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Introduction: The unexpected emergence of novel coronavirus identified as SAR-

CoV-2 virus (severe acute respiratory syndrome corona virus 2) disrupted theworld

order to an extent that the human activities that are core to survival came almost

to a halt. The COVID-19 pandemic created an insurmountable global health crisis

that led to a united front among all nations to research on e�ective pharmaceutical

measures that could stop COVID-19 proliferation. Consequently, di�erent types of

vaccines were discovered (single-dose and double-dose vaccines). However, the

speed at which these vaccines were developed and approved to be administered

created other challenges (vaccine skepticism and hesitancy).

Method: This paper therefore tracks the transmission dynamics of COVID-19

using a non-linear deterministic system that accounts for the unwillingness of

both susceptible and partially vaccinated individuals to receive either single-

dose or double-dose vaccines (vaccine hesitancy). Further the model is extended

to incorporate three time-dependent non-pharmaceutical and pharmaceutical

intervention controls, namely preventive control, control associated with

screening-management of both truly asymptomatic and symptomatic infectious

individuals and control associated with vaccination of susceptible individuals with

a single dose vaccine. The Pontryagin’s Maximum Principle is applied to establish

the optimality conditions associated with the optimal controls.

Results: If COVID-19 vaccines administered are imperfect and transient

then there exist a parameter space where backward bifurcation occurs.

Time profile projections depict that in a setting where vaccine hesitancy is

present, administering single dose vaccines leads to a significant reduction

of COVID-19 prevalence than when double dose vaccines are administered.

Comparison of the impact of vaccine hesitancy against either single dose or

double dose on COVID-19 prevalence reveals that vaccine hesitancy against

single dose is more detrimental than vaccine hesitancy against a double

dose vaccine. Optimal analysis results reveal that non-pharmaceutical time-

dependent control significantly flattens the COVID-19 epidemic curve when

compared with pharmaceutical controls. Cost-e�ectiveness assessment suggest

that non-pharmaceutical control is the most cost-e�ective COVID-19 mitigation

strategy that should be implemented in a setting where resources are limited.
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Discussion: Policy makers and medical practitioners should assess the level of

COVID-19 vaccine hesitancy inorder to decide on the type of vaccine (single-dose

or double-dose) to administer to the population.
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COVID-19, COVID-19 vaccine hesitancy, single dose, double dose, optimal control

1 Introduction

The advent of COVID-19 infection whose aetiological agent is

SARS-CoV-2 virus (severe acute respiratory syndrome corona virus

2) caught the world off guard. The index case of COVID-19 was

first confirmed in Wuhan city, Hubei province in China as early

as December 2019. Within a period of about 60 days, COVID-19

spread from the epicenter (Wuhan city) to other countries in the

world, leading to WHO declaring COVID-19 a global pandemic

on March 2020 [1, 2]. The main routes of COVID-19 transmission

are direct spread, contact spread, and aerosol spread [3]. Direct

spread of COVID-19 occurs as a result of exhaling respiratory

droplets from sneezing or coughing. Individuals who are in close

contact with other individuals who are suspected or confirmed

being infected with COVID-19 can as well be infected [4, 5].

As for the indirect transmission, it may occur when individuals

touch eyes, nose, or mouth after contacting contaminated surfaces

or objects [4, 5]. Infected individuals are broadly categorized as

either asymptomatic (which include both pre-symptomatic and

true asymptomatic) or symptomatic. Symptomatic individuals

manifest various symptoms which include viral pneumonia, dry

cough, fever, myalgia, sore throat, fatigue, nasal congestion, and

diarrhea [6, 7]. There is concrete evidence in the sequel that shows

that pre-symptomatic transmission significantly contributes to the

spread of COVID-19 [8]. Although the field of corona virology

was well documented in the sequel [9], the interaction of corona

viruses strains with human population on a global scale was not

witnessed before. Even when there was SARS outbreak between

2002 and 2003 in North America, South America, Europe, and

Asia, it caused about 8,098 cases and 774 SARS-induced fatalities

[9] which was significantly low in comparison with 524,467,084

COVID-19-confirmed cases and over 6,915,286 (and increasing)

COVID-19-related deaths reported globally [10].

The rapid speed at which COVID-19 established itself within

communities triggered myriad challenges such as disruption of

normal life, loss of source of livelihood, shrinking of economies (in

particular in developing countries), and insurmountable straining

of the existing health infrastructure [11]. Exponential increase of

critically ill patients in need of urgent medical attention particularly

requiring ventilators created a burden within the health system

that has never been witnessed in the 21st century. Governments

across the world implemented stringent countermeasures to halt

the spread of the COVID-19 pandemic. Initially, these suppressive

intervention measures were non-pharmaceutical in nature, and

they included lock down, contact tracing and quarantine, a ban

on air traffic, social distancing, wearing face masks and washing

hands regularly, suspending traveling in and out of countries,

banning all social gatherings, closing schools, airing awareness

programs, and PCR testing for case detection [5, 12]. However,

these non-pharmaceutical interventions (NPIs) were short-term

measures against proliferation of COVID-19 [13]. A sudden

rebound of COVID-19 spread occurred once these intervention

measures were relaxed [14]. Consequently, there was a global

consensus that pharmaceutical measures such as development of

COVID-19 vaccines and cure could mitigate the spread of COVID-

19 pandemic.

The proliferation of COVID-19 pandemic compelled

multilateral global organizations and private funders to collectively

raise funds for researching on an effective vaccine against the

novel SARS-CoV-2 [15]. On 11 January 2020, the genetic sequence

of SARS-CoV-2 (the causative agent of COVID-19) was made

public [16]. Following this breakthrough, the Coalition for

Epidemic Preparedness Innovation (CEPI) tasked the global

pharmaceutical companies and virology research institutes to

conduct a cutting edge research on COVID-19 vaccines. Within

a period of about 4 months after emergence of COVID-19,

there were about 115 COVID-19 vaccine candidates that were

either at exploratory or pre-clinical stages [16]. Shortly afterward,

some of these vaccines in particular mRNA-1273 from Moderna,

Ad5-nCoV from CanSino Biologicals, INO-4800 from Inovio,

and LV-SMENP-DC and pathogen-specific aAPC from Shenzhen

Geno-Immune Medical Institute moved into clinical development,

and some developed countries started administering them to

the general populace [16]. By early 2021, WHO and Food and

Drug Administration (FDA) approved more COVID-19 vaccines

such as AstraZeneca, Johnson and Johnson, and Pfizer, for the

management of COVID-19 pandemic.

It is imperative to note that most of these vaccine innovation

breakthroughs andmanufacturing were initially based in developed

countries. Given most of these high-income countries (HICs) were

experiencing an exponential increase of COVID-19 cases on a

daily basis, they implemented vaccine nationalism. According to

Riaz et al. [15], vaccine nationalism is referred to as an economic

strategy that involve hoarding vaccines from manufacturers so that

the respective countries can have enough vaccines to vaccinate

a large proportion of their populace without being concerned

with the limited vaccine production and distribution for the

rest of the world. Vaccine nationalism is well known to cause

devastating consequences on affected countries. These include

leaving many disadvantaged countries with low economic status

unable to pay for vaccines as prices of vaccines hike over time;

it decreases the likelihood of developing countries to access

vaccines as they are likely to be out of stock even when they

accumulate enough resources to buy them. Moreover, vaccine

nationalism prolongs the duration of the pandemic as it will

continue spreading within developing countries unabated [15].

One of the key factors that underpinned vaccine nationalism was

that many pharmaceutical companies in various countries were
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competing in vaccine production. However, the competition was

not for the sole purpose of supplying the vaccine to the “ailing

humanity” at a subsidized rate but with the aim of selling the

vaccines to countries which could offer “strong financial stock

upholds” [17]. This policy made it harder for the low- and middle-

income countries (LMICs) to afford vaccines, hence alienating

them from the global target of vaccination against the lethal SARS-

CoV-2. Nevertheless, these pharmaceuticals failed to recognize that

the circulation of COVID-19 in developing countries still posed

a potential threat to HICs as the cross-border traffic exacerbated

COVID-19 transmission. Moreover, many COVID-19 experts in

HICs argued that vaccinating some countries while neglecting

others burdened with COVID-19 created a huge gap in attaining

global immunity [18]. Furthermore, a surge in the population of

infected individuals could render an advantageous environment

for the mutations of the novel corona virus [19]. Hence, vaccine

nationalism was regarded as a self-defeating policy [15].

WHO criticized vaccine nationalism and called for a global

funding to increase vaccine production at unprecedented speed.

In addition, WHO stressed on the importance of equitable

distribution of vaccines among the nations (i.e., both HICs and

LMICs) at a subsidized rate. This was in agreement with WHO’s

slogan that “no one is safe until everyone is safe” [20–23]. WHO

vaccine equity sensitization suggested that equitable roll-out of

COVID-19 vaccine will not only speed up the end of the pandemic

but will considerably increase population immunity worldwide,

relieve burdening of health systems, and facilitate rapid recovery

of economies and reduction of the likelihood of new variants

emerging [24]. By September 2021, COVID-19 vaccines were

widely accessible by both HICs and LMICs. However, even with

vaccines being available in both HICs and LMICs, other pertinent

issues adversely impacted vaccine roll-out within the countries

populace. Some of the fundamental issues being inequality in

vaccine distribution, vaccine prioritization, and skepticism among

different groups. Limited production of COVID-19 vaccines led to

many countries providing vaccines to the most vulnerable cohorts.

For instance, WHO, United Kingdom, and the United States

prioritized offering vaccines to healthcare personnel, individuals

with high risk of developing severe symptoms that can lead to

death, the elderly, and individuals with co-morbidities [13, 25, 26].

Vaccine distribution inequality was also observed even within a

particular cohort (e.g., among health care workers). Studies by

Chen and Krieger [27] Ogedegbe et al. [28] and Vahidy et al.

[29] signaled that there is considerable inequalities in COVID-19

burden in terms of race, ethnicity, and socio-economic status which

is impacted by distribution and prioritization of vaccinations. They

suggested that barriers that hinder vaccine distribution should be

identified and removed [30]. Although there is gradual reduction

of vaccine distribution inequality, the number of individuals

vaccinated in developed countries is 69 times higher than in

developing countries [22].

In addition to COVID-19 vaccine being attributed to COVID-

19 reduction, individual willingness to receive COVID-19 jab

significantly influenced vaccine distribution [15]. Although the

desire to receive COVID-19 vaccine remains relatively high

globally, obstacles such as vaccine skepticism and hesitancy hamper

efforts to curb COVID-19 pandemic [31]. Vaccine skepticism is

based on several factors. Some individuals refuse to be vaccinated

as a result of vaccine safety concerns, especially the conviction that

the vaccine is dangerous due to the speed at which it was produced

[15]. Other individuals argued that the COVID-19 was harmless,

and therefore, they did not see the need of receiving COVID-19

vaccine. Factors such as doubt of COVID-19 vaccine effectiveness,

belief in pre-existing immunity, and the origin of the vaccine

also contributed in vaccine skepticism [15, 31]. Some individuals

reasoned that the long-term impact of COVID-19 vaccines was

unknown and therefore refused to be vaccinated. Moreover,

political reasons and conspiracy theories found in many social

media fuelled vaccine hesitancy [32]. Factors such as detrimental

impact of COVID-19 on the lives of milliards of people around

the globe and devastation of the world economy were thought to

be determinants that will fuel ubiquitous acceptance of COVID-19

vaccine [33]. However, this was not the case as suggested by many

findings. The study by Neumann-Bohme and co-workers [34]

assessed the level of anti-COVID-19 vaccination among citizens on

seven European countries and found that hesitancy and resistance

against the vaccines were substantial across all cohorts, age groups,

and sexes. For instance, 38% of those interviewed in France were

hesitant toward COVID-19 vaccine where 10% were opposed to

COVID-19 vaccination while the remaining 28% were undecided

about getting COVID-19 vaccination [33]. In the United States

(US), a report by the American Medical Association Journal hinted

that skepticism toward vaccines that were being administered was

on the rise [35]. This was further corroborated by the Kaiser Family

Foundation COVID-19 vaccine monitoring which indicated that

approximately 29% of health practitioners were reluctant to accept

the vaccine [36].

During the early onset of COVID-19 (i.e., before accumulation

of enough data to predict and project on COVID-19 prevalence),

COVID-19 mathematical models proved to be an invaluable tool

(and they still are) on providing insights on the appropriate

mitigation strategy to adopt to prevent COVID-19 spiraling.

Many models that were formulated focused on elucidating how

NPIs will impact COVID-19 transmission dynamics. For instance,

COVID-19 models by Ngonghala et al. [37], Srivastav et al. [88],

and Wangari et al. [38] showed that correct use of face masks

by public is always beneficial. However, the studies emphasized

that the beneficial impact of face masks coverage at population-

level is linearly dependent on face mask efficacy. Furthermore,

their results showed that if the public combined both face

masks and physical/social distancing, then a significant decline

in COVID-19 burden occurred. The article by Tiwari et al.

[39] analyzed whether disseminating COVID-19 awareness at

individual, community, and global level can influence general

populace viewpoint and behavior toward COVID-19. Their

findings showed that higher dissemination of COVID-19 awareness

among susceptible population (in particular mouth-to mouth

awareness dissemination) played a key role in preventing COVID-

19 spread. Moreover, an increase in awareness rate led to a

significant decline of asymptomatic individuals as well as number

of symptomatic individuals requiring hospitalization. A closely

related study by Rai et al. [40] assessed the effectiveness of social

media advertisements in suppressing rates of interaction between

susceptible individuals and COVID-19 infectious individuals in

India. Their results showed that airing COVID-19 information

through social media platform could play a vital role in suppressing

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2023.1292443
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Wangari et al. 10.3389/fams.2023.1292443

COVID-19 transmission and therefore advocated such approach to

be included as a mitigation strategy. Given the study conducted

by Tiwari et al. [39] was done during early development of

COVID-19 when there was insufficient information on COVID-

19 epidemiological dynamics, their study did not capture the role

pre-symptomatic infectious individuals could have played as far

as COVID-19 prevalence was concerned. Moreover, the study

by Tiwari et al. [39] did not include vaccination and vaccine

hesitancy, perhaps due to the reason that vaccines were in their

early clinical trial stage. Similarly, the article Rai et al. [40] did not

consider a scenario where pre-symptomatic infectious individuals

could contribute in COVID-19 transmission and also neglected

vaccination as an intervention strategy, and therefore, they could

not analyze impact of vaccine hesitancy in the general populace.

Shortly after WHO and Center for Disease Control

(CDC) declared availability of COVID-19 vaccines, several

epidemiological mathematical frameworks began to emerge

with the aim of investigating whether vaccines will slow or end

the COVID-19 pandemic as well as determining strategies that

ensured optimal distribution of COVID-19 vaccines [41–44].

