈ µe(Lvu).
Case 1 (x = x). The pre-image of x is exactly two states

{y1, y2} = (µe)−1(x) with

y1u + 1 = θu(v) = y2u and y1w = y2w for w 6= u.

Since u ⊸ v is input inessential, F0
v(y

1; p,N) = F
0
v(y

2; p,N).
For w 6= v, if w ∈ T(u;N), θu(w) < y1u if and only if θu(w) <

y2u so that the inputs Bw(y1;N) = Bw(y2;N). Consequently
F
0
w(y

1; p,N) = F
0
w(y

2; p,N). Since this holds for all nodes,
F
0(y1; p,N) = F

0(y2; p,N). We also have

µe(F0(yi; p,N)) = F
0(x; q,Ce(N)) = x

so that either F
0(yi; p,N) = y1 for both i = 1, 2, or

F
0(yi; p,N) = y2 for both i = 1, 2. This shows exactly one of
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y1 → y2, y2 → y2 ∈ STG(N, p) or y2 → y1, y1 → y1 ∈ STG(N, p)
holds.

Case 2 (x /∈ µe(Lvu) and x ∈ µe(Lvu)). There is a unique y

with µe(y) = x. Let w be the unique node with xw = xw + η

where η ∈ {±1}. Then by Theorem 5.4 (1) and Definition 2.2,
the Equation (17) holds. Using Equation (16) this implies that
ηF0

w(y; p,N) > ηyw so there is an edge y → y ∈ STG(N, p) with
yw = yw + η and thus µe(y) = x.

Case 3 (x, x ∈ µe(Lvu) and x 6= x). Let w be the unique node
with xw = xw + η where η ∈ {±1}. Note that we must have w 6= u

(see Figure 3). The pre-image of x and x each consist of two states,
{y1, y2} = (µe)−1(x) and {y1, y2} = (µ2)−1(x) with

y1u + 1 = y1u + 1 = θu(v) = y2u = y2u.

Then, for both i = 1, 2, we have

ηµe
w(F

0
w(y

i; p,N)) = ηF0
w(x; q,C

e(N)) > ηxw = ηµe
w(y

i).

Using Equation 15 applied to w 6= u we have ηF0
w(y

i; p,N) >

ηyi so that yi → yi ∈ STG(N, p).
Case 4 (x ∈ µe(Lvu) and x /∈ µe(Lvu)). There is a unique y ∈

X(N) with µe(y) = x and two states y1, y2 ∈ Lvu with µe(yi) = x.
Let η ∈ {±1} such that xu = x+ η. For both i = 1, 2, we have

ηµe
u(F

0
u(y

i; p,N)) = ηF0
u(x; q,C

e(N)) > ηxu = ηµe
u(y

i). (18)

Let ỹi ∈ X(N) be the state defined by

ỹiu = yiu + η ỹiw = yiw for w 6= u.

Equation (18) together with Equation (16) implies that yi →
ỹi ∈ STG(N, p). For one choice of i, say i = 1, ỹ1 ∈ Lvu so that
ỹ1 = y2. On the other hand, ỹ2 /∈ Lvu and µe (̃y2) = x. Set y : = ỹ2,
y : = y2, and y′ = y1. Noting that (x − x)u = η and (x − x)w = 0
for w 6= u, we have y′ = y− (x− x) (see Figure 3).

Theorem 5.4 (3) is obtained from Proposition 6.1 as follows.
When the Morse graphMG(8(p),CE(N)) has an FP at state x 6∈ Lvu,
then there is unique y with µE(y) = x which is an FP inMG(p,N).
On the other hand, if x ∈ Lvu, then Case 1 of Proposition 6.1 shows
that there is a FP y inMG(p,N) with µE(y) = x.

7 Output inessential parameters

7.1 The projection map 8 preserves
dynamics

In this section, we begin the proof of Theorem 5.5 with the
proof of point (1). Recall that an assumption of the theorem is that
the E-cut is composed entirely of output inessential edges, some
of which may also be input inessential. The following definition
identifies the attracting region X(OFF,ON) ⊂ X(N), which will
turn out to be isomorphic to X(CE(N)).

Definition 7.1. Let E = OFF ⊔ ON ⊂ E and p = (f , θ) ∈
P(N;OFF,ON). The (OFF,ON)-attractor of the STG X(N) is the
subset X(OFF,ON) ⊂ X(N) given by

X(OFF,ON) : =
∏

u∈V

Xu(OFF,ON)

where for each network node u ∈ V

Xu(OFF,ON)

: =
{
|T(u;ON)|, |T(u;ON)| + 1, . . . , |T(u)| − |T(u;OFF)|

}
,

using Equation (9).

Note that X(OFF,ON) consists of the set of contiguous states
x such that the value of f vu (B

u(x)) = 0 for all edges e : u ⊸ v with
e ∈ OFF and the value of f wu (Bu(x)) = 1 for all edges e : u ⊸ wwith
e ∈ ON (see Figure 4). Note that in the Figure 4, the edge u ⊸ v

corresponding to the smallest threshold θu(v) = 1 of u belongs to
ON, while the two edges that correspond to largest two thresholds
belong to OFF. As a result, the values of the multi-valued function
gu and the target point map F

0
u lie within the u-projection of the

outlined areaXu(OFF,ON). A similar argument for the v-direction
implies that all components of F0 lie in Xv(OFF,ON). Therefore,
the asynchronous dynamics of F is attracted to X(OFF,ON), as
indicated by the arrows.

As suggested by the name, for p ∈ P(OFF,ON), the
(OFF,ON)-attractor is a global attractor of the multi-level
dynamics. The next proposition proves this by showing that the
image of the target point map F

0 is contained in X(OFF,ON).
As a consequence, all recurrent dynamics of F are contained in
X(OFF,ON). We will make use of the input map Bu :X → B

S(u)

introduced at the beginning of Section 2.3.

Proposition 7.2. Let E = OFF⊔ON ⊂ E and p ∈ P(N;OFF,ON).
Then for all x ∈ X(N), F0(x; p,N) ∈ X(OFF,ON).

Proof. Let u ∈ V and p = (f , θ). For each v ∈ T(u;ON), we have
f
θu(v)
u ≡ 1. Consequently, for any state x ∈ X,

F
0
u(x; p) =

∣∣{f vu (Bu(x)) = 1
}∣∣ ≥ |T(u;ON)| = minXu(OFF,ON).

For each v ∈ T(u;OFF), we have f θu(v)u ≡ 0 since u ⊸ v is
output-off inessential at p. Consequently, for any state x ∈ X,

F
0
u(x; p) = |T(u;N)| −

∣∣{f vu (Bu(x)) = 0
}∣∣

≤ |T(u;N)| − |T(u;OFF)| = maxXu(OFF,ON).

Since u was arbitrary, this proves the proposition.