In the sequel, few epidemiological mathematical models have

attempted to elucidate on the impact vaccine hesitancy played in

the early roll-out of COVID-19 vaccines [33, 35]. Some pertinent

questions that relate to vaccine hesitancy have been investigated

as far as COVID-19 vaccine roll-out is concerned. For example,

authors in Oduro et al. [35] proposed a model that stratified the

general populace depending on their willingness and unwillingness

to receive COVID-19 jab. Their study exclusively investigated

how educating the unwilling population about the importance

of COVID-19 vaccine will impact COVID-19 transmission

dynamics. Their findings suggested that education of the unwilling

individuals such that they accept to get COVID-19 vaccines

led to a significant reduction of control reproduction number.

Although their study mentioned about vaccine hesitancy as the

motivation behind incorporating education parameter among

unwilling cohorts, their study did not incorporate parameters

that explicitly modeled vaccine hesitancy. Moreover, vaccine

hesitancy may occur in several stages especially in a scenario where

COVID-19 vaccine are offered at certain intervals. For example,

some vaccines such as AstraZeneca required individuals to get two

doses of vaccines before one is considered to be fully vaccinated.

In some cases, some individuals refused to get second dose of

vaccine with the justification that they experienced severe side

effects. The study by Oduro et al. [35] never captured vaccine

hesitancy among partially vaccinated individuals. Buonomo et al.

[33] considered a behavioral epidemiology approach to model

how vaccination campaign impacted COVID-19 dynamics. The

study incorporated vaccination rate as a function of the present

and past information that the general populace have on the

spread of the COVID-19 pandemic. Their approach was similar

to the one used by dOnofrio and Manfredi [45] where they

showed that incorporation of information-related changes in

contact patterns induces oscillations in the endemic prevalence

of infectious diseases. Similarly, the study by Buonomo et al.

[33] did not consider a possibility where vaccine hesitancy

could occur among different cohorts, given vaccines are also

administered in phases (first dose, second dose and booster

shots).

The recent study by Peter et al. [46] proposed a mathematical

model that incorporated a double-dose vaccination strategy.

In their study Peter et al. [46], they assumed that vaccine

is administered in two phases (first dose followed by the

second dose). One major assumption in their study was

that fully vaccinated individuals acquired a complete vaccine-

induced immunity, and therefore, these individuals could neither

experience breakthrough infections nor waning of the vaccine-

induced immunity. Moreover, vaccine hesitancy was not accounted

for in their model. Furthermore, despite mentioning that pre-

symptomatic individuals greatly contribute in the spread of

COVID-19, their force of infection did not explicitly capture

transmission by pre-symptomatic individuals. A single-dose

vaccination strategy was not considered in Peter et al. [46],

despite existence of a concrete evidence that some vaccines

require individuals to receive a single dose to be considered

fully vaccinated against COVID-19 [47]. For example, Johnson &

Johnson COVID-19 vaccine required individuals to receive a single

dose. Scientific evidence demonstrated that Johnson & Johnson

vaccine rendered 85% effectiveness in preventing individuals from

developing severe COVID-19 symptoms that led to COVID-19-

related hospitalizations and mortality [47]. Kumar et al. [48]

have recently investigated how contamination of environment and

surfaces with COVID-19 could influence COVID-19 transmission

dynamics in the presence of vaccination. Although the study

[48] incorporated vaccination (as a mitigation strategy) without

distinguishing between a single-dose or double-dose vaccine,

they did not consider the epidemiological implication of vaccine

hesitancy as far as COVID-19 pandemic is concerned.

The novelty of this study stems from first recognizing that

pre-symptomatic infectious individuals contribute significantly

in the spread of COVID-19 [8], and therefore, the impact on

how pre-symptomatic individuals affect COVID-19 transmission

dynamics needs to be closely examined. Second, our study is the

first to consider a scenario where vaccine hesitancy is assumed

to occur in two phases depending on individual’s choice of

vaccine type (single dose or double dose), that is, first phase

of vaccine hesitancy is assumed to occur among all susceptible

individuals regardless of the choice of vaccine type. The second

phase of vaccine hesitancy is only assumed to occur among

individuals who choose double-dose vaccine. We will, therefore,

investigate epidemiological implication likely to be witnessed if

individuals who choose double-dose vaccine refuse second dose

and therefore remain partially vaccinated. Noteworthy partially

vaccinated individuals potentially pose a greater risk to COVID-

19 mitigation measures than fully vaccinated individuals [49,

50]. Moreover, this study comprehensively compares how vaccine

hesitancy against either single dose or double dose influences

COVID-19 transmission dynamics. To the best of our knowledge,

this comparison was not done in previous studies [33, 35, 41–44, 46,

48]. Findings in this study could form the basis for policymakers

and medical practitioners in deciding the type of vaccine (single

dose or double dose) to administer to a given community if

the levels of vaccine hesitancy are known to be either relatively

low/high.

Thus, our present study recognizes the gaps and relax the

assumptions made in the studies [33, 35, 41–44, 46]. Consequently,

the study considers a scenario where both single-dose vaccine and a
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double-dose vaccination strategies are concurrently adopted. Both

single- and double-dose vaccination strategies are assumed to be

hindered by vaccine hesitancy in the general populace. In this study

we aim to:

1. Investigate whether pre-symptomatic individuals played a

significant role as far as COVID-19 transmission dynamics

is concerned?

2. Determine which type of vaccine (single dose or double dose)

is most suitable in a setting where vaccine hesitancy is relatively

low/high?

3. Determine the most cost-effective COVID-19 mitigation

strategy, especially in a scenario where both NPIs and

pharmaceutical control measures are concurrently being

advocated by policymakers and medical practitioners (this will

be achieved by extending the proposed model using optimal

control theory)?

2 Model construction

In this section, a model framework that describes COVID-19

transmission dynamics in a population where vaccine is available is

presented. We assume that the government has not implemented

any policy that requires all individuals to be vaccinated against

COVID-19, that is, vaccination is non-mandatory. Therefore, we

will consider a scenario where some individuals who have received

the first COVID-19 vaccine have a choice to refuse the second

dose (remain partially vaccinated). Moreover, we have considered

a possibility where some individuals receive a single-dose vaccine

rather than a two phase vaccine (double dose vaccine). Hence, we

shall assume that COVID-19 vaccines available in the population

are administered at different phases. First, we introduce notations

that are necessary for the classification of individuals in the

population depending on their health status. At any time t, we let

N denotes the total population. N is divided into eight mutually

exclusive compartments:

1. Susceptible, S: individuals who are considered to be healthy and

are liable to contract COVID-19,

2. Vaccinated, Vp : individuals who have received the first dose of

COVID-19 vaccine and are assumed to be partially protected.

Hence, they can be infected with COVID-19 although at a

reduced rate in comparison with susceptible individuals,

3. Vaccinated, V : individuals who have received either double-

dose COVID-19 vaccine or the single-dose vaccine and are

therefore considered to be fully vaccinated against COVID-

19, but they can experience breakthrough infections at a

relatively lower rate compared to both partially vaccinated and

susceptible individuals,

4. Exposed E : consists of individuals who have been exposed to

SARS-CoV-2, but are not capable of passing the virus to other

healthy individuals, reason being that the virus incubation period

has not yet elapsed,

5. Pre-symptomatic, Ip : This cohort includes individuals who are

at post-latency stage (i.e., individuals who are in the incubation

phase following latency). They are asymptomatic and able to

transmit SARS-CoV-2,

6. Asymptomatic infectious Ia : This cohort includes individuals

who remain asymptomatic throughout the course of the

infection, but are able to pass the SARS-CoV-2 to others. Often

regarded as truly asymptomatic individuals,

7. Symptomatic infectious, Is : Include individuals who manifest

either mild or severe COVID-19 symptoms and are able to

spread SARS-CoV-2,

8. Recovered, R : This cohort includes those who have recovered

after infectious period.

The size of each class at any given time t describes the state

variable of the model framework and N = S + Vp + V +

E + Ip + Ia + Is + R. For the proposed model framework,

we shall assume both a double-dose vaccine and a single-dose

vaccines are concurrently being administered, contrary to study

[33] that considered a single-dose vaccine which rendered a

lifelong protection against COVID-19. It is assumed that the

vaccine-induced immunity is not perfect and can wane over time.

Therefore, vaccine-induced immunity among individuals who are

fully vaccinated against COVID-19 and individuals who have

received one dose of COVID-19 vaccine can wane over time

such that it is of the same level as susceptible individuals; hence,

they are assumed to join S compartment. Regarding transmission

of COVID-19 among susceptible, partially vaccinated and fully

vaccinated individuals, we assume that infection occurs as a

result of interaction with three infectious cohorts, namely, pre-

symptomatic infectious individuals, truly asymptomatic infectious

individuals, and symptomatic infectious individuals. Transmission

of COVID-19 by pre-symptomatic individuals is based on the

findings that individuals exposed to COVID-19 are most infectious

during the post-latency stage when they are not manifesting

COVID-19 symptoms (usually 1–2 days before symptoms set

in) [2, 8]. Research on this finding is still ongoing. On the

one hand, truly asymptomatic individuals transmit COVID-19

at a relatively low rate in comparison with pre-symptomatic

individuals. This assumption corroborates well with the finding

that truly asymptomatic patients cause little or no transmission of

COVID-19 [51].

In the proposed COVID-19 model, the force of infection

which represents the per capita rate at which susceptible, partially

vaccinated individuals and fully vaccinated individuals contract

COVID-19 is assumed to be a mass action incidence defined as

λ = β(Ip + η1Ia + η2Is). The justification behind choosing

a mass action incidence is a 2-fold. One being that during the

COVID-19 pandemic, the total population remained relatively

constant [33]. Second, mass action incidence is chosen for

mathematical simplification and tractability. Note that in the force

of infection, parameters η1 and η2 are modification coefficients

that account for reduced infectiousness of truly asymptomatic and

symptomatic individuals when compared with infectious post-

latency individuals (pre-symptomatic individuals). Parameter β

represents the effective contact rate. All subgroups decrease due

to natural mortality at per capita rate µ per day, while infectious

symptomatic individuals experience an extra mortality due to

COVID-19-induced death at per capita rate d per day.

Recruitment into susceptible subgroup S occurs at a rate ∧

humans per day. Since first dose vaccine-induced immunity is

not lifelong (imperfect to protect against COVID-19), partially
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vaccinated individual immunity can wane at a rate ω1 per day

and these individuals revert to susceptible class. Similarly, fully

vaccinated individual immunity can wane over time, and these

individuals return to susceptible subgroup at a rate ω2 per day. Due

to myriad challenges that faced COVID-19 vaccine distribution

during the early days, among them being vaccine hesitancy (just to

mention a few) the rates at which susceptible individuals in the class

S, partially vaccinated individuals in the subgroup Vp, and fully

vaccinated individuals V are vaccinated are assumed to occur at

rates (1−hi)θi, where θi, i ∈ (1, 2, 3) represent rates at which vaccine

is administered (respectively, among subgroups S, Vp, and V) and

0 ≤ hi < 1, i ∈ (1, 2, 3) represent fractions of susceptible and

partially vaccinated individuals who are unwilling to get vaccinated

(vaccine hesitancy) by the double dose vaccine (which includes first

dose and second dose) or single dose vaccine. Thus, susceptible sub-

population decreases as a result of vaccination at rates (1–h1)θ1
and (1–h3)θ3 per day and also due to infection at a rate λ per

day. The subgroup Vp increases due to vaccination of susceptible

individuals at a rate (1− h1)θ1 per day. The subgroup Vp decreases

as a result of receiving second dose of COVID-19 vaccine at a

rate (1 − h2)θ2 per day, waning of vaccine-induced immunity at

a rate ω1 per day and also due to breakthrough infections at a

rate (1 − σ )λ per day. The parameter σ , 0 ≤ σ < 1 represents

vaccine efficacy among subgroup Vp who have received the first

dose. The sub-populationV is generated as a result of vaccination of

both partially vaccinated individuals (double dose) and susceptible

individuals (single dose) at rates (1 − h2)θ2 and (1 − h3)θ3 per

day, respectively. They decrease due to vaccine waning at a rate

ω2 per day and breakthrough infections at a rate (1 − ψ)λ per

day. The parameter ψ , 0 ≤ ψ < 1 represents vaccine efficacy

among subgroup V (who have either received a complete double-

dose vaccine or single-dose vaccine). The exposed sub-population

arise due to infection of susceptible population at a rate λ and also

as a result of breakthrough infections among partially vaccinated

individuals at a rate (1 − σ )λ and fully vaccinated individuals at

a rate (1 − ψ)λ per day. The exposed individuals progress to the

infectious post-latency compartment Ip at per capita rate φ per day

(note, 1/φ is the average incubation period/latent period). Pre-

symptomatic infectious individuals progress to either infectious

truly asymptomatic individuals at per capita rate (1 − v)α per

day or to the infectious symptomatic individuals at per capita

rate vα per day. Note that 0 < v < 1 (0 < 1 − v < 1)

represents the fraction of post-latency individuals (infectious pre-

symptomatic persons) who either manifest or do not manifest

COVID-19 symptoms at the end of the intrinsic incubation period

and 1/α represents the average pre-symptomatic infectious period

[52]. Truly infectious asymptomatic and infectious symptomatic

individuals recover from COVID-19 and progress to subgroup

R at per capita rates γa and γs, respectively (where 1/γa and

1/γs are the average durations of infectiousness for Ia and Is
subgroups, respectively).

For biological plausibility of our model, we will assume

that vaccine-induced immunity strength among fully vaccinated

individuals in the subgroup V is stronger in comparison with

partially vaccinated individuals in the class Vp. Consequently,

vaccine-induced immunity waning rate among fully vaccinated

individuals will be considered to be slightly lower/equal to vaccine

waning rate among partially vaccinated individuals (i.e., ω1 ≥

ω2). This assumption is made based on recent evidence regarding

breakthrough infections among fully vaccinated individuals [53]. A

schematic representation of the model is shown in Figure 1.

2.1 The model equations

Considering the aforementioned model description and

assumptions, the system of non-linear differential equations (1)

governs the transmission dynamics of COVID-19 in the presence

of a single-dose and two-dose vaccines that are non-mandatory and

takes into account vaccine hesitancy. A detailed description of the

model parameters is captured in Table 1.

dS

dt
=∧+ω1Vp + ω2V − (µ+ λ+ (1− h1)θ1 + (1− h3)θ3)S,

dVp

dt
=(1− h1)θ1S− (µ+ ω1 + (1− h2)θ2 + (1− σ )λ)Vp,

dV

dt
=(1− h2)θ2Vp + (1− h3)θ3S− (µ+ ω2 + (1− ψ)λ)V ,

dE

dt
=λS+ (1− σ )λVp + (1− ψ)λV − (µ+ φ)E, (1)

dIp

dt
=φE− (µ+ α)Ip,

dIa

dt
=(1− v)αIp − (µ+ γa)Ia,

dIs

dt
=vαIp − (µ+ d + γs)Is,

dR

dt
=γaIa + γsIs − µR,

where λ remains as previously defined. The model equation (1) is

subject to the initial conditions

S0 = S(0) ≥ 0,Vp0 = Vp(0) ≥ 0,V0 = V(0) ≥ 0,E0 = E(0) ≥ 0,

Ip0 = Ip(0) ≥ 0, Ia0 = Ia(0) ≥ 0, Is0 = Is(0) ≥ 0,R0 = R(0) ≥ 0.