The idea of the proof of Theorem 5.5 (1) is to show that
for the parameters in P(N;OFF,ON) the target points F

0(N)
of the (OFF,ON)-attractor are the same as the target points
F
0(CE(N)) of the cut network after relabeling. An immediate

consequence is that the STG for CE(N) is graph isomorphic to the
STG of the (OFF,ON)-attractor (Figure 4). We proceed to define
the relabeling map ρOFF,ON, which appears in the commutative
diagram (Equation 8).

Definition 7.3. The relabeling map ρOFF,ON
:X(OFF,ON) →

X(CE(N)) is

ρOFF,ON(x) = (ρOFF,ON
u (xu))u∈V , ρOFF,ON

u (xu) = xu−|T(u;ON)|.

We now show that the value of the input map for N at x agrees
with the value of the input map for CE(N) at ρOFF,ON(x).
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Lemma 7.4. Let E = OFF ⊔ ON ⊂ E, (f , θ) ∈ P(N;OFF,ON),
and (g,φ) = 8((f , θ);OFF,ON) be the (OFF,ON)-projection of
(f , θ). For each state x ∈ X(OFF,ON), u ∈ V , and w ∈ S(u;N)

Buw(x;N) =

{
βu
w, if w ⊸ u ∈ E

Buw(ρ
OFF,ON(x);CE(N)), if w ⊸ u /∈ E

,

where we suppressed the dependency βu
w = βu

w(OFF,ON)
from Equation (12).

Proof. Let x ∈ X(OFF,ON). First suppose w ⊸ u ∈ E. If w ⊸

u ∈ ON, then (f , θ) ∈ P(N;OFF,ON) implies by Equation (7)
that θw(u) ≤ |T(w;ON)| ≤ xw. Consequently, by the definition of
Buw and βu

w,

Buw(x; θ ,N) =

{
0, if δuw = −1

1, if δuw = 1
= βu

w.

If w ⊸ u ∈ OFF, then (f , θ) ∈ P(N;OFF,ON) implies
θw(u) > |T(w)| − |T(w;OFF)| ≥ xw. Consequently, by the
definition of Buw and βu

w,

Buw(x; θ ,N) =

{
0, if δuw = 1

1, if δuw = −1
= βu

w.

This completes the proof for the case w ⊸ u ∈ E.
Now consider an edge w ⊸ u /∈ E. Since (f , θ) ∈

P(N;OFF,ON), Equation (7) is satisfied and the edges in ON are
ranked first by θ . This implies #w(u) = |T(w;ON)|. In particular,
we have

φw(u) = θw(u)− |T(w;ON)| = ρOFF,ON
w (θw(u)).

Since ρOFF,ON
w is monotonically increasing, we have xw <

θw(u) if and only if ρOFF,ON(xw) < ρOFF,ON(θw(u)) = φw(u). Since
the sign of w ⊸ u in N is the same as the sign of w ⊸ u in CE(N),
the lemma holds in the case w ⊸ u /∈ E.

We are now ready to prove the main result of this subsection.

Proof of Theorem 5.5 (1). Let p = (f , θ) ∈ P(N;OFF,ON) and
q = (g,φ) = 8(p;OFF,ON). To simplify notation, let ρ =

ρOFF,ON andM = CE(N). Let x ∈ X(OFF,ON). We need to show
that

ρ(F0(x; p,N)) = F
0(ρ(x); q,M).

First note that by Lemma 7.4 and the definition of g, we have

f θu(v)u (Bu(x); θ ,N) = gφu(v)
u (Bu(ρ(x));φ,M)

for each v ∈ T(u;M). Therefore, we have

ρu(F
0
u(x; p,N)) =

∣∣{f iu(Bu(x; θ ,N)) = 1
∣∣ i ∈ {1, . . . , |T(u;N)|

}∣∣−
∣∣T(u;ON)

∣∣

=
∣∣T(u;ON)

∣∣+
∣∣{giu(Bu(ρ(x);φ,M) = 1

∣∣ i ∈ {1, . . . , |T(u;M)|}
}∣∣−

∣∣T(u;ON)
∣∣

=
∣∣{giu(Bu(ρ(x);φ,M) = 1

∣∣ i ∈ {1, . . . , |T(u;M)|}
}∣∣ = F

0(ρ(x); q,M)

where the second equality follows from the fact that f θu(v)u ≡ 1
when v ∈ T(u;ON). This shows that the diagram (Equation 8)
commutes so that the target point maps are conjugate.

Since the target point maps are conjugate and the asynchronous
dynamics F are completely determined by the target point
maps, we conclude that STG(X(M), q) is isomorphic to
STG(X(OFF,ON), p), a subgraph of STG(X(N), p).

Finally, we derive consequences of this result for the Morse
graphs. Theorem 5.5 (1) implies that the only recurrent set of
STG(X(N), p) which does not correspond to a recurrent set
of STG(X(M), q) must be outside of the (OFF,ON)-attractor
X(OFF,ON). Since X(OFF,ON) is the global attractor, these
recurrent sets are represented as unstable Morse nodes in the
Morse graph.Moreover, anFC cannot exist outside ofX(OFF,ON)
since all edges between states which are outside of X(OFF,ON)
and adjacent in the u direction point toward X(OFF,ON). This
argument proves Theorem 5.5 (2).

7.2 Embeddings of a subnetwork’s
parameter graph

In this section, we prove Theorem 5.5 (3) and (4) by
constructing a collection of right inverses, {9} to each projection8,
each of which embeds the parameter graphPG(CE(N)) intoPG(N)
of the original network.

Given a parameter q ∈ P(CE(N)), in order to construct a
parameter p = (f , θ) : = 9(q), we need to first determine the
order parameter θ . However, the construction of θ requires a choice
of an ordering for the edges that have been cut. We therefore let
ζOFF ∈ 2(OFF) and ζON ∈ 2(ON) be orderings of the sets OFF
and ON, respectively. Let P(N; ζOFF, ζON) ⊂ P(N;OFF,ON) be
the subset of output inessential parameters p = (f , θ) such that
the order parameter θ agrees with the orderings given by ζOFF and
ζON:

ζON
u (v) = θu(v) for v ∈ T(u;ON) (19)

ζOFF
u (v) = θu(v)− |T(u;E \OFF)| for v ∈ T(u;OFF).

We next discuss how to construct a logic parameter f ∈

L(N; ζOFF, ζON) for p = (f , θ) = 9((g,φ)).
We start by listing conditions we impose on map 9 in order

for it be the right inverse of 8 and to preserve parameter graph

adjacency. Let b1 ∈ B
S(u;CE(N)) and b2 ∈ B

S(u;E), that is, b1 is an
input vector with entries corresponding to the edges that exist in
both networks and b2 is an input with entries for edges that exist
only in N and are being cut.

1. f ∈ L(N; ζOFF, ζON) requires each edge in E to be output
inessential: for each input b,

f θu(v)u (b) ≡

{
0, if u ⊸ v ∈ OFF

1, if u ⊸ v ∈ ON
.