(2)

Note that the dynamics of model equation (1) is not affected by

the last equation that models the time evolution of the recovered

class. Hence, the qualitative dynamics of the subgroup R will not be

given much attention in the theoretical analysis.

3 Analytical results of the model

In this section, the model is qualitatively analyzed. First, it is

shown that the model state variables remain non-negative for all

time t > 0 whenever non-negative initial conditions are supplied

into the system (1). Boundedness of the model trajectories will

be established. The intrinsic COVID-free equilibrium and the

fundamental threshold that determine the severity of COVID-

19 (control reproduction number) will be determined. It will be

shown that the disease-free equilibrium of the model described

in section 2 is locally (globally) asymptotically stable whenever

the control reproduction number is less than unity. Finally, the

endemic equilibrium point together with the relevant properties

(local stability) will be established.
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FIGURE 1

Schematic representation of COVID-19 model that incorporates a single-dose and a double-dose vaccination strategies that are coupled with

vaccine hesitancy. The population N(t) is stratified into eight mutually exclusive classes: susceptible S(t), partially vaccinated with one dose Vp, fully

vaccinated with either double-dose or single-dose vaccine V(t), exposed E(t), pre-symptomatic Ip(t), truly asymptomatic Ia(t), symptomatic Is(t), and

recovered R(t). Blue dashed arrows indicate breakthrough infections.

3.1 Non-negativity of the model solutions

Given the proposed model considers a human population, it

is important to show the well possessedness of the model. The

following theorem establishes that the model solutions remain

non-negative over all the time.

Theorem 1. If the model equations (1) is supplied with positive

initial conditions; S(0), Vp(0), V(0), E(0), Ip(0), Ia(0), Is(0), and

R(0), then the model state variables; S(t), Vp(t), V(t), E(t), Ip(t),

Ia(t), Is(t), and R(t) will always remain positive for all time, t > 0.

Proof: Suppose

T = sup
{

τ ≥ 0, | ∀t, 0 ≤ t ≤ τ such that S(t) ≥ 0,Vp(t) ≥ 0,

V(t) ≥ 0,E(t) ≥ 0, Ip(t) ≥ 0, Ia(t) ≥ 0, Is(t) ≥ 0,R(t) ≥ 0
}

.

First let 0 < T < +∞. Now considering continuity of solutions,

we can have S(T) = 0 or Vp(T) = 0 or V(T) = 0 or E(T) = 0

or Ip(T) = 0 or Ia(T) = 0 or Is(T) = 0 or R(T) = 0. Supposing

S(T) = 0 before all other state variables Vp,V ,E, Ip, Ia, Is,R become

zero. Then from the first equation of model system (1) we have

dS(T)

dt

∣

∣

∣

∣

{S(T)=0,Vp>0,V>0,E>0,Ip>0,Ia>0,Is>0,R >0}

= ∧+ ω1Vp + ω2V > 0 since ∧,ω1,ω2 > 0. (3)

If Vp(T) becomes zero before all other state variables

S,V ,E, Ip, Ia, Is,R, then from the second equation of model

system (1) we have

dVp(T)

dt

∣

∣

∣

∣

{S>0,Vp(T)=0,V>0,E>0,Ip>0,Ia>0,Is>0,R >0}

= (1− h1)θ1S > 0 since h1 < 1, θ1 > 0. (4)

Following a similar procedure as described in equations (3)

and (4), it is not difficult to deduce from third, fourth, fifth, sixth,

seventh, and eighth equations of model system (1) the following

results;

dV(T)

dt

∣

∣

∣

∣

{S>0,Vp>0,V(T)=0,E>0,Ip>0,Ia>0,Is>0,R >0}

= (1− h2)θ2Vp + (1− h3)θ3S > 0 since

h2, h3 < 1, θ2, θ3 > 0,

dE(T)

dt

∣

∣

∣

∣

{S>0,Vp>0,V>0,E(T)=0,Ip>0,Ia>0,Is>0,R >0}

= λS+ (1− σ )λVp + (1− ψ)λV > 0

since 0 < σ ,ψ < 1,

dIp(T)

dt

∣

∣

∣

∣

{S>0,Vp>0,V>0,E>0,Ip(T)=0,Ia>0,Is>0,R >0}

= φE > 0,

dIa(T)

dt

∣

∣

∣

∣

{S>0,Vp>0,V>0,E>0,Ip>0,Ia(T)=0,Is>0,R >0}

= (1− v)αIp > 0, since 0 < v < 1,α > 0,

dIs(T)

dt

∣

∣

∣

∣

{S>0,Vp>0,V>0,E>0,Ip>0,Ia>0,Is(T)=0,R >0}

= vαIp > 0,

dR(T)

dt

∣

∣

∣

∣

{S>0,Vp>0,V>0,E>0,Ip>0,Ia>0,Is>0,R(T)=0}

= γaIa + γsIs > 0,
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TABLE 1 Description of model baseline parameter values.

Parameter Brief description Baseline value Reference

∧ Recruitment rate 1,762 [33]

β Baseline transmission rate 2.699× 10−8 [33]

ω1 Vaccine waning rate among Vp subgroup 5.56× 10−3 [54–56]

ω2 Vaccine waning rate among V class 5.56× 10−3 [54–56]

η1 Modification coefficient relating to transmission from Ia class 0.034 [57]

η2 Modification coefficient relating to transmission from Is class 0.066 [57]

φ Post-latency progression rate 4.00× 10−1 [58–61]

α Pre-symptomatic individuals progression rate 0.12 [33]

v Proportion of post-latency individuals who manifest symptoms 0.15 [33, 62, 63]

γa Recovery rate of truly asymptomatic individuals 0.165 [33]

γs Recovery rate of symptomatic individuals 0.055 [33]

d COVID-19 induced death rate 0.0006248 [33]

θ1 Vaccination rate of individuals in S with first dose (of double dose) 0.07 assumed

θ2 Vaccination rate of individuals in Vp with second dose (of double dose) 0.05 assumed

θ3 Vaccination rate of individuals in S with a single-dose vaccine 0.07 assumed

h1 Fraction of susceptible individuals unwilling to get first dose

(due to vaccine hesitancy) of double-dose vaccine 3.5× 10−1 [34]

h2 Fraction of partially vaccinated individuals unwilling to get second dose

(due to vaccine hesitancy) of double-dose vaccine 2.5× 10−1 assumed

h3 Fraction of susceptible individuals unwilling to get vaccinated

(due to vaccine hesitancy) with single-dose vaccine 3.5× 10−1 [34]

σ Vaccine efficacy among partially vaccinated class Vp 6.70× 10−1 assumed

ψ Vaccine efficacy among fully vaccinated individuals in V class 8.0× 10−1 [64]

µ Natural death rate 1/(75.6× 365) [46]

All parameters have units of per day, except fraction of pre-symptomatic individuals who manifest symptoms, proportion of COVID-19 hesitancy, vaccine efficacy, and modification factors

which are dimensionless.

which completes the proof by showing that all the state variables of

the model system (1) remain positive for all time.

3.2 Boundedness of model solutions

Theorem 2. Define the following biologically feasible region:

1 =
{

(S,Vp,V ,E, Ip, Ia, Is,R) ∈ R8
+ | S+ Vp + V + E+ Ip

+Ia + Is + R ≤
∧

µ

}

.

Then, the region1 is positively invariant with respect to the model

system (1).

Proof: Noting that the total population is given by the sum of the

state variables of the proposed model, we have

N(t) = S(t)+ Vp(t)+ V(t)+ E(t)+ Ip(t)+ Ia(t)+ Is(t)+ R(t).

(5)

The derivative of equation (5) is given by

dN(t)

dt
=
dS(t)

dt
+

dVp(t)

dt
+

dV(t)

dt
+

dE(t)

dt
+

dIp(t)

dt
+

dIa(t)

dt

+
dIs(t)

dt
+

dR(t)

dt

=∧−µN(t)− dsIs. (6)

From equation (6), we have
dN(t)

dt
≤ ∧− µN(t) which can

be written as
dN(t)

dt
+ µN(t) ≤ ∧. Applying integration factor

method and after algebraic manipulation leads to

N(t) ≤
∧

µ
+

(

N(0)−
∧

µ

)

e−µt . (7)

From (7), we can deduce that lim
t→∞

supN(t) ≤
∧

µ
. Hence, it

follows that N(t) ≤
∧

µ
as t → ∞. Thus, all the solutions of model

equation (1) remain in1 for all time which implies that the model

system (1) is positively invariant. Hence, all the analysis conducted
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on the model system (1) are limited in the region 1, where the

model equation (1) is considered as being mathematically and

epidemiologically meaningful.

3.3 COVID-free equilibrium and control
reproduction number

In the absence of any COVID-19 infection in the community

(i.e., E = Ip = Ia = Is = 0), the model system (1) has an intrinsic

COVID-free equilibrium CFE which is obtained by setting the

right-hand side of equation (1) to zero. This results to

CFE =
(

S0,V0
p ,V

0, 0, 0, 0, 0, 0
)

, (8)

where

S0 =
D1D2∧

K1 + K2D2
, V0

p =
(1− h1)θ1D1∧

K1 + K2D2
,

V0 =
(1− h1)θ1(1− h2)θ2 ∧ +(1− h3)θ3D2∧

K1 + K2D2
, where

D1 =µ+ ω2, D2 = (µ+ ω1 + (1− h2)θ2), (9)

K1 =µ(1− h1)θ1(µ+ ω2 + (1− h2)θ2),

K2 =µ(µ+ ω2 + (1− h3)θ3).

The basic reproduction number often denoted by R0 is one of

the important thresholds in mathematical epidemiology due to its

ability in predicting the transmission dynamics of an infectious

disease. It is defined as the number of secondary infectives

triggered by a single primary infection during infectious period

when introduced into an entirely susceptible population. For the

proposed COVID-19 model equation (1), instead of computing

reproduction number R0 we compute the control reproduction

number Rc due to the reason that intervention measures

for mitigating the spread of the pandemic are incorporated

(vaccination strategies: single-dose and double-dose vaccines).

Using the next-generation approach originally described in Van

den Driessche and Watmough [65], we compute the control

reproduction number as the dominant eigenvalue (spectral

radius) of the next-generation matrix FV−1. The matrices F and

V, respectively, represent Jacobian matrices of the terms that

involve new infections and the transition rates (from one healthy

status to another) computed at the COVID-free equilibrium

CFE [see Van den Driessche and Watmough [65]]. Thus, we have

F =















0 βS0 + (1− σ )βV0
p + (1− ψ)βV0 βηS0 + (1− σ )βη1V

0
p + (1− ψ)βη1V

0 βη2S
0 + (1− σ )βη2V

0
p + (1− ψ)βη2V

0

0 0 0 0

0 0 0 0

0 0 0 0















and

V =











(µ+ φ) 0 0 0

−φ (µ+ α) 0 0

0 −(1− v)α (µ+ γa) 0

0 −vα 0 (µ+ d + γs)











.

The control reproduction number of the model system (1) can

now be determined from ̺(FV−1), where ̺ is the spectral radius or

the dominant eigenvalue.

Let

̟ = D2(D1 + (1− ψ)(1− h3)θ3)+ (1− h1)θ1((1− σ )D1

+(1− ψ)(1− h2)θ2), then

Rc = Rp +Ra +Rs, (10)

where

Rp =
̟β ∧ φ

(µ+ φ)(µ+ α)(K1 + K2D2)
,

Ra =
̟β ∧ φ(1− v)αη1

(µ+ φ)(µ+ α)(µ+ γa)(K1 + K2D2)
,

Rs =
̟β ∧ φvαη2

(µ+ φ)(µ+ α)(µ+ d + γs)(K1 + K2D2)
.

Following the theorem proved in Van den Driessche and

Watmough [65], we state the following lemma.

Lemma 1. The COVID-free equilibrium CFE of the model system

(1) is LAS (locally asymptotically stable) whenRc = ̺(FV−1) < 1

and unstable ifRc = ̺(FV−1) > 1.

It is easy to note that the control reproduction number (10) is

a sum of three terms, namely, Rp,Ra, and Rs. Epidemiologically,

Rp represents the reproduction number of infectious individuals

generated due to infection with pre-symptomatic infectious

individuals in the subgroup Ip, Ra, accounts for the reproduction

number of infectious cases produced by infection with truly

asymptomatic infectious individuals in the compartment Ia, and

Rs is the reproduction number associated with the number of

infection cases generated as a result of infection with symptomatic

infectious individuals in the subgroup Is. Mathematically, Ra and

Rs can be expressed in terms ofRp, that is,Ra =
(1−v)αη1
(µ+γa)

Rp and

Rs =
vαη2

(µ+d+γs)
Rp. Consequently,

Rc =Rp +
(1− v)αη1

(µ+ γa)
Rp +

vαη2

(µ+ d + γs)
Rp,

=Rp

(

1+
(1− v)αη1

(µ+ γa)
+

vαη2

(µ+ d + γs)

)

, (11)

=
Q0

(µ+ γa)(µ+ d + γs)
Rp, where

Q0 =(µ+ γa)(µ+ d + γs)+ (1− v)αη1(µ+ d + γs)

+ µαη2(µ+ γa) > 0.

For biologically plausible non-negative parameter values (see

Table 1), both (1−v)αη1
(µ+γa)

and vαη2
(µ+d+γs)

are less than one. If both
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(1−v)αη1
(µ+γa)

≪ 1 and vαη2
(µ+d+γs)

≪ 1, then Rc ≅ Rp. This indicates

that the reproduction numberRp associated with pre-symptomatic

individuals is larger than both Ra and Rs. Epidemiologically, this

implies that pre-symptomatic individuals pose a greater risk as far

as the spread of COVID-19 is concerned. This was not captured in

several mathematical models due to the fact that it was not clear

whether pre-symptomatic individuals played any significant role in

the spread of COVID-19, and therefore, transmission of COVID-

19 by pre-symptomatic individuals was overlooked. However, now

there is a global consensus (and research still being conducted) that

pre-symptomatic individuals (individuals at post-latency stage) are

more infectious before symptoms start to manifest [see WHO [2]

and Alleman et al. [8] and also the recent research that incorporated

pre-symptomatic transmission in the force of infection [33]].

Lemma 1 implies that there is a possibility of COVID-19

pandemic being eradicated in case the initial sizes of the state

variables of model equation (1) are in the basin of attraction

of the COVID-free equlibrium CFE. However, there is a caveat

regarding local stability of CFE, given the proposed model system

(1) assumes the COVID-19 vaccines (both single dose and double

dose) being administered are not perfect. To be certain COVID-

19 pandemic eradication is not dependent on the initial sizes of

the state variables, we investigate whether the CFE is globally

asymptotically stable (if not, then we cannot rule out occurrence

of other complex bifurcation structures, particularly backward

bifurcation which occurs whenRc < 1).

3.4 Global stability of CFE

To analyze the global stability of model equation (1), we apply

the procedure described by Castillo-Chavez et al. [66], where the

two conditions that need to be fulfilled for the global asymptotic

stability of the disease-free equilibrium are outlined. First, we

re-write the model system (1) into the following form:

Z
′

=G1(Z, P), (12)

P
′

=G2(Z, P), G2(Z, 0) = 0, (13)

where Z = (S,Vp,V ,R) ∈ R4, represents the number of uninfected

state variables, and P = (E, Ip, Ia, Is) ∈ R4 represents the number

of infected state variables for model system (1). Let W0 = (Z∗, 0)

define the COVID-free equilibrium of the proposed model (1).

Then, the conditions outlined below must be fulfilled for the model

system (1) to be globally asymptotically stable.

1. For Z
′
= G1(Z, 0), Z∗ is g.a.s (globally asymptotically stable).

2. G2(Z, P) = AP − Ĝ2(Z, P), Ĝ2(Z, P) ≥ 0, where

A = DPG2(Z
∗, 0) represents amatrix whose off-diagonal entries are

non-negative (M-matrix). Supposing conditions (i) and (ii) stated

above hold inmodel system (1), then the following theorem follows:

Theorem 3. Assuming conditions (i) and (ii) above hold andRc <

1, then the fixed point W0 = (Z∗, 0) is a g.a.s equilibrium point of

model system (1).

Proof: It is straight forward to observe that

Z
′

= G1(Z, P)

=











∧ + ω1Vp + ω2V − (µ+ λ+ (1− h1)θ + (1− h3)θ3)S

(1− h1)θ1S− (µ+ ω1 + (1− h2)θ2 + (1− σ )λ)Vp

(1− h2)θ2Vp + (1− h3)θ3S− (µ+ ω2 + (1− ψ)λ)V

γaIa + γsIs − µR











,

G1(Z, 0) =









∧+ ω1Vp + ω2V − (µ+ (1− h1)θ1 + (1− h3)θ3)S
0

(1− h1)θ1S
0 − (µ+ ω1 + (1− h2)θ2)V

0
p

(1− h2)θ2V
0
p + (1− h3)θ3S

0 − (µ+ ω2)V
0

0









,

P
′

= G2(Z, P) =















β(Ip + η1Ia + η2Is)S+ (1− σ )β(Ip + η1Ia + η2Is)Vp

+(1− ψ)β(Ip + η1Ia + η2Is)V − (µ+ φ)E

φE− (µ+ α)Ip
(1− v)αIp − (µ+ γa)Ia
vαIp − µ+ d + γsIs















A =











−(µ+ φ) A12 A13 A14

φ −(µ+ α) 0 0

0 (1− v)α −(µ+ γa) 0

0 vα 0 −(µ+ d + γs)











.

where A12 = βS0 + (1 − σ )βV0
p + (1 − ψ)βV0,A13 = βη1S

0 +

(1− σ )βη1V
0
p + (1− ψ)βV0,

A14 = βη2S
0 + (1 − σ )βη2V

0
p + (1 − ψ)βη2V

0. Now Ĝ2(Z, P) =

AP − G2(Z, P) is given as:

Ĝ2(Z, P) =















(S0 − S)β(Ip + η1Ia + η2Is)+ (V0
p − Vp)(1− σ )β(Ip + η1Ia + η2Is)

+(V0 − V)(1− ψ)β(Ip + η1Ia + η2Is)

0

0

0















As t → ∞, the total populationN is bounded above by ∧
µ
which

implies that the state variables S,Vp, and V satisfy the inequalities:

0 < S ≤ N ≤ ∧
µ
, 0 < Vp ≤ N ≤ ∧

µ
, and 0 < V ≤ N ≤ ∧

µ
.

Consequently, after algebraic manipulation, we have

S0 − S ≈ S0 −
∧

µ

=
∧

µ





1

1+ (1−h1)θ1(µ+ω2+(1−h2)θ2)+(1−h3)θ3(µ+ω1+(1−h2)θ2)
(µ+ω2)(µ+ω1+(1−h2)θ2)

− 1



 ,

(14)

V0
p − Vp ≈ V0

p −
∧

µ

=
∧

µ





1

1+ (1−h1)θ1(1−h2)θ2+(µ+ω2)(1−h3)θ3(µ+ω1+(1−h2)θ2)
(1−h1)θ1(µ+ω2)

− 1



 ,

(15)

V0 − V ≈ V0 −
∧

µ

=
∧

µ





1

1+ (1−h1)θ1(µ+ω2)+(µ+ω2)(µ+ω1+(1−h2)θ2)
(1−h1)θ1(1−h2)θ2+(1−h3)θ3(µ+ω1+(1−h2)θ2)

− 1



 . (16)
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It is clear that the first terms inside the brackets in equations

(14), (15), and (16) are all less than one, which implies S0 − S <

0,V0
p − Vp < 0, and V0 − V < 0. The implication of this is that

Ĝ2(Z, P) � 0. Hence, condition (ii) for global asymptotic stability is

not satisfied. Thus, the COVID-free equilibrium CFE is not globally

asymptotically stable. This signals a possibility of occurrence of

bistability phenomenon where multiple equilibria coexist when the

control reproduction number is less than unity. In what follows,

we investigate the persistence of COVID-19 pandemic in the

population through determining the endemic equilibrium point of

model system (1).

3.5 COVID-19 persistence equilibria

In this subsection, we determine the endemic equilibrium

points of model system (1) by considering that the COVID-

19 is persistent in the population. Thus, we set the right-

hand side of equation (1) to zero and evaluate for steady

states S∗,V∗
p ,V

∗,E∗, I∗p , I
∗
a , I

∗
s (note the steady state R∗ has been

omitted due to the fact that the model dynamics of equation

(1) do not depend on state variable R). For the purpose of

mathematical simplification, the endemic equilibrium is expressed

in terms of the force of infection, which at equilibrium is

denoted by λ∗ = β(I∗p + η1I
∗
a + η2I

∗
s ). Let D1 and

D2 remain as previously defined in equation (9), then we

define

D3 = (1− h1)θ1, D4 = µ+ (1− h2)θ2, D5 = ω2(1− h1)θ1,

D6 = (1− h3)θ3,

D7 = (1− h2)θ2,

D8 = [(D1 + (1− ψ)λ∗)(µ+ λ∗)

+ D6(µ+ (1− ψ)λ∗)][D2 + (1− σ )λ∗]

+ D3[µ+ (1− ψ)λ∗][D4 + (1− σ )λ∗]+ D5[µ+ (1− σ )λ∗],

D9 = (µ+ φ)(µ+ γa)(µ+ d + γs)(µ+ α).

Now, the steady states expressed in terms of force of infection

at equilibrium are given as

S∗ =
∧(D2 + (1− σ )λ∗)(D1 + (1− ψ)λ∗)

D8
,

V∗
p =

∧D3(D1 + (1− ψ)λ∗)

D8
,

V∗ =
∧(D3D7 + D6(D2 + (1− σ )λ∗))

D8
,

E∗ =λ∗ ∧
(

(D2+(1−σ )λ∗)(D1+(1−ψ)λ∗)+(1−σ )D3(D1+(1−ψ)λ∗)+(1−ψ)(D3D7+D6(D2+(1−σ )λ∗))
D8

)

,

(17)

I∗p =
φ

(µ+ α)(µ+ φ)D8
E∗,

I∗a =
(1− v)α

µ+ γa
I∗p ,

I∗s =
vα

(µ+ d + γs)
I∗p .

Substituting I∗p , I
∗
a , and I∗s into the force of infection

at equilibrium yields the following fourth degree polynomial

expressed as a function of λ∗

g(λ∗) = λ∗(C3λ
∗3 + C2λ

∗2 + C1λ
∗ + C0) = 0, (18)

where

C3 =D9(1− σ )(1− ψ),

C2 =µD9(1− ψ)(1− σ )+ D1D9(1− σ )+ D2D9(1− ψ)

+ (1− ψ)(1− σ )D6D9 + D3D9(1− ψ)(1− σ )

− (µ+ γa)(µ+ d + γs)βφ ∧ (1− σ )(1− ψ)

− (µ+ d + γs)βη1(1− v)αφ ∧ (1− σ )(1− ψ)

− (µ+ γa)βη2vαφ ∧ (1− σ )(1− ψ),

C1 =µD9D1(1− σ )+ µD9D2(1− ψ)+ D1D2D9

+ µ(1− σ )D6D9 + D2D6D9(1− ψ)+ D3D9µ(1− σ )

+ D3D4D9(1− ψ)+ D5D9(1− σ )

− (µ+ γa)(µ+ d + γs)βφ ∧ D2(1− ψ)

− (µ+ γa)(µ+ d + γs)D1βφ ∧ (1− σ )

− (µ+ γa)(µ+ d + γs)βφ ∧ (1− σ )(1− ψ)D3

− (µ+ γa)(µ+ d + γs)βφ ∧ (1− ψ)(1− σ )D6

− (µ+ d + γs)βη1(1− v)αφD2(1− ψ)

− (µ+ d + γs)βη1(1− v)αφ ∧ (1− σ )D1

− (µ+ d + γs)βη1(1− v)αφ ∧ (1− σ )(1− ψ)D3

− (µ+ d + γs)βη1(1− v)αφ ∧ (1− ψ)(1− σ )D6

− (µ+ γa)βη2vαφ ∧ D2(1− ψ)

− (µ+ γa)βη2vαφ ∧ (1− σ )D1

− (µ+ γa)βη2vα ∧ (1− σ )(1− ψ)D3

− (µ+ γa)βη2vαφ ∧ (1− ψ)(1− σ )D6,

C0 =µD9D1D2 + µD2D6D9 + µD3D4D9 + µD5D9

− (µ+ γa)(µ+ d + γs)βφ ∧ D1D2

− (µ+ γa)(µ+ d + γs)βφ ∧ D1D3(1− σ )

− (µ+ γa)(µ+ d + γs)βφ ∧ (1− ψ)D3D7

− (µ+ γa)(µ+ d + γs)βφ ∧ (1− ψ)D2D6

− (µ+ d + γs)βη1(1− v)αφ ∧ D1D2

− (µ+ d + γs)βη1(1− v)αφ ∧ D1D3(1− σ )

− (µ+ d + γs)βη1(1− v)αφ ∧ (1− ψ)D3D7

− (µ+ d + γs)βη1(1− v)αφ ∧ (1− ψ)D2D6

− (µ+ γa)βη2vαφ ∧ D1D2

− (µ+ γa)βη2vαφ ∧ (1− σ )D1D3

− (µ+ γa)βη2vαφ ∧ (1− ψ)D3D7

− (µ+ γa)βη2vαφ ∧ (1− ψ)D2D6

which can be simplified to

=D9(K1 + K2D2)− (µ+ γa)(µ+ d + γs)βφ ∧̟

− (µ+ d + γs)βη1(1− v)αφ ∧̟

− (µ+ γa)βη2vαφ ∧̟ ,

=D9(K1 + K2D2)(1−Rc).

(19)

In equation (18), λ∗ = 0 corresponds to COVID-free

equilibrium CFE. Hence, the possible number of endemic equilibria
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for model system (1) is obtained by evaluating for λ∗ in the

following third-degree polynomial

g1(λ
∗) = C3λ

∗3 + C2λ
∗2 + C1λ

∗ + C0 = 0 (20)

and substituting the corresponding roots in (17). It is

straightforward to note that if the vaccines administered are

imperfect (i.e., σ ,ψ < 1), then C3 is always positive while

C0 can be positive/negative depending on whether the control

reproduction number is less/greater than unity. Note that forRc =

1, C0 reduces to zero. The number of endemic equilibria for the

cubic polynomial (20) has been comprehensively studied using the

technique by Descartes, usually referred as Descartes rule of signs

[67]. Supplementary Table S1 (in the Supplementary Material S1)

gives the possible number of COVID-19 persistent equilibria and

the corresponding type of bifurcation structure.

For a perfect vaccine (i.e., σ = ψ = 1,ω1 = ω2 = 0), C3 and

C2 become zero leading to the following linear equation:

g2(λ
∗) = C11λ

∗∗ + C00 = 0, (21)

where

C11 =µD22D9,C00 = D9(K11 + K22D22)(1−Rca),

Rca =Rc|(σ=ψ=1,ω1=ω2=0) =
̟1β ∧ φQ0

(µ+ φ)(µ+ α)(K11 + K22D22)
,

where ̟1 =µD22, D22 = (µ+ (1− h2)θ2),

K11 =µ(1− h1)θ1D22, K22 = µ(µ+ (1− h3)θ3).

Solving linear equation (21) yields

λ∗∗ =
−D9(K11 + K22D22)(1−Rca)

C11
.

Hence, equation (21) has a unique positive root λ∗∗ whenever

Rca > 1 and a negative root whenever Rca < 1. The

epidemiological implication of non-existence of a positive endemic

equilibrium point when Rca < 1 is that it is sufficient to

eradicate COVID-19 pandemic by implementing control strategies

that decrease control reproduction number below one. That is,

for vaccines (both single-dose and double-dose vaccines) with

100% effectiveness against COVID-19, the model system (1) has

a unique endemic equilibrium point which we shall denote by

E∗1 = (S∗∗,V∗∗
p ,V∗∗,E∗∗I∗∗p , I∗∗a , I∗∗s ) that is globally asymptotically

stable wheneverRca > 1. Thus, the following theorem follows.

Theorem 4. Provided the vaccine is perfect (i.e., σ = ψ = 1,ω1 =

ω2 = 0) andRca > 1, the unique endemic equilibrium point E∗1 is

globally asymptotically stable.