2. Whenever u ⊸ v is an edge in both N and CE(N), (recalling the
definition of β from Equation 12) we will set

f θu(v)u (b1, b2) = gφu(v)
u (b1) when b2 = βu, and (20)

f θu(v)u (b1, b2) is independent of g when b2 6= βu, (21)
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Condition (Equation 20) is necessary for f to map to g under
8, that is, for 9 to be a right inverse of 8. As we explain
below, condition (Equation 21) is necessary for 9 to preserve
parameter graph adjacency.

3. For each logic parameter g ∈ L(CE(N)), the logic parameter
f = 9(g) that satisfies (Equations 20, 21) must be an MBF. As
an example, consider g to be the parameter for which each edge
in E is output-off inessential

giu(b
1) = 0 for each u, i, and b1.

Then, this implies f
θu(v)
u (b1, b2 ≺ βu) = 0 since

f
θu(v)
u (b1,βu) = 0. On the other hand, taking g to be the
parameter for which each edge in E is output-on inessential

giu(b
1) = 1 for each u, i, and b1,

implies f θu(v)u (b1, b2 ≻ βu) = 1 since f θu(v)u (b1,βu) = 1.

To see that the condition (Equation 21) is necessary for 9

to preserve parameter graph adjacency, let g, g ∈ L(CE(N)) be
logically adjacent. We wish for the corresponding logic parameter
f = 9((g,φ)) and f = 9((g,φ)) to be logically adjacent. Since

the values of f iu(b
1, b2 = βu) and f

i

u(b
1, b2 = βu) will need to

inherit the logical adjacency of g and g, there will be a unique b1

and unique i such that f iu(b
1,βu) 6= f

i

u(b
1,βu). For f and f to be

adjacent, this needs to be the only difference. Therefore, we need

to require that for b2 6= βu, f iu(b
1, b2) = f

i

u(b
1, b2), implying that

f
θu(v)
u (b1, b2 6= βu) must be independent of g.

In general, there are many embeddings of PG(CE(N)) into
PG(N; ζOFF, ζON) because the values of f θu(v)u (b1, b2 6= βu) are
unconstrained by g. Assuming each embedding is mutually disjoint
(which we will prove in Proposition 7.7), an embedding is uniquely
specified by identifying the image of a single logic parameter
ĝ ∈ L(CE(N)). We say the image of ĝ, denoted f̂ , anchors the
embedding; we call f̂ an anchoring logic, and ĝ the anchor type.
The anchor type ĝ is arbitrary, but for concreteness we will choose
ĝ ∈ L(CE(N)) to be the logic parameter at which every edge is
output-off inessential:

ĝiu(b) = 0 for each u, i, and b. (22)

Because the anchoring logic f̂ must satisfy constraints (1)–(3),
the only unconstrained values of f̂ iu are at inputs (b

1, b2) where b2 is
incomparable to βu.

Definition 7.5. Given the anchor type (Equation 22) and a
disjoint union E = OFF ⊔ ON, the set of anchoring logics

A(N;OFF,ON) ⊂ L(N;OFF,ON) is the set of logic parameters f̂
satisfying

f̂ iu(b
1, b2) =

{
0, if i > |T(u;E \OFF)| or b2 � βu

1, if i ≤ |T(u;ON)| or b2 ≻ βu
(23)

for each (b1, b2) ∈ B
S(u;CE(N)) × B

S(u;E).

The first condition in each line of Equation 23 is required by
constraint (1). The definition in the cases b2 ≺ βu and b2 ≻ βu is

required by constraint (3). The case b2 = βu is a consequence of
our choice of anchor type, ĝ.

Given an anchoring logic f̂ ∈ A(N;OFF,ON), let
P(N; ζOFF, ζON, f̂ ) ⊂ P(N; ζOFF, ζON) be the set of parameters
(f , θ) such that θ satisfies (Equation 19) and f satisfies

f iu(b
1, b2 6= βu) = f̂ iu(b

1, b2). (24)

We define

9(·; ζOFF, ζON, f̂ ) :P(CE(N))→ P(N; ζOFF, ζON, f̂ )

where (f , θ) : = 9((g,φ)), and for each node u, (fu, θu) is
defined as follows.

• The u-order parameter θu is defined so that the edges in ON
are ranked first by θu and ordered according to ζON

u . The edges
in OFF are ranked last by θu and ordered according to ζOFF

u .
The remaining edges are between the edges in the set ON
and the edges in the set OFF and ordered according to φu.
Explicitly,

θu(v) =





ζON
u (v), if u ⊸ v ∈ ON

|T(u;E \OFF)| + ζOFF
u (v), if u ⊸ v ∈ OFF

|T(u;ON)| + φu(v), otherwise.

(25)

• The u-logic parameter fu is defined so that the edges in OFF
and ON are output-off and output-on inessential, respectively,
and by Equations (20, 24). This can be summarized by

f θu(v)u (b1, b2) =

{
g
φu(v)
u (b1), if u ⊸ v /∈ E and b2 = βu

f̂
θu(v)
u (b1, b2), otherwise.

(26)

We illustrate our construction of 9 in Figure 5 for a factor
graph with two sources and one target. See the caption for a detailed
description.

Our first result on 9 is that the constraints on the set
of anchoring logics A(N;OFF,ON) are sufficient for 9 to be
well defined. That is, we verify that any function f defined by
Equations (20, 24) is a valid logic parameter.

Proposition 7.6. For any choice of anchoring logic
f̂ ∈ A(N;OFF,ON) and q ∈ P(CE(N)), 9(q; ζOFF, ζON, f̂ ) ∈
P(N; ζOFF, ζON, f̂ ) so that 9 is well defined.

Proof. Let q = (g,φ) and (f , θ) = 9(q; ζOFF, ζON, f̂ ). First, we
show that f iu is an MBF for each u and i. For v ∈ T(u;E), the
function f

θu(v)
u is constant and therefore trivially an MBF.

Let v ∈ T(u;CE(N)). Let b = (b1, b2) and c = (c1, c2) be
elements of BS(u;CE(N)) × B

S(u;E) with b ≺ c.

• If b2 = βu = c2 then b ≺ c implies b1 ≺ c1. Since gφu(v)
u is an

MBF and f satisfies (Equation 20),

f θu(v)u (b1, b2) = gφu(v)
u (b1) ≤ gφu(v)

u (c1) = f θu(v)u (c1, c2)
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D E

FIGURE 5

Embedding of factor graphs. (A) The u-factor graph for a node u with two sources and one target as pictured in (D, E). Each u-parameter is

represented by a rectangle. Inside each rectangle is the Boolean lattice B
S(u) with each circle containing an input b = bvbw . Empty (filled) circles

indicate inputs where the value of the logic parameter f1u (b) = 0 (f1u (b) = 1). The projection 8(p; {v→ u},∅) is determined by the values of f1u on the

dashed circles since βu = βu
v = 0 in the first component of the input. The projection 8(p; {v→ u}, {w→ u}) is determined by the values on the blue

circles, since βu = βu
v βu

w = 01 based on the selection of OFF = {v→ u}, ON = {w→ u}. The capital letters label each parameter for reference. (B) The

u-factor graph after cutting the edge v→ u. Using parameter D in (A) as the anchoring logic, setting OFF = {v→ u} and ON = ∅, 9 maps this factor

graph isomorphically to the subgraph given by parameters D-E-F in (A). (C) The u-factor graph after cutting both v→ u and w→ u. Using parameter

D in (a) as the anchoring logic, setting OFF = {v→ u} and ON = {w→ u}, 9 maps this factor graph isomorphically to the subgraph D-E in (A). Using

parameter B in (A) as the anchoring logic, 9 maps this factor graph ismorphically to the subgraph B-C in (A). (D, E) The edges are labeled “o�” or “on”

according to the choice of OFF and ON in the descriptions of (B, C), respectively.

• If both b2 6= βu and c2 6= βu then, since the anchoring logic
f̂
θu(v)
u is an MBF and f satisfies (Equation 24),

f θu(v)u (b) = f̂ θu(v)u (b) ≤ f̂ θu(v)u (c) = f θu(v)u (c).

• Let b2 = βu and c2 6= βu. Then b2 ≺ c2 implies βu ≺ c2 so
that f̂ θu(v)u (c1, c2) = 1. Therefore,

f θu(v)u (c1, c2) = f̂ θu(v)u = 1 ≥ f θu(v)u (b1, b2).

• Similarly, if b2 6= βu and c2 = βu, then b2 ≺ c2 implies
b2 ≺ βu so that f̂ θu(v)u (b1, b2) = 0. Therefore,

f θu(v)u (b1, b2) = f̂ θu(v)u (b1, b2) = 0 ≤ f θu(v)u (c1, c2).

This shows that f iu is an MBF.
Next, we show that fu satisfies the ordering condition

(Equation 1). Since the anchoring logic f̂ satisfies the ordering
condition, when b2 6= βu

f iu(b
1, b2) = f̂ iu(b

1, b2) ≥ f̂ i+1u (b1, b2) = f i+1u (b1, b2)

and the ordering condition for fu is satisfied. Suppose b2 = βu.
Then

f iu(b
1, b2) =





1, if i ≤ |T(u;ON)|

0, if i > |T(u;E \OFF)|

giu(b
1), otherwise.

Since gu satisfies the ordering condition, this implies fu satisfies
the ordering condition at (b1, b2).

It is straightforward to check that θ satisfies (Equation 19).
Since we have shown that f is a valid logic parameter and f satisfies
(Equation 24 by definition, (f , θ) ∈ P(N; ζOFF, ζON, f̂ ).

We next establish that the collection of co-domains
{P(N; ζOFF, ζON, f̂ )}

(ζOFF ,ζON ,f̂ )
of the collection of

maps 9(·; ζOFF, ζON, f̂ ), are disjoint. The fact that
distinct choices of ζOFF or ζON produce distinct sets
of order parameters 2(N; ζOFF, ζON) follows directly
from Equation 19.
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Proposition 7.7. 1. The set of anchoring logicsA(N;OFF,ON) is
non-empty.

2. If f̂ , ĥ ∈ A(N;OFF,ON) are distinct anchoring logics then
P(N; ζOFF, ζON, f̂ ) and P(N; ζOFF, ζON, ĥ) are disjoint sets.

Proof. (1) It is straightforward to check that f̂ defined by

f̂ iu(b
1, b2) =

{
0, if i > |T(u;E \OFF)| or b2 � βu

1, otherwise

is a valid anchoring logic inA(N;OFF,ON).
(2) Suppose f̂ and ĥ are distinct anchoring logics. Then, there

is a node u and index i such that the values of f̂ iu and ĥiu differ
on an input (b1, b2). Since f̂ and ĥ both satisfy (Equation 23), we
must have that b2 and βu are incomparable, and hence b2 6= βu.
Let f ∈ P(N; ζOFF, ζON, f̂ ) and h ∈ P(N; ζOFF, ζON, ĥ). Since
b2 6= βu and f and h satisfy (Equations 21, 26), we have f iu(b

1, b2) =
f̂ iu(b

1, b2) and hiu(b
1, b2) = ĥiu(b

1, b2). This shows

f iu(b
1, b2) = f̂ iu(b

1, b2) 6= ĥiu(b
1, b2) = hiu(b

1, b2)

so that f 6= h. Since f and h are arbitrary, the statement
holds.

We are now ready to prove Theorem 5.5 (3) which states that9
is a right inverse of 8. It is implied immediately from the following
theorem which also identifies P(N; ζOFF, ζON, f̂ ) as the image of
9 .

Theorem 7.8. Fix ζOFF ∈ 2(OFF), ζON ∈ 2(ON), and an
anchoring logic f̂ ∈ A(N;OFF,ON). The map 9(·; ζOFF, ζON, f̂ )
is the inverse of 8(·;OFF,ON) restricted to P(N; ζOFF, ζON, f̂ ).

Proof. First, we show that9 is a right inverse of8. Let q = (g,φ) ∈
P(CE(N)) and p = (f , θ) = 9(q; ζOFF, ζON, f̂ ). We wish to show
that 8 ◦9(q) = q.

Let (g,φ) = 8(p;OFF,ON). First, we verify that φ = φ. Let
u ∈ V be a network node and v ∈ T(u;CE(N)). By Equation (25),

θu(v) = |T(u;ON)| + φu(v).

By Equation (11) in the definition of 8,

φu(v) = θu(v)− #u(v).

Since θu orders the edges in ON first and the edges in OFF last,
for all w ∈ |T(u;ON)|, θu(w) < θu(v) and for all w ∈ T(u;OFF),
θu(w) > θu(v). In particular, #u(v) = |T(u;ON)| so that

φu(v) = |T(u;ON)| + φu(v)− #u(v) = φu(v).

This holds for each u and v ∈ T(u;CE(N)), that is, each node v
in the domain of φu, so φ = φ.

Next, we verify that g = g. For a node u ∈ V , v ∈ T(u;CE(N)),

and an input b ∈ B
S(u;CE(N))

gφu(v)
u (b) = f θu(v)u (b,βu) = gφu(v)

u (b)

where the first equality follows from Equation (13) and the
second equality follows from Equation (26). Since u and b were

arbitrary, and v ∈ T(u;CE(N)) was an arbitrary target node of u
in CE(N), we must have g = g.

Having shown 9 is a right inverse, we now show that 9 is a
left inverse when 8 is restricted to P(N; ζOFF, ζON, f̂ ). Let p =
(f , θ) ∈ P(N; ζOFF, ζON, f̂ ), q = (g,φ) = 8(p;OFF,ON), and
(f , θ) = 9(q; ζOFF, ζON, f̂ ). We wish to show that 9 ◦8(p) = p.