Proof: Using the well-known scalar function for investigating

global stability [68] [see also the recent study [69] where an

auxiliary function has been used], we define the following

Lyapunov candidate function:

W(S,Vp,V ,E, Ip, Ia, Is) =

(

S− S∗∗ − S∗∗ ln
S

S∗∗

)

+

(

Vp − V∗∗
p − V∗∗

p ln
Vp

V∗∗
p

)

+

(

V − V∗∗ − V∗∗ ln
V

V∗∗

)

(22)

+

(

E− E∗∗ − E∗∗ ln
E

E∗∗

)

+

(

Ip − I∗∗p − V∗∗
p ln

Vp

V∗∗
p

)

(23)

+

(

Ia − I∗∗a − I∗∗a ln
Ia

I∗∗a

)

+

(

Is − I∗∗s − I∗∗s ln
Is

I∗∗s

)

. (24)

The orbital derivative of (22) is given by

dW

dt
=

(

1−
S∗∗

S

)

dS

dt
+

(

1−
V∗∗
p

Vp

)

dVp

dt

+

(

1−
V∗∗

V

)

dV

dt
+

(

1−
E∗∗

E

)

dE

dt

+

(

1−
I∗∗p

Ip

)

dIp

dt
+

(

1−
I∗∗a
Ia

)

dIa

dt
+

(

1−
I∗∗s
Is

)

dIs

dt
,

=

(

1−
S∗∗

S

)

(∧ − (µ+ λ+ (1− h1)θ1 + (1− h3)θ3)S)

+

(

1−
V∗∗
p

Vp

)

((1− h1)θ1S− (µ+ (1− h2)θ2)Vp)

+

(

1−
V∗∗

V

)

((1− h2)θ2Vp + (1− h3)θ3S− µV)

+

(

1−
E∗∗

E

)

(λS− (µ+ φ)E)

+

(

1−
I∗∗p

Ip

)

(φE− (µ+ α)Ip)

+

(

1−
I∗∗a
Ia

)

((1− v)αIp − (µ+ γa)Ia)

+

(

1−
I∗∗s
Is

)

(vαIp − (µ+ d + γs)Is). (25)

At equilibrium, the following equalities hold:

∧ = (µ+ λ∗∗ + (1− h1)θ1 + (1− h3)θ3)S
∗∗,

(1− h1)θ1
S∗∗

V∗∗
p

= (µ+ (1− h2)θ2),

µ = (1− h2)θ2
V∗∗
p

V∗∗
+ (1− h3)θ3

S∗∗

V∗∗
,

λ∗∗ = (µ+ φ)
E∗∗

S∗∗
, (µ+ α) =

φE∗∗

I∗∗p
,

(1− v)α = (µ+ γa)
I∗∗a
I∗∗p

, vα = (µ+ d + γs)
I∗∗s
I∗∗p

. (26)

Substituting (26) in (25) and simplifying yields

dW

dt
=µS∗∗

(

2−
S

S∗∗
−

S∗∗

S

)

+ λ∗∗S∗∗
(

3−
S∗∗

S
−

E

E∗∗
−

λSE∗∗

λ∗∗S∗∗E

)

+ (1− h1)θ1S
∗∗

(

3−
S∗∗

S
−

Vp

V∗∗
p

−
SV∗∗

p

S∗∗Vp

)

+ (1− h3)θ3S
∗∗

(

3−
S∗∗

S
−

V

V∗∗
−

V∗∗S

VS∗∗

)

+ (1− h2)θ2V
∗∗
p

(

1+
Vp

V∗∗
p

−
V

V∗∗
−

VpV
∗∗

V∗∗
p V

)

+ φE∗∗

(

1+
E

E∗∗
−

Ip

I∗∗p
−

I∗∗p E

IpE∗∗

)
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+ (µ+ d + γs)I
∗∗
s

(

1+
Ip

I∗∗p
−

Is

I∗∗s
−

I∗∗s Ip

I∗∗s I∗∗p

)

+ (µ+ γa)I
∗∗
a

(

1+
Ip

I∗∗p
−

Ia

I∗∗a
−

I∗∗a Ip

IaI
∗∗
p

)

. (27)

The fifth, sixth, seventh, and eighth terms in equation (27) together

with further explanation in Supplementary Material [S2] can be

re-written as follows:

(1− h2)θ2V
∗∗
p

(

1+
Vp

V∗∗
p

−
V

V∗∗
−

VpV
∗∗

V∗∗
p V

)

= (1− h2)θ2V
∗∗
p

(

2−
VpV

∗∗

V∗∗
p V

−
V∗∗
p V

VpV∗∗

+

(

V∗∗
p V

VpV∗∗
− 1

)(

1−
Vp

V∗∗
p

))

(28)

≤ (1− h2)θ2V
∗∗
p

(

2−
VpV

∗∗

V∗∗
p V

−
V∗∗
p V

VpV∗∗

)

, (29)

φE∗∗

(

1+
E

E∗∗
−

Ip

I∗∗p
−

I∗∗p E

IpE∗∗

)

= φE∗∗

(

2−
I∗∗p E

IpE∗∗
−

IpE
∗∗

I∗∗p E
+

(

IpE
∗∗

I∗∗p E
− 1

)

(

1−
E

E∗∗

)

)

≤ φE∗∗

(

2−
I∗∗p E

IpE∗∗
−

IpE
∗∗

I∗∗p E

)

, (30)

(µ+ d + γs)I
∗∗
s

(

1+
Ip

I∗∗p
−

Is

I∗∗s
−

I∗∗s Ip

IsI
∗∗
p

)

= (µ+ d + γs)I
∗∗
s

(

2−
I∗∗s Ip

IsI
∗∗
p

−
IsI

∗∗
p

I∗∗s Ip

+

(

IsI
∗∗
p

I∗∗s Ip
− 1

)(

1−
Ip

I∗∗p

))

(31)

≤ (µ+ d + γs)I
∗∗
s

(

2−
Is∗∗Ip

IsI
∗∗
p

−
IsI

∗∗
p

I∗∗s Ip

)

, (32)

(µ+ γa)I
∗∗
a

(

1+
Ip

I∗∗p
−

Ia

I∗∗a
−

I∗∗a Ip

IaI
∗∗
p

)

= (µ+ γa)I
∗∗
a

(

2−
I∗∗a Ip

IaI
∗∗
p

−
IaI

∗∗
p

I∗∗a Ip
+

(

IaI
∗∗
p

I∗∗a Ip
− 1

)(

1−
Ip

I∗∗p

))

≤ (µ+ γa)I
∗∗
a

(

2−
I∗∗a Ip

IaI
∗∗
p

−
IaI

∗∗
p

I∗∗a Ip

)

. (33)

Substituting inequalities (29)-(33) in (27) leads to

dW

dt
≤µS∗∗

(

2−
S

S∗∗
−

S∗∗

S

)

+ λ∗∗S∗∗
(

3−
S∗∗

S
−

E

E∗∗
−

λSE∗∗

λ∗∗S∗∗E

)

+ (1− h1)θ1S
∗∗

(

3−
S∗∗

S
−

Vp

V∗∗
p

−
SV∗∗

p

S∗∗Vp

)

+ (1− h3)θ3S
∗∗

(

3−
S∗∗

S
−

V

V∗∗
−

V∗∗S

VS∗∗

)

(34)

+ (1− h2)θ2V
∗∗
p

(

2−
VpV

∗∗

V∗∗
p V

−
V∗∗
p V

VpV∗∗

)

+ φE∗∗

(

2−
I∗∗p E

IpE∗∗
−

IpE
∗∗

I∗∗p E

)

+ (µ+ d + γs)I
∗∗
s

(

2−
I∗∗s Ip

IsI
∗∗
p

−
IsI

∗∗
p

I∗∗s Ip

)

+ (µ+ γa)I
∗∗
a

(

2−
I∗∗a Ip

IaI
∗∗
p

−
IaI

∗∗
p

I∗∗a Ip

)

.

Considering the fact that the geometric mean is smaller than the

arithmeticmean, it follows that dW
dt

≤ 0, with equality holding (i.e.,
dW
dt

= 0) if and only if S = S∗∗,Vp = V∗∗
p ,V = V∗∗,E = E∗∗, Ip =

I∗∗p , Ia = I∗∗a , and Is = I∗∗s . Hence, W is a suitable Lyapunov

function in the region 1, and the unique endemic equilibrium E∗1
is globally asymptotically stable whenRca > 1. This implies that if

the vaccines being administered are perfect, all trajectories of model

system (1) whose initial conditions are in the region 1 eventually

converge to the unique endemic equilibrium point E∗1 as t → ∞

provided Rca > 1. Epidemiologically, it means that model system

(1) cannot exhibit the phenomenon of backward bifurcation if the

vaccine efficacy is 100% and everlasting.

3.6 Analysis of non-specific case
(imperfect vaccine)

Theorem 4 implies that in case the vaccines administered are

perfect and livelong, then the model system (1) cannot have the

phenomenon of backward bifurcation. In this subsection, we relax

the possibility of a perfect and everlasting vaccine but instead

investigate model dynamics in presence of an imperfect vaccine.

3.6.1 Occurence of the phenomenon of
backward bifurcation

To investigate whether the model system (1) exhibits bistability

phenomenon, we apply the center manifold theory as descrbed by

Castillo-Chavez et al. [70]. Given at the point Rca = 1 is where

there is change in bifurcation structure, we choose β = β∗ as our

bifurcation parameter where β∗ is obtained by settingRca = 1 and

evaluating for β . That is

β = β∗ =
(µ+ φ)(µ+ α)(µ+ γa)(µ+ d + γs)(K1 + K2D2)

̟ ∧ φQ0
.

(35)

For the purpose of simplification, we re-write model system (1)

using new variables denoted by S = x1,Vp = x2,V = x3,E =

x4, Ip = x5, Ia = x6, Is = x7) and the total population size N =
∑7

i xi. Let X = (x1, x2, x3, x4, x5, x6, x7)
T (T denotes transpose),

which implies dX
dt

= F(X) where F = (f1, f2, f3, f4, f5, f6, f7). With

the new variables, the CFE = (x∗1 , x
∗
2 , x

∗
3 , 0, 0, 0, 0). Now, we define

the model system (1) as follows:

dx1

dt
=f1 = ∧+ ω1x2 + ω2x3 − (µ+ β(x5 + η1x6 + η2x7)
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+ (1− h1)θ1 + (1− h3)θ3)x1,

dx2

dt
=f2 = (1− h1)θ1x1 − (µ+ ω1 + (1− h2)θ2

+ (1− σ )β(x5 + η1x6 + η2x7))x2,

dx3

dt
=f3 = (1− h2)θ2x2 + (1− h3)θ3x1 − (µ+ ω2

+ (1− ψ)β(x5 + η1x6 + η2x7))x3, (36)

dx4

dt
=f4 = β(x5 + η1x6 + η2x7)x4

+ (1− σ )β(x5 + η1x6 + η2x7)x2

+ (1− ψ)β(x5 + η1x6 + η2x7)x3 − (µ+ φ)x4,

dx5

dt
=f5 = φx4 − (µ+ α)x5,

dx6

dt
=f6 = (1− v)αx5 − (µ+ γa)x6,

dx7

dt
=f7 = vαx5 − (µ+ d + γs)x7.

The Jacobian matrix of model (36) evaluated at CFE is given by:

J(CFE)|β=β∗ =























−(µ+ D3 + D6) ω1 ω2 0 −β∗x∗1 −β∗η1x
∗
1 −βη2x

∗
1

D7 −D2 0 0 −(1− σ )β∗x∗2 −(1− σ )β∗η1x
∗
2 −(1− σ )β∗η2x

∗
2

D6 D7 −D1 0 −(1− ψ)β∗x∗3 −(1− ψ)β∗η1x3 −(1− ψ)β∗η2x3
0 0 0 −(µ+ φ) J45 J46 J47
0 0 0 φ −(µ+ α) 0 0

0 0 0 0 −(1− v)α −(µ+ γa) 0

0 0 0 0 vα 0 −(µ+ d + γs)























,

where J45 = β∗x∗1 + (1 − σ )β∗x∗2 + (1 − ψ)β∗x∗3 , J46 =

β∗η1x
∗
1 + (1 − σ )β∗η1x

∗
2 + (1 − ψ)β∗η1x

∗
3 , and J47 = β∗η2x

∗
1 +

(1− σ )β∗η2x
∗
2 + (1− ψ)β∗η2x

∗
3

Now, the right eigenvector corresponding to the zero

eigenvalue of the Jacobian matrix J(CFE)|β=β∗ is obtained as Ṽ =

(ṽ1, ṽ2, ṽ3, ṽ4, ṽ5, ṽ6, ṽ7)
T , where

ṽ1 =

(

D2(P1D1 + ω2P2)

D7(Q1D1 + ω2Q2)
+

(1− σ )x∗2Q0

D7(µ+ γa)(µ+ d + γs)

)

β∗ṽ5,

ṽ2 =

(

P1D1 + ω2P2

Q1D1 + ω2Q2

)

β∗ṽ5,

ṽ3 =

(

(Q2P1D1 + Q2ω2P2)− P2(Q1D1 + ω2Q2)

D1D7(Q1D1 + ω2Q2)

)

β∗ṽ5,

ṽ4 =
(µ+ α)

φ
ṽ5,

ṽ5 = ṽ5 > 0,

ṽ6 =
(1− v)α

(µ+ γa)
ṽ5,

ṽ7 =
vα

(µ+ d + γs)
ṽ5, and

P1 =
(µ+ D3 + D6)(1− σ )x

∗
2Q0 + x∗1Q0D7

(µ+ γa)(µ+ d + γs)
,

P2 =
(1− ψ)x∗3D7Q0 − (1− σ )x∗2D6Q0

(µ+ γa)(µ+ d + γs)
,

Q1 =(ω1D7 − (µ+ D3 + D6)D2), Q2 = D2D6 + D2
7.

Similarly, the left eigenvector corresponding to the zero eigenvalue

of J(CFE)|β=β∗ is given by W̃ = (w̃1, w̃2, w̃3, w̃4, w̃5, w̃6, w̃7)
T

where

w̃1 = w̃2 = w̃3 = 0, w̃4 =
φ

(µ+ φ)
w5, w̃5 = w̃5 > 0,

w̃6 =
J46φ

(µ+ φ)(µ+ γ )
w̃5,

w̃7 =
J47φ

(µ+ φ)(µ+ d + γs)
w̃5.

As described in Theorem 4.1 of Castillo-Chavez [70],

the type of bifurcation structure exhibited by the model is

determined by the bifurcation coefficients, a and b which are

defined as

a =

7
∑

k,i,j=1

w̃kṽiṽj
∂2fk(0, 0)

∂xi∂xj
, b =

7
∑

k,j=1

w̃kṽi
∂2fk(0, 0)

∂xi∂β∗
.

Computations involving parameter a: Now, we proceed and

determine the non-vanishing partial derivatives evaluated at the

COVID-free equilibrium CFE ofmodel equation (36). These partial

derivatives include:

∂2f4(0, 0)

∂x5∂x1
= β∗,

∂2f4(0, 0)

∂x6∂x1
= η1β

∗,
∂2f4(0, 0)

∂x7∂x1

= η2β
∗,
∂2f4(0, 0)

∂x5∂x2
= (1− σ )β∗,

∂2f4(0, 0)

∂x6∂x2

= (1− σ )β∗η1,
∂2f4(0, 0)

∂x7∂x3
= (1− σ )β∗η2,

∂2f4(0, 0)

∂x5∂x3

= (1− ψ)β∗,
∂2f4(0, 0)

∂x6∂x3
= (1− ψ)β∗η1,

∂2f4(0, 0)

∂x7∂x3
= (1− ψ)β∗η2.