First, we show that θ = θ . For v ∈ T(u;E \ E), we have

θu(v) = |T(u;ON)| +φu(v) = |T(u;ON)| + θu(v)− #u(v) = θu(v)

because #u(v) = |T(u;ON)|. For v ∈ T(u;ON),

θu(v) = ζON
u (v) = θu(v)

because by definition of P(N; ζON, ζOFF, f̂ ) the order
parameter θ satisfies (Equation 19) and therefore θu(v) = ζON

u (v).
Similarly, for v ∈ T(u;OFF),

θu(v) = |T(u;E \OFF)| + ζOFF
u (v) = θu(v)

because by definition θ orders the edges in OFF last and
according to ζOFF. This covers all types of target nodes v of u. Since
u was arbitrary, θ = θ .

Next, we show that f = f . For v ∈ T(u;E), since f satisfies
(Equation 24) and f satisfies (Equation 26), we have

f
θu(v)
u = f̂ θu(v)u ≡

{
0, if v ∈ T(u;OFF)

1, if v ∈ T(u;ON)
= f θu(v)u .

Now consider v ∈ T(u;E \ E). Let b1 ∈ B
S(u;CE(N)) and

b2 ∈ B
S(u;E). For b2 = βu, we have

f
θu(v)
u (b1,βu) = gφu(v)

u (b1) = f θu(v)u (b1,βu)

where the first equality follows from Equation 26. For b2 6= βu,
we have

f
θu(v)
u (b1, b2) = f̂ θu(v)u (b1, b2) = f θu(v)u (b1, b2)

where the first equality follows from Equation 24, the definition
of 9 . The second equality follows from the definition of
P(N; ζOFF, ζON, f̂ ). This completes the proof that f = f .

Since (f , θ) = (f , θ), we have that 9 is a left inverse of the
restricted8. Since9 is both a left and right inverse,9 is the inverse
of the restricted 8.

Finally, we prove Theorem 5.5 (4) which states that9 is a graph
embedding of PG(CE(N)) into PG(N;OFF,ON).

Proof of Theorem 5.5 (4). Fix orderings ζOFF, ζON, and anchoring
logic f̂ ∈ A(N;OFF,ON). We will show that 9(·; ζOFF, ζON, f̂ )
maps PG(CE(N)) isomorphically into PG(N; ζOFF, ζON, f̂ ). Since
Theorem 7.8 shows that9 is invertible, it only remains to show that
9 preserves parameter adjacency.

Let q = (g,φ) and q = (g,φ) be adjacent in PG(CE(N)). Let
p = (f , θ) = 9(q) and p = 9(q). Let u be the unique node such
that qu and qu are adjacent in the u-factor graph. Since 9 is defined
component-wise, for each w 6= u, pw = pw.
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To see that pu and pu are adjacent, first suppose qu and qu
are order adjacent. Let π be the transposition of adjacent integers
so that φu = π ◦ φu. Then, the adjacent transposition τ of
{1, . . . ,T(u;N)} is defined by

τ (i) : =





i, if i ≤ |T(u;ON)|

π(i), if |T(u;ON)| < i ≤ |T(u;E \OFF)|

i, if i > |T(u;E \OFF)|

satisfies θu = τ ◦ θu. Moreover, since giu = gτ (i)
u , it follows that

f iu = f
τ (i)
u . This shows that pu and pu are order adjacent.

Next, suppose qu and qu are logically adjacent. Since φu = φu

we have θu = θu. Let i be the unique index and b ∈ B
S(u;CE(N)) be

the unique input such that giu(b) 6= giu(b). Let v = φ−1u (i). Then, by
Equation 26, we have

f θu(v)u (b,βu) = giu(b) 6= giu(b) = f
θu(v)
u (b,βu).

On the other hand, for b1 6= b, giu(b
1) = giu(b

1) because g and g
are adjacent logic parameters in L(CE(N)). Therefore,

f θu(v)u (b1,βu) = giu(b
1) = giu(b

1) = f
θu(v)
u (b1,βu).

On the input (b1, b2 6= βu), the value of fu and f u is determined
by the reference logic f̂ and thus they agree:

f θu(v)u (b1, b2) = f̂ θu(v)u (b1, b2) = f
θu(v)
u (b1, b2).

That is, (b,βu) is the unique input so that f
θu(v)
u (b,βu) 6=

f
θu(v)
u (b,βu).

Next we show that for w ∈ T(u;N) \ {v}, f wu = f
w

u . If w ∈

T(u;E \ E) then g
φu(w)
u = gφu(w)

u because gu and gu differ only at
component i = φu(v). Therefore for such a w

f θu(w)u (b1,βu) = gφu(w)
u (b1) = gφu(w)

u (b1) = f
θu(w)
u (b1,βu)

and for b2 6= βu,

f θu(w)u (b1, b2) = f̂ θu(w)u (b1, b2) = f
θu(w)
u (b1, b2).

On the other hand, if w ∈ T(u;E) then

f θu(w)u ≡

{
0, if w ∈ T(u;OFF)

1, if w ∈ T(u;ON)
≡ f

θu(w)
u .

We conclude that θu(v) is the unique index such that f θu(v)u 6=

f
θu(v)
u . That is, pu and pu are logically adjacent.

Since9 is invertible and adjacency of q and q implies adjacency
of p and p, we conclude 9 is an isomorphism.

8 Algebraic properties of the
projection maps

Theorem 8.1. (a) Let E = E1 ⊔ E2 ⊂ E, where E1 = ON and
E2 = OFF. The V-dual parameter map DV commutes with the

projectionmap8(·;OFF,ON) when the identities ofOFF andON
edges are exchanged:

DV ◦8(·;E1,E2) = 8(·;E2,E1) ◦ D
V .

(b) Let E = {e}. The V-dual parameter mapDV commutes with the
projection map 8in(·; e):

DV ◦8in(·; e) = 8in(·; e ◦ DV .

Proof. (a) Let p = (f , θ) ∈ P(N). Let

q = (g,φ) = DV (8(p;E1,E2)) and q = (g,φ) = 8(DV (p);E2,E1).

We will show that q = q.
First, we show that φ = φ. Recall (see Equation 10) that we

defined the number of out-edges of u with rank less than θu(v)

#u(v; p,E) =
∣∣{i < θu(v)

∣∣ θ−1u (i) ∈ T(u;E)
}∣∣

where we now explicitly include the dependency on the parameter
p = (f , θ). From Equation 4, 11, for each u ⊸ v ∈ E \ E we have

φu(v) = |T(u;C
E(N))| + 1− (θu(v)− #u(v; p)), and

φu(v) = (|T(u;N)| + 1− θu(v))− #u(v;D
V (p)).

We therefore need to show that

|T(u;CE(N))| + #u(v; p) = |T(u;N)| − #u(v;D
V (p)), or

#u(v;D
V (p)) = |T(u;N)| − |T(u;CE(N))| − #u(v; p).