Hence,

a =w̃4ṽ1ṽ2
∂2f4(0, 0)

∂x1∂x5
+ w̃4ṽ1ṽ6

∂2f4(0, 0)

∂x1∂x6
+ w̃4ṽ1ṽ7

∂2f4(0, 0)

∂x1∂x7

+ w̃4ṽ2ṽ5
∂2f4(0, 0)

∂x2∂x5
+ w̃4ṽ2ṽ6

∂2f4(0, 0)

∂x2∂x6

+ w̃4ṽ2ṽ7
∂2f4(0, 0)

∂x2∂x7
+ w̃4ṽ3ṽ5

∂2f4(0, 0)

∂x3∂x5
+ w̃4ṽ3ṽ6

∂2f4(0, 0)

∂x3∂x6

+ w̃4ṽ3ṽ7
∂2f4(0, 0)

∂x3∂x7

=
φw̃5ṽ

2
5β

∗2Q0

(µ+ φ)(µ+ γa)(µ+ d + γs)
(Ŵ1 − Ŵ2), where

Ŵ1 =

(

D2(P1D1 + ω2P2)

D7(Q1D1 + ω2Q2)
+

(1− σ )x∗2Q0

D7(µ+ γa)(µ+ d + γs)

)

+
(P1D1 + ω2P2)(1− σ )

(Q1D1 + ω2Q2)

+
(Q2P1D1 + Q2ω2P2)(1− ψ)

D1D7(Q1D1 + ω2Q2)

Ŵ2 =
P2

D1D7
.
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Computations involving bifurcation parameter b: The

bifurcation parameter b is associated with the following non-

vanishing partial derivatives evaluated at CFE :

∂2f4(0, 0)

∂x5∂β∗
=

∧(D1D2 + (1− σ )(1− h1)θ1D1 + (1− ψ)

((1− h1)θ1(1− h2)θ2 + (1− h3)θ3D2))

K1 + K2D2

=
∧̟

K1 + K2D2
,

∂2f4(0, 0)

∂x6∂β∗
=

η1 ∧ (D1D2 + (1− σ )(1− h1)θ1D1

+(1− ψ)((1− h1)θ1(1− h2)θ2 + (1− h3)θ3D2))

K1 + K2D2

=
η1 ∧̟

K1 + K2D2
,

∂2f4(0, 0)

∂x7∂β∗
=

η2 ∧ (D1D2 + (1− σ )(1− h1)θ1D1

+(1− ψ)((1− h1)θ1(1− h2)θ2 + (1− h3)θ3D2))

K1 + K2D2

=
η2 ∧̟

K1 + K2D2
.

Hence,

b =w̃4ṽ5
∂2f4(0, 0)

∂x5∂β∗
+ w̃4ṽ6

∂2f4(0, 0)

∂x6∂β∗
+ w̃4ṽ7

∂2f4(0, 0)

∂x7∂β∗

=

(

φw̃5ṽ5

(µ+ φ)

)(

∧̟

K1 + K2D2

)(

Q0

(µ+ γa)(µ+ d + γs)

)

> 0.

Note that the eigenvectors w̃4 and ṽ5 are always positive and

Q0 > 0; hence, b is non-negative. For backward bifurcation

to occur, we need both a and b to be positive. Notice that the

bifurcation parameter a is positive if Ŵ1 > Ŵ2. Thus, backward

bifurcation can occur if the inequality

Ŵ1 > Ŵ2 (37)

holds. In case vaccines are perfect and permanent, (i.e., σ = ψ =

1,ω1 = ω2 = 0) Ŵ2, P2 are equal to zero while Ŵ1 reduces to

Ŵ1 = −
D22Q0x

∗
11

(µ+ (1− h2)θ2)((1− h3)θ3 + (µ

+(1− h1)θ1))(µ+ γa)(µ+ d + γs)

< 0,

where

x∗11 = S0|(ψ=σ=1,ω1=ω2=0) =
µD11

(K11 + K22D22)
> 0.

The observations that a < 0 when vaccines administered

are assumed to be perfect and everlasting (i.e., ψ = σ =

1,ω1 = ω2 = 0) agree with the global asymptotic stability

results proved in Theorem 4. However, if the vaccines administered

among susceptible and partially vaccinated cohorts are imperfect

and non-permanent hence, allowing for breakthrough infections

to occur, the well-known backward bifurcation phenomenon [71–

73] may arise. The epidemiological implication of the occurrence

of backward bifurcation is that it will be more difficult for

implemented intervention measures to eliminate the COVID-19

pandemic. This is due to the fact that reducing Rc below unity

will be necessary but not sufficient. Thus, following the above

bifurcation analysis, we state the following result:

Theorem 5. Provided the inequality given by (37) holds, the

COVID-19 model system (1) exhibits backward bifurcation

phenomenon whenRc crosses unity.

4 Model incorporating optimal
control theory

To gain insight on the most effective combination of

mitigation strategies that can be adopted to significantly minimize

the spread of COVID-19 pandemic as well as the cost,

we introduce three time-dependent control measures that are

broadly categorized as either non-pharmaceutical (NPIs) and

pharmaceutical control measures. Thus, the proposed model (1)

is transformed to an optimal control COVID-19 infection model.

The non-pharmaceutical time-dependent COVID-19 control is

denoted by u1(t), which represents preventive control measures

that involve social/physical distancing, wearing face mask,

hand washing, and adherent to education on proper hygiene

among susceptible, partially vaccinated (with a double-dose

vaccine) and fully vaccinated individuals (with either double-

dose or single-dose vaccine). The pharmaceutical time-dependent

intervention measures include u2(t) which represents a time-

dependent screening-management control measure for infectious

individuals in the subgroups Ia and Is, and θ3(t) which represents

time-dependent vaccination control for susceptible individuals

with a single-dose vaccine. Incorporating these time-dependent

control measures, the model system (1) transforms to the

following non-linear (also non-autonomous) system of ordinary

differential equations:

dS

dt
=∧+ω1Vp + ω2V − (µ+ (1− u1(t))λ+ (1− h1)θ1

+ (1− h3)θ3(t))S,
dVp

dt
= (1− h1)θ1S− (µ+ ω1

+ (1− h2)θ2 + (1− u1(t))(1− σ )λ)Vp,

dV

dt
=(1− h2)θ2Vp + (1− h3)θ3(t)S− (µ+ ω2

+ (1− u1(t))(1− ψ)λ)V ,

dE

dt
=(1− u1(t))λ(S+ (1− σ )Vp + (1− ψ)V)− (µ+ φ)E,

(38)

dIp

dt
=φE− (µ+ α)Ip,

dIa

dt
=(1− v)αIp − (µ+ γa + cu2(t))Ia,

dIs

dt
=vαIp − (µ+ d + γs + cu2(t))Is,

dR

dt
=(γa + cu2(t))Ia + (γs + cu2(t))Is − µR.

In model system (38), the parameter c accounts for control rate

constant while the terms 1− u1(t), θ3(t), and u2(t) are the controls

that aim to curb the spread of the COVID-19 pandemic over a

long time scale. Note that u1, θ3, u2 ∈ [0, 1]. Given the objective

of time-dependent control measures is to attempt to mitigate the

proliferation of COVID-19 pandemic and eventually eradicating it

by; minimizing the sub-populations of infectious individuals and
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also minimizing the cost of mitigation strategies, we define the

objective functional as

J(u1, θ3, u2) =

∫ Tf

0

(

A1Ip(t)+A2Ia(t)+A3Is(t)

+
1

2

(

B1u
2
1(t)+ B2θ

2
3 (t)+ B3u

2
2(t)

)

)

dt, (39)

where Tf denotes the terminal time such that t ∈ [0,Tf ] while Aj

and Bj (j = 1, 2, 3) represent weight constants. The term B1u
2
1/2 is

the cost associated with adopting non-pharmaceutical intervention

measures which include social/physical distancing, wearing face

masks, hand washing, and adhering to proper hygiene education

among individuals in the subgroups S,Vp, and V , and B2θ
2
3 /2

is the cost associated with vaccination of susceptible individuals

with a single-dose vaccine. Furthermore, the term B3u
2
2/2 is the

cost associated with COVID-19 screening-management for both

individuals in Ia and Is compartments. The choice of a quadratic

cost function is motivated by the relevant literature in the sequel

on optimal control problems [for instance, see Okyere et al. [74],

Ghosh et al. [75], Bonyah et al. [76], Purwati et al. [77], Lenhart and

Workman [78] and Olaniyi et al. [79]]. Thus, we now proceed to

find a U∗ = (u∗1 , θ
∗
3 , u

∗
2) which fulfills

J(U∗) = min{J(u1, θ3, u2) | u1, θ3, u2 ∈ U}, (40)

where U is a Lebesgue measurable control set which has a lower

bound as zero and an upper bound 1 for t ∈ [0,Tf ].

4.1 Characterization of the optimal
controls

Following Pontryagin’s maximum principle originally

described in Pontryagin [80], we establish the necessary conditions

that an optimal control COVID-19 model system (38) needs

to fulfill. The technique outlined by Pontryagin et al. [80]

enables conversion of the model system (38) in synergy with

the objective functional (39) into a problem of minimizing

pointwise a Hamiltonian H with respect to the time-dependent

control measures; u1(t), θ3(t), u2(t). Consequently, we define the

Hamiltonian of model system (38) as

H(t, y,U) = P(t, y,U)+

8
∑

j=1

λjqj, (41)

where y = (S,Vp,V ,E, Ip, Ia, Is,R) represents COVID-19 model

state variables, P(t, y,U) is a Lagrangian which represents

the integrand of the objective functional, and λj represents

the corresponding adjoint variables for the model states

S,Vp,V ,E, Ip, Ia, Is,R. Moreover, qj is the right-hand term of

the model system (38). Thus, the HamiltonianH is stated explicitly

as

H =A1Ip +A2Ia +A3Is +
1

2
(B1u

2
1 + B2θ

2
3 + B3u

2
2)

+ λ1[∧ + ω1Vp + ω2V − (µ+ (1− u1)β(Ip

+ η1Ia + η2Is)+ (1− h1)θ1 + (1− h3)θ3)S]

+ λ2[(1− h1)θ1S− (µ+ ω1 + (1− h2)θ2

+ (1− u1)(1− σ )β(Ip + η1Ia + η2Is))Vp]

+ λ3[(1− h2)θ2Vp + (1− h3)θ3S− (µ+ ω2

+ (1− u1)(1− ψ)β(Ip + η1Ia + η2Is))V]

+ λ4[(1− u1)(β(Ip + η1Ia + η2Is)(S

+ (1− σ )Vp + (1− ψ)V)− (µ+ φ)E]

+ λ5[φE− (µ+ α)Ip]

+ λ6[(1− v)αIp − (µ+ γa + cu2)Ia]

+ λ7[vαIp − (µ+ d + γs + cu2)Is]

+ λ8[(γa + cu2)Ia + (γs + cu2)Is − µR].

We now establish the following results:

Theorem 6. Assuming a solution of the optimal control problem

for the objective functional J over the control set V is obtained,

then the adjoint variables λ1, λ2, · · · , λ8 fulfill the adjoint equations

dλj

dt
= −

∂H

∂y

with λj(Tf ) = 0 as transversality condition and y =

(S,Vp,V ,E, Ip, Ia, Is,R). Moreover, optimal controls are given as

u∗1 =min {1,max {0,11}} ,

θ∗ =min {1,max {0,12}} ,

u∗2 =min {1,max {0,13}} ,

where

11 =

[(λ4 − λ1)S+ (1− σ )(λ4 − λ2)Vp + (1− ψ)(λ4 − λ3)V]

β(Ip + η1Ia + η2Is)

B1
,

12 =
(λ1 − λ3)(1− h3)S

B2
,

12 =
(λ6 − λ8)cIa + (λ7 − λ8)cIs

B3
.

Proof: Let U∗ = (u∗1 , θ
∗, u∗2). By Pontryagin’s maximum principle,

the state variables of the model (38) and adjoint variables satisfy the

following relations which are obtained from the HamiltonianH :

dλ1

dt
= −

∂H

∂S
, λ1(Tf ) = 0,

dλ2

dt
= −

∂H

∂Vp
, λ2(Tf ) = 0,

dλ3

dt
= −

∂H

∂V
, λ3(Tf ) = 0,

dλ4

dt
= −

∂H

∂E
, λ4(Tf ) = 0,

dλ5

dt
= −

∂H

∂Ip
, λ5(Tf ) = 0,

dλ6

dt
= −

∂H

∂Ia
, λ6(Tf ) = 0,

dλ7

dt
= −

∂H

∂Is
, λ7(Tf ) = 0,

dλ8

dt
= −

∂H

∂R
, λ8(Tf ) = 0.

That is, the adjoint equations can now be expressed as

dλ1

dt
=(λ1 − λ4)(1− u1)β(Ip + η1Ia + η2Is) (42)

+ (λ1 − λ2)(1− h1)θ1 + (λ1 − λ3)(1− h3)θ3 + µλ1,

dλ2

dt
=(λ2 − λ1)ω1 + (λ2 − λ3)(1− h2)θ2 (43)
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++(λ2 − λ4)(1− u1)(1− σ )β(Ip + η1Ia + η2Is)+ µλ2,

dλ3

dt
=(λ3 − λ1)ω2 + (λ3 − λ4)(1− u1)(1− ψ) (44)

+ β(Ip + η1Ia + η2Is)+ µλ3,

dλ4

dt
=(λ4 − λ5)φ + µλ4, (45)

dλ5

dt
=−A1 + (λ1 − λ4)(1− u1)βS (46)

+ (λ2 − λ4)(1− u1)(1− σ )βVp

+ (λ3 − λ4)(1− u1)(1− ψ)βV + (λ5 − λ6)α

+ (λ6 − λ7)vα + µλ5,

dλ6

dt
=−A2 + (λ1 − λ4)(1− u1)βη1S

+ (λ2 − λ4)(1− u1)(1− σ )βη1Vp

+ (λ3 − λ4)(1− u1)(1− ψ)βη1V

+ (λ6 − λ8)(γa + cu2)+ µλ6,

dλ7

dt
=−A3 + (λ1 − λ4)(1− u1)βη2S

+ (λ2 − λ4)(1− u1)(1− σ )β2Vp

+ (λ3 − λ4)(1− u1)(1− ψ)βη2V

+ (λ7 − λ8)(γs + cu2)+ (µ+ d)λ7,

dλ8

dt
=µλ8,

with the transversality conditions:

λ1(Tf ) = λ2(Tf ) = λ3(Tf ) = λ4(Tf ) = λ5(Tf )

= λ6(Tf ) = λ7(Tf ) = λ8(Tf ) = 0. (47)

Further in the interior of the set U where the controls are

bounded in 0 ≤ u1, θ3, u2 ≤ 1, we have the following optimality

conditions being satisfied:

0 =
∂H

∂u1
= B1u1 + λ1β(Ip + η1Ia + η2Is)S

+ λ2(1− σ )β(Ip + η1Ia + η2Is)Vp

+ λ3(1− ψ)β(Ip + η1Ia + η2Is)V − λ4β(Ip + η1Ia + η2Is)S

− λ4(1− σ )β(Ip + η1Ia + η2Is)Vp

− λ4(1− ψ)β(Ip + η1Ia + η2Is)V ,

0 =
∂H

∂θ3
= B2θ3 − λ1(1− h3)S+ λ3(1− h3)S,

0 =
∂H

∂u2
= B3u2 − λ6cIa − λ7cIs + λ8cIa + λ8cIs,

such that

u∗1 =

[(λ4 − λ1)S+ (1− σ )(λ4 − λ2)Vp

+(1− ψ)(λ4 − λ3)V]β(Ip + η1Ia + η2Is)

B1
,

θ∗ =
(λ1 − λ3)(1− h3)S

B2
, u∗2 =

(λ6 − λ8)cIa + (λ7 − λ8)cIs

B3
.