Note that |T(u;N)| − |T(u;CE(N))| = |T(u;E)| is the number of
cut edges which have source u. To compute #u(v;DV (p)), let θ be
the order parameter for DV (p) andmu = |T(u;N)|. We have

#u(v;D
V (p)) =

∣∣∣
{
i < θu(v)

∣∣∣ θ−1u (i) ∈ |T(u;E)|
}∣∣∣

=
∣∣∣
{
mu + 1− i < θu(v)

∣∣∣ θ−1u (mu + 1− i) ∈ |T(u;E)|
}∣∣∣

=
∣∣∣
{
i ≥ θu(v)

∣∣∣ θ−1u (i) ∈ |T(u;E)|
}∣∣∣

= |T(u;E)| − #u(v; p),

as desired.
Now we show g = g. Let (̃g, φ̃) = 8(p;E1,E2). By Equation 13,

for each u ⊸ v ∈ E \ E

g̃φ̃u(v)
u (b) = f θu(v)u (b,βu(E1,E2).

Since (g,φ) = DV ((̃g, φ̃)),

gφu(v)
u (b) = ¬̃gφ̃u(v)

u (¬b) = ¬f θu(v)u (¬b,βu(E1,E2)) (27)

where in the first equality, we have used φu(v) = |T(u;C
E(N))| +

1− φu(v). Let (̃f , θ̃) = DV ((f , θ)). By Equation 4,

f̃ θ̃u(v)u (b1, b2) = ¬f θu(v)u (¬b1,¬b2).

Since (g,φ) = 8((̃f , θ̃),E2,E1), we have

g
φu(v)
u (b) = f̃ θ̃u(v)u (b,βu(E2,E1)) = ¬f

θu(v)
u (¬b,¬βu(E2,E1)). (28)
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We have already shown that φ = φ. By inspecting the
definition of βu in Equation 12, it is also clear that βu(E1,E2) =
¬βu(E2,E1). Comparing the expressions for g in Equation 27 and
g in Equation 28, we conclude that g = g. This proves first part of
the Theorem.

To prove the second part, we note that the only difference
between 8 and 8in is that in the definition of logic parameter g,
the input from the cut edge e is replaced by arbitrary value β , rather
than a specific value that depend on whether the cut edge belongs to
ON and OFF. Therefore, this construction proves also the second
statement.

Since the projection map 8 and the V-dual parameter map
commute, it is natural to expect that the corresponding maps
between STGs, ρOFF,ON, µE, and λV commute as well. In the
following two propositions, we show that this is indeed the case.

The first proposition relates attractors X(E1,E2) (see 7.1) in
the STG of the full network N and the STG of the cut network
X(CE(N)) under the map λV .

Proposition 8.2. Let E = E1 ⊔ E2 ⊂ E. The following diagram
commutes

X(E1,E2) ρE1 ,E2

−−−−−−−−−−→←−−−−−−−−−−
X(CE(N))xyλV (·;N)

xyλV (·;CE(N))

X(E2,E1) ρE2 ,E1

−−−−−−−−−−→←−−−−−−−−−−
X(CE(N))

Proof. First, we prove that image of X(E1,E2) under λV (·;N) is
X(E2,E1). Let x ∈ X(E1,E2). For each node u ∈ V , xu ∈ Xu(E1,E2)
implies

|T(u;E2)| ≤ xu ≤ |T(u;N)| − |T(u;E1)|.

Since λVu (xu;N) = |T(u;N)| − xu,

|T(u;E1)| ≤ xu ≤ |T(u;N)| − |T(u;E2)|

and therefore xu ∈ Xu(E2,E1). This holds for each u which implies
λV (x;N) ∈ X(E2,E1).

Next, we show

ρE1 ,E2 = λV (·;CE(N)) ◦ ρE2 ,E1 ◦ λV (·;N). (29)

Since λV is an involution and ρ is invertible, this will prove the
proposition. Let x ∈ X(E1,E2) and u ∈ V . We have

ρE1 ,E2
u (xu) = xu − |T(u;E2)|.

On the other hand,
[
λVu (·;C

E(N)) ◦ ρE2 ,E1
u ◦ λ(·;N)

]
(xu)

=
[
λVu (·;C

E(N)) ◦ ρE2 ,E1
u

]
(|T(u;N)| − xu)

=
[
λVu (·;C

E(N))
]
(|T(u;N)| − xu − |T(u;E1)|)

= |T(u;E \ E)| − (|T(u;N)| − xu − |T(u;E1)|)

= xu + |T(u;E \ E)| − |T(u;N)| + |T(u;E1)|

= xu − (|T(u;E)| − |T(u;E1)|)

= xu − |T(u;E2)|.

Since u was arbitrary, the statement (Equation 29) holds, which
finishes the proof of the proposition.

The second proposition relates the surjective map µe(N), used
in relating state transition graphs for input inessential parameters
in Theorem 5.4, and the map λV .

Proposition 8.3. Let p = (f , θ) ∈ P(N) and (f ′, θ ′) = DV (p) be the
V-dual parameter of p. Let e = u ⊸ v be an edge. The following
diagram commutes

X(N)
µe(·;θ)
−−−−→ X(Ce(N))xyλV (·;N)

xyλV (·;Ce(N))

X(N)
µe(·;θ ′)
−−−−→ X(Ce(N))

Proof. We will prove

µe(·; θ) = λV (·;Ce(N)) ◦ µe(·; θ ′) ◦ λV (·;N).

Since λV is an involution, this will prove the proposition.
Let M = Ce(N). For w 6= u, µe

w is the identity. Furthermore,
λVw (·;M) = λVw (·;N) since Xw(M) = Xw(N). Since λVw is its own
inverse, this shows

µe
w(·; θ) = λVw (·;M) ◦ µe

w(·; θ
′) ◦ λVw (·;N).

Now consider the u component and let x ∈ X. We have

(λVu (·;M) ◦ µe
u(·; θ

′) ◦ λVu (·;N))(xu)

= |T(u;M)| − µe
u(|T(u;N)| − xu; θ

′)

= |T(u;M)| −

{
|T(u;N)| − xu if |T(u;N)| − xu < θ ′u(v)

|T(u;N)| − xu − 1 if |T(u;N)| − xu ≥ θ ′u(v)

=

{
xu − 1 if xu ≥ θu(v)

xu if xu < θu(v)
= µe

u(xu)

where the last line follows from

|T(u;M)| = |T(u;N)| − 1 and θu(v) = |T(u;N)| + 1− θ ′u(v).

Finally, we prove that projections commute and that successive
projections are equivalent to projecting every edge simultaneously.

Proposition 8.4. The projection map 8 satisfies the following
properties.

1. 8(·; ∅, {e2}) ◦ 8(·; {e1}, ∅) = 8(·; {e1}, {e2}) =

8(·; {e1}, ∅) ◦8(·; ∅, {e2}).

2. 8(·; {e1}, ∅) ◦ 8(·; {e2}, ∅) = 8(·; {e1, e2}, ∅) =

8(·; {e2}, ∅) ◦8(·; {e1}, ∅).