Given the time-dependent controls are bounded below by zero and

above by one, we summarize the characterization as

U∗ =















0 if k∗j ≤ 0

k∗j if 0 < k∗j < 1

1 if k∗j ≥ 1

where j = 1, 2, 3; U∗ = (u∗1 , θ
∗
3 , u

∗
2) and

k∗1 =

[(λ4 − λ1)S+ (1− σ )(λ4 − λ2)Vp + (1− ψ)(λ4 − λ3)V]

β(Ip + η1Ia + η2Is)

B1
,

k∗2 =
(λ1 − λ3)(1− h3)S

B2
, (48)

k∗3 =
(λ6 − λ8)cIa + (λ7 − λ8)cIs

B3
.

5 Numerical simulation and
discussion

To validate theoretical findings of model system (1), we

perform numerical simulations using MATLAB so as to gain

more insight on equilibrium dynamics as well as on time profiles.

Analytical analysis of the persistent COVID-19 equilibrium

indicates that the model exhibits the phenomenon of backward

bifurcation when certain conditions are satisfied as shown in

Theorem 5, that is, if the double-dose and single-dose vaccines

being administered are not 100% effective against suppressing

COVID-19 persistent, then there exist a set of parameters that

if they fulfill the condition that Ŵ1 > Ŵ2, and then bistability

phenomenon arises. Hence, plotting the solution of cubic equation

(20) (i.e., force of infection at equilibrium) as a function of the

effective contact rate β results to Figure 2Awhich clearly depicts the

phenomenon of backward bifurcation where COVID-19 persists

even when the control reproduction number is below unity.

The epidemiological implication of the occurrence of backward

bifurcation signals that it will not be sufficient to decrease Rc

below unity. Figure 2Bwhich is obtained by varying vaccine efficacy

among fully vaccinated individuals while all other parameters

remain fixed as in Table 1 shows that vaccine with high efficacy

leads to reduction of control reproduction numbers Rc, Rp, Ra,

and Rs. Figure 2B also corroborates with theoretical findings in

equation (11) where it is shown that infectious pre-symptomatic

individuals contribute significantly in the increase of control

reproduction number in comparison with truly asymptomatic and

symptomatic infectious individuals. In fact,Rp curve is higher than

Ra andRs curves for any given plausible set of parameter values.

5.1 Single-dose vs. double-dose
vaccination or both vaccination strategies

The COVID-19 model proposed adopted two vaccination

strategies, that is, vaccinating susceptible individuals with either

single-dose or double-dose vaccines. The parameters that relate to

vaccination rates are θ1, θ2, and θ3 where θ1 and θ2 represent first
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A B

FIGURE 2

(A) Illustration of the backward bifurcation phenomenon when vaccine is assumed to be imperfect. Parameters used are same as those in Table 1

except h1 = 0.1,h2 = 0.85,h3 = 0.01, θ1 = 0.015, θ2 = 0.68, θ3 = 0.075, σ = 0.5, v = 0.1, γa = 0.000165, γs = 0.00055,d = 0.001,∧ = 0.0001 which

correspond to Ŵ1 = 0.0056 > Ŵ2 = 0.0049. Semi-logarithmic scale is used for a better view of bifurcation curves. The red dotted curve represents the

unstable curve, while blue solid curve represents the stable curve. (B) Impact of vaccine e�cacy ψ on control reproduction numbers.

Semi-logarithmic scale is used for a clear view.

dose and second dose vaccination rates for a double-dose vaccine

while θ3 is the vaccination rate for a single-dose vaccines. While

both strategies remain important in suppression of COVID-19

over a long time scale, it is worth investigating which strategy has

more positive impact in mitigating COVID-19. Hence, fixing all

other parameters constant as indicated in Table 1 while switching

on and off vaccination rates, we obtain Figures 3A–D. Figure 3

reveals that single-dose vaccination strategy leads to a significant

decline in COVID-19 prevalence in comparison with a double-

dose vaccination strategy and baseline scenario (no vaccination). It

is important to stress that these simulation results were generated

when vaccine hesitancy is assumed to be equal among susceptible

and partially vaccinated individuals (i.e., h1 = h2 = h3 = 0.35).

Hence, in a setting where vaccine reluctance (vaccine hesitancy)

is more likely to occur, single-dose vaccination strategy would

be more recommendable than a double dose-vaccine. This is due

to the fact individuals who receive first dose of the double-dose

vaccine may choose not to receive second dose as a result of vaccine

hesitancy. The advantage of administering a single-dose vaccine

is that vaccine hesitancy among partially vaccinated individuals

is circumvented. Furthermore, it is important to note that both

single-dose and double-dose vaccination strategies lead to a delay

in COVID-19 peak when compared with the baseline scenario

(no vaccine) indicated by a solid black curve in each figure.

Interestingly, when comparing delay in COVID-19 peak between

single-dose and double-dose vaccination strategies, there is no

significant difference. In contrast, if both vaccination strategies

are concurrently implemented, there is considerable difference in

both COVID-19 prevalence and delaying in COVID-19 peak (when

compared with baseline scenario and either single-dose or double-

dose epidemic curve). That is, for the case of combined vaccination

strategies, the epidemic curve is more flattened (see Figure 3).

Thus, administering both single-dose and double-dose vaccines

simultaneously has a positive impact in diminishing COVID-

19 proliferation. Furthermore, a more flattened epidemic curve

implies minimal burdening of healthcare infrastructure, given there

will be no sudden surge of severely ill COVID-19 patients who

need hospitalization.

5.2 E�ect of unwillingness to receive
vaccines (vaccine hesitancy)

It is worth noting that despite COVID-19 vaccines being

administered in almost every country in the world, the

unwillingness of the general populace to accept COVID-19

jabs impend intervention measures put in place to end the

COVID-19 pandemic. To elucidate on the impact of vaccine

hesitancy on the COVID-19 transmission dynamics, we fix

vaccination rates among susceptible and partially vaccinated

individuals to a constant value (i.e., θ1 = θ2 = θ3 = 0.1) and

vary the fraction of individuals unwilling to receive COVID-19

jabs. That is, h1, h2, h3 ∈ [0, 0.25, 0.50, 0.75, 0.90] while all other

parameters remain as defined in Table 1. The first row figures

of Figure 4 present the direct consequence of unwillingness

to receive double-dose vaccine (by susceptible and partially

vaccinated individuals) on the sizes of the infectious populations

Ip, Ia, and Is. The second row figures of Figure 4 show effect of

unwillingness to receive single-dose vaccine (by the susceptible

populations) on the sizes of infectious subgroups Ip, Ia, and Is.

The last row of Figure 4 shows the combined impact of vaccine

hesitancy against single-dose and double-dose vaccines on the

infectious cohorts Ip, Ia, and Is. Figures 4A–C depict that an

increase in vaccine hesitancy against single-dose vaccine has
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FIGURE 3

Illustrate impact of single dose and double dose vaccination strategies on (A) the exposed individuals (B) pre-symptomatic infectious individuals (C)

truly asymptomatic infectious individuals and (D) symptomatic infectious individuals. Parameters used remain as shown in Table 1 except, θ1, θ2, and

θ3 which are shown in the figure while initial conditions used are S(0) = 60000000,Vp(0) = 0,V(0) = 0,E(0) = 10954, Ip(0) = 10954, Ia(0) = 7322,

Is(0) = 7545,R(0) = 203968.

an adverse effect on COVID-19 prevalence. This is due to an

increase in infectious population sizes (i.e., pre-symptomatic, truly

asymptomatic and symptomatic) as vaccine hesitancy increases.

An increase in infectious population sizes translates to an increase

in likelihood of coming into contact with an infectious person

which ultimately leads to more positive cases being confirmed

in any given setting. Vaccine hesitancy against double-dose

vaccine triggers an early appearance of COVID-19 peak among

pre-symptomatic population than on both truly asymptomatic and

symptomatic individuals. This observation is epidemiologically

crucial, given in several epidemiological models the contribution

of pre-symptomatic individuals in transmission of COVID-19

was ignored.

Figures 4D–F present a scenario where there is vaccine

hesitancy against single-dose vaccine (by susceptible individuals).

It is observed that unwillingness to receive single-dose vaccine

by susceptible individuals is more detrimental than vaccine

hesitancy against double-dose vaccine. This is due to the

pronounced early appearance of COVID-19 peaks among all

the three infectious populations (Ip, Ia, Is) and a wider increase

in COVID-19 prevalence when compared to a case of vaccine

hesitancy against double dose (see Figures 4A–C). Again, an

early peak of COVID-19 epidemic curve is more notable among

pre-symptomatic population than on both truly symptomatic

and symptomatic populations. The combined impact of vaccine

hesitancy against both single-dose and double-dose vaccines (by

both susceptible and partially vaccinated cohorts) is presented

in Figures 4G–I. It is clearly visible from Figures 4G–I that

vaccine hesitancy against both single-dose and double-dose

vaccines is disastrous as there is a rapid increase in COVID-

19 prevalence by a wider margin when compared with the

baseline curve (see the blue solid curve in each figure of

Figure 4). Furthermore, a rise in vaccine hesitancy against

the two vaccines being administered (single dose and double

dose) triggers an early peak of COVID-19 epidemic curve

which is again more pronounced when compared with vaccine

hesitancy against each vaccination strategy (either single or

double dose).
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FIGURE 4

Illustrate the e�ect of vaccine hesitancy against double-dose vaccine, single-dose and both vaccines. (A) Show the e�ect of vaccine hesitancy

against double-dose on pre-symptomatic infectious individuals. (B) Show the e�ect of vaccine hesitancy against double-dose on infectious truly

asymptomatic individuals. (C) Illustrate the e�ect of vaccine hesitancy against double-dose on infectious symptomatic individuals. (D) Depict the

e�ect of vaccine hesitancy against single-dose on pre-symptomatic infectious individuals. (E) Show e�ect of vaccine hesitancy against single-dose

on infectious truly asymptomatic individuals. (F) Represents e�ect of vaccine hesitancy against single-dose on infectious symptomatic individuals.

(G) Show the impact of vaccine hesitancy against both single and double dose on pre-symptomatic infectious individuals. (H) Show the impact of

vaccine hesitancy against both single-dose and double-dose vaccines on infectious truly asymptomatic individuals. (I) Show the impact of vaccine

hesitancy against both single dose and double dose vaccines on infectious symptomatic individuals. The blue solid epidemic curve represents the

baseline scenario where there is no vaccine hesitancy.

5.3 Simulations of the optimality system

To visualize the impacts of each of the three time-dependent

controls and the effects of combining any two of the controls

on the dynamics of COVID-19 transmission [81], we simulate

the optimality system comprising the state system (38) and the

adjoint system (45). Keeping in mind that the optimality system is

a two-point boundary problem with both initial and transversality

conditions (2) and (47), respectively, we therefore make use of

fourth-order forward-backward Runge-Kutta method. We first

solve the state system (38) forward in time with the initial

condition (2) after initial guessed values for the controls. Then,

we solve the adjoint system (45) backward in time with the

transversality conditions (47) and update the controls using a

convex combination of both the initial guessed values and current

values of the control characterizations (48). We continue this

iteration until the absolute error between the current and previous

solutions of the optimality system is negligibly small [78, 82, 83].

The simulation is performed using MATLAB over the time interval

[0, 120] days with the following initial conditions: S(0) = 60000000,

Vp(0) = 0, V(0) = 0, E(0) = 10954, Ip(0) = 10954, Ia(0) = 7322,

Is(0) = 7545, R(0) = 203968. We use the same parameter values

given in Table 1 together with the weight and rate constantsAm =

1, (m = 1, 2, 3), Bn = 10, (n = 1, 2, 3), and c = 1.
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As shown in Figure 5, implementation of the non-

pharmaceutical time-dependent control u1(t) reduces the

populations of pre-symptomatic, asymptomatic, and symptomatic

individuals. The control profile shows that the non-pharmaceutical

measure should be adhered to at maximum value for almost the

implementation period to flatten the infectious curves. In Figure 6,

we see that administration of the optimal vaccination control

θ3(t) for susceptible individuals with a single-dose vaccine helps

in reducing the sizes of individuals in the subgroups Ip, Ia, and Is
when compared with the case without vaccination control.

Since the time-dependent management control u2(t) is only

targeted at the populations of asymptomatic and symptomatic

individuals, Figure 7 therefore displays the behaviors of the

subgroups Ia and Is in the presence and absence of u2(t). It can

be seen that the sizes of both asymptomatic and symptomatic

individuals with control are lower when compared with the

sizes without control. The control profile also indicates that

management of infectious cases in the population should be

sustained at maximum throughout the implementation period.

Moreover, control profiles showing the combination of u1(t) and

θ3(t), and the combination of u1(t) and u2(t) are displayed in

Figure 8. In both profiles, we see that the non-pharmaceutical

measure u1(t) is maintained at maximum for almost 100% of the

implementation period, while each of vaccination andmanagement

controls is maintained at maximum for 30% and 72% of the total

implementation period, respectively. This implies that whenever

the non-pharmaceutical measure is fully adhered to, less effort

will be needed by either vaccination or management control

to achieve optimal reduction of COVID-19 spread. Lastly, the

influence of combination of both θ3(t) and u2(t) on the populations

of individuals in the subgroups Ip(t), Ia(t), and Is(t) is shown

in Figure 9. We see that both vaccination and management

controls are to be sustained at maximum throughout the required

implementation period to reduce the sizes of infectious individuals

in the population.