3. 8(·; ∅, {e1}) ◦ 8(·; ∅, {e2}) = 8(·; ∅, {e1, e2}) = 8(·; ∅, {e2}) ◦
8(·; ∅, {e1}).
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The projection map 8in satisfies

(4) 8in(·; e1)◦8
in(·; e2) = 8in(·; {e1, e2}) = 8in(·; e2)◦8

in(·; e1).

Finally,

(5) 8in(·; e1) ◦8(·; ∅, {e2}) = 8(·; ∅, {e2}) ◦8in(·; e1)

(6) 8in(·; e1) ◦8(·; {e2}, ∅, ) = 8(·; {e2}, ∅) ◦8in(·; e1)

Proof. (1):We first show that

8(·; ∅, {e2}) ◦8(·; {e1}, ∅) = 8(·; {e1}, {e2}).

Let p = (f , θ) ∈ P(N), q = (g,φ) = 8(p; {e1}, {e2}), and

q = (g,φ) = 8(·; ∅, {e2}) ◦8(·; {e1}, ∅)(p).

We will show that q = q.
First, we show that φ = φ. Recall from Equation 10 that

#u(v; p,E) =
∣∣{i < θu(v)

∣∣ θ−1u (i) ∈ T(u;E)
}∣∣

where we now explicitly include the dependencies on the parameter
p = (f , θ) and the edges E. Let p̃ = (̃f , θ̃) = 8(p; {e1}, ∅). By
Equation 11,

φu(v) = θu(v)− #u(v; p, {e1, e2})

φu(v) = θu(v)− #u(v; p, {e1})− #u(v; p̃, {e2}).

To prove φ = φ, we need to show that

#u(v; p, {e1, e2}) = #u(v; p, {e1})+ #u(v; p̃, {e2}).

Applying Equation 11 to θ̃ and using the definition of #u, we have

#u(v; p̃, {e2}) =
∣∣{i < θ̃u(v)

∣∣ θ̃−1u (i) ∈ T(u; {e2})
}∣∣

=
∣∣{i < θu(v)− #u(v; p, {e1})

∣∣ θ−1u (i+ #u(v; p, {e1}) ∈ T(u; {e2})
}∣∣

=
∣∣{i < θu(v)

∣∣ θ−1u (i) ∈ T(u; {e2})
}∣∣ = #u(v; p, {e2}).

Since #u(v; p,E) counts the number of edges θu below u ⊸ v, we
have

#u(v; p, {e1})+ #u(v; p, {e2}) = #u(v; p, {e1, e2}).

We therefore conclude φ = φ.
Next, we show that g = g. Applying Equation 13,

gφu(v)
u (b) = f θu(v)u (b,βu({e1}, {e2})), and

gφu(v)(b) = f̃ θ̃u(v)u (b,βu(∅, {e2})) = f θu(v)u (b,βu(∅, {e2}),β
u({e1}, ∅)).

Since we have shown φ = φ and βu({e1}, {e2}) =

(βu(∅, {e2}),βu({e1}, ∅)) is clear from the definition of β ,
g = g. This completes the proof of the first equality in (1).

To show the second equality, we apply Theorem 8.1 and the fact
that DV is an involution to the first equality:

8(·; {e1}, {e2}) = DV ◦8(·; {e2}, {e1}) ◦ D
V

= DV ◦8(·; ∅, {e1}) ◦8(·; {e2}, ∅) ◦ D
V

= 8(·; {e1}, ∅) ◦ D
V ◦ DV ◦8(·; ∅, {e2})

= 8(·; {e1}, ∅) ◦8(·; ∅, {e2}).

Both equalities in (2) follow from a similar argument for the
first equality in (1). Statement (3) follows from applying Theorem
8.1 to (2). Statement (4) follows from statement (3) and a realization
that the only difference between 8 and 8in is independence of the
latter on division of cut edges into ON and OFF. Similar argument
implies that statements (5) and (6) follow from (1) and (2).

9 Network example

We describe the embeddings of the parameter graph of negative
feedback loop PG(NL) and parameter graph of the positive
loop PG(PL) into parameter graph PG(N) of the network N in
Figure 1A. Theorem 5.5 requires that the edges that are cut from
N to arrive at a subgraph NL, or PL, are output inessential.

We first consider the negative loop which requires that we cut
the edge e : = z → y from N and therefore E = {e}. There
are two choices for edge e to be output inessential: this edge can
be always ON and thus output-on inessential, or always OFF, and
hence output-off inessential. Cutting this edge produces network
Ce(N) = NL which consists of negative loop z→ x ⊣ y→ z. Since
each node in this loop has one input edge and one output edge,
the parameter graph PG(NL) is a product of three copies of factor
graph PG(x) with 27 elements

PG(NL) = PG(x)× PG(x)× PG(x).

There are two embeddings: If e is output-on inessential there is an
embedding 91 :PG(NL)→ P(N; ∅, {e}) ⊂ PG(N), and when e is
output-off inessential, there is an 92 :PG(NL) → P(N; {e}, ∅) ⊂
PG(N). These are illustrated in Figure 1 and further explained
below.

Checking the Table 3, the edge e is always ON in parameters
that 7, 8, and 10 while always OFF in parameters 3, 5, and 6.
Looking now at Table 2, the input from z being ON corresponds
to first and third rows of the truth table, where the input from
x determines the value of the MBF. The nodes I, II, and IV
parameterize possible behaviors of the input edge x ⊣ y. Similarly,
considering Table 2, input z being OFF corresponds to second and
fourth rows of the truth table. In this case, the nodes IV, V, and VI
parameterize possible behaviors of the input edge x ⊣ y.

Therefore, the embedding 91(PG(NL)) is

(u, v,w) ∈ {A,B,C} × {I,II,IV} × {7, 8, 10}.

The embedding 92(PG(NL)) is

(u, v,w) ∈ {A,B,C} × {IV,V,VI} × {3, 5, 6},

Note that the fact that these embeddings intersect does not
contradict Theorem 7.7, since both of these embeddings have a
single anchor logic.

We also note that the oscillatory behavior in the PG(NL) is
supported by its central node. This node embeds into

(B, II, 5) and (B,V , 8) by 91 and 92, respectively. (30)

We conclude that these two nodes in PG(N) support oscillatory
behavior.
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The embedding of PG(PL) into PG(N) requires that the edges
eyx : x ⊣ y and exz : z→ x are output inessential. The first condition
corresponds to node A, when x ⊣ y is output-off inessential, and to
node C when x ⊣ y is output-on inessential. The edge z → x is
output-on inessential at nodes 1, 2, and 3 and output-off inessential
at nodes 10, 11, and 12. Therefore, there are four embeddings given
by combinations of labels ON and OFF on edges eyx, exz . Evaluating
the MBF at node y in Table 2 on the appropriate constant input
from x as above, we obtain disjoint embeddings of PG(PL) into
PG(N):

(ON,ON) :(u, v,w) ∈ {C} × {III,V, VI} × {1, 2, 3}

(ON,OFF) :(u, v,w) ∈ {C} × {III,V,VI} × {10, 11, 12}

(OFF,ON) :(u, v,w) ∈ {A} × {I,II,III} × {1, 2, 3}

(OFF,OFF) :(u, v,w) ∈ {A} × {I,II,II}× {10, 11, 12}

We note that the bistable behavior in the PG(PL) is only
supported by its central node. This node embeds into

(C, V, 2), (C, V, 11), (A, II, 2), and (A, II, 11) respectively.

We conclude that these four nodes in PG(N) support bistable
behavior.

So far, we only considered cutting of output inessential edges
which results in the embedding of the entire parameter graph. We
now consider parameters at which the edges that are being cut are
input inessential.

9.1 Input inessential parameters

We now describe input inessential parameters (u, v,w) ∈
PG(x)×PG(y)×PG(z) (see Figure 1) which support the dynamics
of the negative loop NL. Such parameters must satisfy two
properties:

1. support essential edges forming the negative feedback loop NL;
and

2. the edge z→ ymust be input inessential at y.

To satisfy the first condition, the only choice in PG(x) is B since
choices A and C would disconnect the loop at the network node
x. In PG(y), the only option is node III where the edge z → y

is input essential. At node z to satisfy the first condition, we can
choose from nodes 4, 5, 8, and 9. Apart from essential nodes 4 and
9, at parameter nodes 5 and 8 the edge z → x that participates in
the negative loop is output essential.

Therefore at 4 parameters

(B, III,w) where w ∈ {4, 5, 8, 9}

Theorem 5.4 applies. There is a semi-conjugacy of the dynamics on
the state transition graph, and therefore, these parameters support
oscillations generated by the negative feedback loop.

Similar arguments show that all parameters where at least one
of the edges eyx and exz is input inessential, but the bistable loop is
essential, will exhibit bistable dynamics.

We first consider the first condition that eyx is input inessential.
This does not affect the choice of parameter in PG(x), so all three

nodes are acceptable. In PG(y), the only MBF where eyx is input
inessential, eyz is input essential, and where the edge ezy is output
essential is the function IV. In PG(z), the nodes where the edge
eyz is output essential are {2, 4, 9, 11}. Therefore for parameter
combinations

(u, v,w) ∈ PG(N), with u ∈ {A,B,C}, v ∈ {IV}, w ∈ {2, 4, 9, 11}
(31)

there is a semi-conjugacy of state transition graph dynamics onto
dynamics of positive loop PL, which exhibits bistability.

The second condition that exz is input inessential is satisfied in
PG(x) by functions A and C. At PG(y), three choices II, IV,V make
eyz input essential, while choices {2, 4, 9, 11} inPG(z)make the edge
eyz output essential. Therefore for parameters

(u, v,w) ∈ PG(N), with u ∈ {A,C}, v ∈ {II,IV,V}, w ∈ {2, 4, 9, 11}
(32)

Theorem 5.4 also implies existence of bistability. Both edges eyx
and exz are input in-essential on parameters where two collections
(Equation 31) and (Equation 32) overlap.

It is now possible to investigate relative positions of parameters
that support bistability and those that support oscillations. For
instance, parameter (B, II, 5) supports oscillation (see Equation 30)
and parameter (C, II, 4) supports bistability (see Equation 32).
These parameters are not neighbors in the parameter space, but
a simultaneous lowering of activation threshold of x ⊣ y and
lowering of activation threshold of z → y, changes the dynamic
behavior of the network N.

10 Discussion

In this article, we study a question of the relationship between
network structure and its dynamics. In the DSGRN approach,
the parameter space of switching ODE systems compatible with
the network structure is first decomposed into a finite number
of domains that correspond to multi-level Boolean systems [7]
and then organized into a finite parameter graph. This supports
a description of the dynamics by finite state transition graphs and
allows us to formulate our question precisely. Because the finitness
of this description avoids algorithmically difficult questions of
existence of smooth conjugacies, this framework provides a
tractable way to address this question. The price we pay is that the
description of the dynamics is by necessity approximate and only
captures features of the dynamics that are stable under parameter
perturbations.

DSGRN analysis is in some sense complementary to the
analysis of equations of mass action kinetics. Enzymatic chemical
reactions in cellular biology are often modeled by saturating
Hill functions. While DSGRN follows a switching system
approximation of Hill functions by piecewise constant functions,
thus emphasizing the saturating behavior of the Hill functions,
the mass action polynomial approximation emphasizes the non-
saturated part of the Hill function. General lack of experimentally
determined values of parameters requires the development of
combinatorial, often graph based, approaches for both types of
approximations [55–58].

The main result of the study describes how dynamics of a
subnetwork manifests itself in the dynamics of a larger network.
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In systems biology, the concept of a network is central to
understanding the function of a cell and its responses to the
environment. Unfortunately, the networks studied by biologists
are always incomplete, uncertain, and the parameters mostly
unmeasurable. Yet the need for predictive models is very high.
The results presented here suggest that the DSGRN approach can
provide precise understanding of whether or not a network can
produce distinct phenotypes (i.e., normal vs. cancer) and how
robust are such predictions under network embedding, provided
that the expectations imposed on predictive modeling are properly
adjusted, that is, there is no expectation that our approach can
reproduce precise time series trajectories of multiple genes.

A popular link between structure and function has been
proposed in the theory ofmotifs [39–41]. In this approach, a search
over large databases of regulatory networks revealed statistically
significant over-representation of certain 3-4 node subnetworks,
called motifs. The hypothesis, supported by simple models and
a compelling narrative, is that these motifs are over-represented
because they serve a particular cellular function. However, there is
limited evidence that these small subnetworks consistently work in
the same way within the larger networks as they do in isolation.

Our present study provides some answer to these questions.We
show that the dynamics of the subnetwork can be always found in
the dynamics of the larger network, provided that it is “uncovered”
by setting parameters of the additional edges of the larger network
to be constitutively ON or OFF. As such, the larger network is
always capable of reproducing dynamics of each of its subnetworks
for an appropriate choice of parameters.

Another important conjecture in systems biology asserts that
the reason why we observe large networks exhibiting dynamics
that smaller networks can produce on their own (say oscillations)
is that redundancy enhances robustness of the phenotype. Our
observation that the parameter graph PG(M) of the subnetwork
M is embedded in multiple copies in the parameter graph PG(N)
of network N supports this assertion. We did not directly study
the mutual position of these embedded subgraphs within the
larger graph beyond showing they are disjoint. The robustness
argument would be strengthened if these subgraphs lie close
to each other in such a way that perturbation of a node in
one may lead to a node in the other embedding with the
same dynamics.

We believe that the proposed framework of DSGRN to
study the relationship between network structure and its

function (i.e., dynamics) will provide many important insights in
systems biology.
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