5.4 Cost-e�ectiveness assessment

Out of the single and several combinations of controls

considered in this study, it is important to identify the main control

strategy which minimizes COVID-19 transmission optimally at

the lowest cost of implementation when available resources are

limited. To do this, we make use of the two known methods,

namely, average cost-effectiveness ratio (ACER) and incremental

cost-effectiveness ratio (ICER) [84–86]. ACER is measured by

dividing the cost of implementing a control strategy by the total

benefits of such strategy in terms of cases averted. It is given by

ACER =
Cost of control strategy

Benefits of the control strategy
(49)

Unlike ACER, we use ICER to compare effectiveness of any

two competing control strategies, and it is measured by finding

the ratio of the difference between the costs of the two strategies

to the difference between their health benefits. The ICER is

calculated using

ICER =
Difference in total costs

Difference in total cases averted
(50)

As a result of the numerical simulations of the optimal control

problem, we now present the values of the cases averted by

each of the control strategies in an increasing order with their

corresponding costs of implementation. We have used 49 and 50

to calculate ACER and ICER, respectively, as shown in Table 2.

It can be observed that u1(t) has the least ACER value in

comparison with the other control strategies. This suggests that the

non-pharmaceutical control is the most cost-effective strategy that

can be implemented when resources are limited. To further confirm

this result, we first carry out ICER analysis between θ3(t) and u2(t),

and see that ICER(θ3(t)) is greater than ICER(u2(t)). This implies

that implementing vaccination control is costlier and less-effective

when compared with the optimal screening-management control.

Hence, the control strategy θ3(t) is excluded from the list of control

strategies and we concentrate on the remaining as indicated in the

Table 3.

Comparison between the single control u2(t) and the

combination of θ3(t) and u2(t) in the Table 3 shows that

ICER(θ3(t), u2(t)) is greater than ICER(u2(t)), implying

that implementing the combination of both vaccination

and management controls is more expensive than the single

implementation of optimal management control. Thus, we remove

the combination θ3(t) and u2(t) from the list of the available

control strategies and continue to analyze ICER for the remaining

control strategies as presented in Table 4. We see that the non-

pharmaceutical control u1(t) strongly dominates the management

control u2(t) since ICER(u1(t)) is less than ICER(u2(t)). Therefore,

we discard the control u2(t) and re-compute ICER for the

remaining strategies.

Following similar procedure, we remove the combination of

u1(t) and θ3(t) since it is strongly dominated by the single control

strategy u1(t) as seen in the Table 5. Hence, we are left with

two control strategies as indicated in Table 6. Consequently, the

combination of u1(t) and u2(t) is removed from the analysis

since ICER(u1(t), u2(t)) is greater than ICER(u1(t)). Hence, single

implementation of the non-pharmaceutical control strategy is the

most cost-effective of all the strategies. This result is in total

agreement with the ACER result obtained earlier.

6 Conclusion

This study considered a COVID-19 epidemiological framework

that modeled transition from one healthy status to another using

a deterministic non-linear ordinary differential equations. Given

vaccines are widely accepted by policymakers as an important

intervention measure for curbing COVID-19 proliferation, we

incorporated into the proposed model non-mandatory vaccines.

Contrary to previous work [33, 35, 41–44, 46] on COVID-19,

we considered a setting where susceptible individuals have a

choice of either being vaccinated with a single- or double-dose

vaccine. Furthermore, a fraction of individuals who initially choose

double-dose vaccine refuse the second dose and therefore remain
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FIGURE 5

Depict the impact of the non-pharmaceutical control u1(t) on; (A) the infectious pre-symptomatic population. (B) The infectious truly asymptomatic

population. (C) The infectious symptomatic population. (D) Represents the control profile of time-dependent control u1(t).

partially vaccinated (these individuals can be infected with COVID-

19 upon exposure with infectious individuals). This differs with

[33, 46] studies that assumed vaccinated individuals acquired

sufficient vaccine-induced immunity, and therefore, they could not

be infected.

The assumption that vaccinated individuals could not be

infected (see [33, 46]) hindered the important epidemiological

phenomenon of backward bifurcation which has been observed

in this study. For instance, findings from equilibrium analysis

of the model suggest that if both single-dose and double-dose

vaccines administered to the general populace are perfect and

permanent then interventionmeasures that aim to decrease control

reproduction number below one will be sufficient in curbing

COVID-19 (see Theorem 5). However, if vaccines administered

are imperfect and non-permanent, there exists a parameter space

where the phenomenon of backward bifurcation may arise leading

to persistence of COVID-19 even when the control reproduction

number is below one. This observation hints that policymakers (in

particular governments across the world) andmedical practitioners

should advocate production of vaccines that render optimal efficacy

(as well as vaccines that provide a livelong vaccine-induced

immunity) so that breakthrough infections are prevented at all

cost. The studies done by Buonomo et al. [33], Oduro et al.

[35], Buckner et al. [41], Choi and Shim [42], Mukandavire

et al. [43], Deng et al. [44], and Peter et al. [46] did not

exhibit any bistability phenomenon. Both analytical and numerical

results on the three control reproduction numbers indicate that

the control reproduction number associated with the number of

infectious individuals generated as a result of contact with pre-

symptomatic individuals is always larger than the other two control

reproduction numbers associated with symptomatic and truly

asymptomatic infectious individuals, respectively. This finding is

important as far as COVID-19 transmission dynamics is being

demystified both at epidemiological and biological level. The

revelation regarding extent of contribution of pre-symptomatic

individuals can inform policymakers and medical practitioners on

the importance of implementing early screening and quarantine of

individuals exposed to COVID-19 to avert spiraling of COVID-19

cases. The studies conducted in Tiwari et al. [39], Rai et al. [40],

Kumar et al. [48], Majumder et al. [87], srivastav et al. [88], Oduro

et al. [35], Buckner et al. [41], Choi and Shim [42], Mukandavire

et al. [43], Deng et al. [44], and Peter et al. [46] never captured the
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FIGURE 6

Depicts the impact of the time-dependent optimal vaccination control θ3(t) on: (A) the infectious pre-symptomatic population. (B) The infectious

truly asymptomatic population. (C) The infectious symptomatic population. (D) Represents the control of time-dependent optimal vaccination

control θ3(t).

epidemiological implication of pre-symptomatic individuals due to

the fact that they did not incorporate pre-symptomatic cohort. Also

during the time of their studies, there was no universal consensus

on whether pre-symptomatic individuals contributed in the spread

of COVID-19 as it is now known [8].

The time profile findings reveal a profound difference

in reduction of COVID-19 prevalence when either single-

dose vaccine or double-dose vaccine is administered among

susceptible population. Administering single-dose vaccines leads

to a significant decline of COVID-19 prevalence than double-

dose vaccines, especially in a setting where vaccine hesitancy is

present. This epidemiologically implies that in a setting where

vaccine hesitancy is rampant, a single-dose vaccine should be

recommended. This is due to the fact that single-dose vaccine

circumvents the second dose vaccine hesitancy likely to be

witnessed among partially vaccinated individuals who may refuse

second COVID-19 jab due to reasons such as mild (severe) side

effects experienced with the first dose. This is despite the existing

evidence from medical practitioners that the vaccine benefits

considerably outweigh the risks of side effects associated with

COVID-19 vaccines being administered globally. Nevertheless, in

a scenario where both vaccines are simultaneously administered,

there is a significant decline in COVID-19 prevalence, regardless

of the level of vaccine hesitancy. It is important to stress that the

findings regarding epidemiological impact of combined effect of

single-dose and double-dose vaccines have not been documented

in any literature (known so far) possibly due to the fact that

no existing study has analyzed a model that incorporated both

vaccines (single-dose and double-dose vaccines) and vaccine

hesitancy simultaneously. Even the recent studies [33, 35, 41–44,

46] on COVID-19 considered only a single-dose or a double-dose

vaccines separately.

Investigation on the impact of unwillingness to receive either

single-dose or double-dose vaccine reveals that vaccine hesitancy

triggers an early peak of COVID-19 outbreak. Sudden surge of

COVID-19 prevalence implies the available medical facilities will be

overburdened by severely ill COVID-19 patients who are in need of

urgent medical attention. In addition, if vaccine hesitancy against

both vaccines (that is single dose and double dose) is rampant in

the general populace, then COVID-19 epidemic curve peaks faster

than vaccine hesitancy against either a single-dose or double-dose

vaccine. This implies that countermeasures put in place to control
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FIGURE 7

Illustrate the impact of the time-dependent screening-management control measure u2(t) on: (A) the infectious truly asymptomatic population. (B)

The infectious symptomatic population. (C) Represents the control profile of time-dependent screening-management control measure u2(t).

A B

FIGURE 8

Represents control profiles involving combinations of non-pharmaceutical measure with each of the optimal vaccination and management controls.

(A) Represents control profiles for both optimal non-pharmaceutical control measure and optimal vaccination measure. (B) Represents control

profiles for both optimal non-pharmaceutical control measure and screening-management control.
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FIGURE 9

Demonstrate impact of combining the time-dependent optimal vaccination θ3(t) and management u2(t) controls on: (A) the infectious

pre-symptomatic population (B) The infectious truly asymptomatic population (C) The infectious symptomatic population. (D) Represents the

control profiles for both optimal vaccination and optimal screening-management of infectious individuals.

TABLE 2 Increasing order of COVID-19 cases averted by control strategies.

Control Cases averted Total cost ACER ICER

θ3(t) 3.3424× 108 9.9125× 103 2.9657× 10−3 2.9657× 10−5

u2(t) 3.2185× 109 1.0000× 104 3.1070× 10−6 3.0337× 10−8

θ3(t), u2(t) 3.5504× 109 1.9915× 104 5.6092× 10−6 2.9874× 10−5

u1(t) 7.7986× 109 9.8151× 103 1.2586× 10−6 −2.3775× 10−6

u1(t), θ3(t) 7.8019× 109 1.3181× 104 1.6895× 10−6 1.0200× 10−3

u1(t), u2(t) 7.8033× 109 1.7470× 104 2.2388× 10−6 3.0600× 10−3

TABLE 3 ICER analysis without optimal vaccination control θ3(t).

Control Cases averted Total cost ACER ICER

u2(t) 3.2185× 109 1.0000× 104 3.1070× 10−6 3.0337× 10−8

θ3(t), u2(t) 3.5504× 109 1.9915× 104 5.6092× 10−6 2.9874× 10−5

u1(t) 7.7986× 109 9.8151× 103 1.2586× 10−6 −2.3775× 10−6

u1(t), θ3(t) 7.8019× 109 1.3181× 104 1.6895× 10−6 1.0200× 10−3

u1(t), u2(t) 7.8033× 109 1.7470× 104 2.2388× 10−6 3.0600× 10−3
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TABLE 4 ICER analysis without the single θ3(t) and the double (θ3(t),u2(t)).

Control Cases averted Total cost ACER ICER

u2(t) 3.2185× 109 1.0000× 104 3.1070× 10−6 3.1070× 10−6

u1(t) 7.7986× 109 9.8151× 103 1.2586× 10−6 −4.0370× 10−8

u1(t), θ3(t) 7.8019× 109 1.3181× 104 1.6895× 10−6 1.0200× 10−3

u1(t), u2(t) 7.8033× 109 1.7470× 104 2.2388× 10−6 3.0600× 10−3

TABLE 5 ICER analysis without single θ3(t), double (θ3(t),u2(t)), and single u2(t).

Control Cases averted Total cost ACER ICER

u1(t) 7.7986× 109 9.8151× 103 1.2586× 10−6 −4.0370× 10−8

u1(t), θ3(t) 7.8019× 109 1.3181× 104 1.6895× 10−6 1.0200× 10−3

u1(t), u2(t) 7.8033× 109 1.7470× 104 2.2388× 10−6 3.0600× 10−3

TABLE 6 ICER between single u1(t) and double (u1(t),u2(t)).

Control Cases averted Total cost ACER ICER

u1(t) 7.7986× 109 9.8151× 103 1.2586× 10−6 1.2586× 10−6

u1(t), u2(t) 7.8033× 109 1.7470× 104 2.2388× 10−6 1.6300× 10−3

COVID-19 proliferation need to go beyond providing free COVID-

19 jabs but also demystify the benefits associated with COVID-

19 vaccines so as to raise the level of vaccine acceptance in the

general population.

The extension of the COVID-19 model to an optimal

control problem by incorporating three time-dependent controls

also shed some epidemiological insights on how optimal non-

pharmaceutical and pharmaceutical intervention measures

may influence COVID-19 transmission dynamics. The three

time-dependent controls which are broadly categorized as

either non-pharmaceutical (NPIS) and pharmaceutical included

preventive control measures (such as social/physical distancing,

wearing face mask, hand washing, and adherent to education

on proper hygiene) among susceptible and vaccinated cohorts,

vaccination of susceptible individuals with a single dose-

vaccine, and screening-management of infectious symptomatic

individuals and truly asymptomatic individuals. Previous studies

[33, 35, 41–44, 46] on COVID-19 did not consider these three

time-dependent control measures as we have considered in

this study; hence, findings obtained in the study are unique

and different from their findings. Optimal simulation results

show that if susceptible and both vaccinated cohorts (either

partially vaccinated or fully vaccinated) adhere to COVID-19

non-pharmaceutical intervention measures, then COVID-19

pandemic can be easily eradicated. Thus, in the midst of a COVID-

19 pandemic advising the public to adhere to non-pharmaceutical

preventive measures even after vaccination can have positive

impact through reduction of COVID-19 prevalence to almost

zero. Furthermore, cost-effectiveness analysis has shown that

non-pharmaceutical intervention control is the most effective

and cheapest when compared with pharmaceutical controls

(management-screening controls of symptomatic and truly

asymptomatic and vaccination control). Optimal management

of infectious symptomatic and truly asymptomatic individuals

significantly reduces COVID-19 prevalence but does not lead

to a delayed COVID-19 peak. On the one hand, optimal

vaccination of susceptible individuals has 2-fold benefits, that is,

reduction of COVID-19 prevalence as well as delaying the peak

of COVID-19 outbreak. This allows policymakers and medical

practitioners to have sufficient time to plan andmanage the existing

COVID-19 cases.

7 Limitations

It is imperative to stress that there are few limitations

to this study. First, data on COVID-19 vaccine hesitancy are

limited, and the research that analyzed individual level of vaccine

hesitancy using data obtained in US was conducted before

widespread roll-out of COVID-19 vaccines [89]. Hence, the data

may be unreliable in a setting where COVID-19 mitigation

measures incorporate vaccines. On the one hand, social-economic

status and demographic factors were not considered as were

beyond the scope of this study. However, consideration of such

factors may impact COVID-19 vaccine hesitancy. Moreover,

individual perception toward each type of vaccine available

varies which could influence level of vaccine hesitancy. This

aspect is not captured in this study as we only investigated

the general impact of vaccine hesitancy toward either single-

or double-dose vaccines without singling a specific type of

vaccine.
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