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Optimized repetitive sampling
X-bar control chart: performance
evaluation and comparison with
Shewhart control chart

Jose J. Muñoz1, Muhammad Aslam2* and Manuel J. Campuzano1

1Facultad de Ingeniería, Universidad del Magdalena, Santa Marta, Colombia, 2Department of Statistics,
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When initial sample information falls short of enabling industrial engineers to
confidently make decisions about lot quality assessment, repetitive sampling
emerges as a solution. In this study, we present an optimized repetitive sampling
control chart for X-bar values. Through meticulous analysis, we determined
the optimal control chart coe�cients. Additionally, we established the control
chart parameters for scenarios where the sample size equals the average
sample number, encompassing both in-control and out-of-control processes. To
underscore the e�ectiveness of our proposed chart compared to the traditional
Shewhart control chart, we provide comprehensive tables across various sample
sizes. Bymeticulously examining these tables alongside the corresponding control
charts, the chart’s e�cacy in relation to the Shewhart alternative becomes evident.
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1 Introduction

Control charts have been widely used in the industry for monitoring the process. These

charts are powerful tools used to minimize non-conforming products. The control charts

are designed to increase the quality of the product. In industry, when the process is out of

control, control charts provide a signal so that the processes can be controlled. Due to the

simplicity of the Shewhart control, it has been widely used in industry for the monitoring of

manufacturing processes. The operational procedure of the Shewhart control chart relies on

three control limits, namely, the lower control limit (LCL), the central limit (CL), and the

upper control limit (UCL). The process is deemed out of control if the plotting statistic is

beyond LCL or UCL. The applications of the Shewhart control chart can be observed in Lee

and Jun [1], Fu et al. [2], Oprime andMendes [3], Hanandeh and Al-Nasser [4], Shafqat et al.

[5], Vasconcelos et al. [6], and Park et al. [7].

Typically, Shewhart control charts are constructed using single sampling, where the

determination of whether a process is in control or out of control relies on a single sample.

However, real-world scenarios may not always permit such conclusive decisions with a

single sample. One alternative to single sampling is repetitive sampling (RS). When there

is uncertainty regarding the status of the production process, a random sample is taken, and

the process is repeated until the in-control or out-of-control status of the production process

is determined. At its core, RS, introduced by Sherman [8], involves the repeated collection

of small samples from a production process at regular intervals. This technique allows for a

continuous and real-time assessment of a process’s performance. Unlike traditional single-

sample approaches, RS enables a more thorough understanding of process variability over

time, making it a valuable tool in quality control [8].
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Aslam et al. [9] introduced the RS in the area of control charts,

which considered the same values of control limit coefficients

for various control limit shifts. Conventional Shewhart control

charts were primarily designed for processes with large sample

sizes taken at infrequent intervals but may struggle to detect

subtle shifts or trends in processes where samples are collected

frequently in smaller quantities. This limitation can lead to delayed

responses to deviations, potentially resulting in higher defect rates

and increased production costs. As outlined by Ahmad et al. [10],

the development of this chart stemmed from the need to effectively

monitor processes characterized by continuous, high-frequency

production. The X-bar control chart with RS effectively addresses

a critical limitation of conventional Shewhart control charts, which

may struggle to detect subtle shifts or trends in processes with

frequent but smaller sample sizes [9]. These limitations can lead

to delayed responses to deviations, potentially resulting in higher

defect rates and increased production costs. By utilizing RS, the X-

bar control chart offers enhanced sensitivity, ensuring even minor

variations are promptly identified and addressed.

One of the key advantages of RS is its ability to provide

a continuous evaluation of the performance of a process. This

allows for prompt corrective actions when deviations from quality

standards occur. Additionally, RS is particularly effective in

situations where a conclusive decision cannot be made based

on a single sample. It offers enhanced sensitivity to small

and intermediate process changes, addressing a limitation of

conventional Shewhart control charts designed for processes with

large sample sizes taken at infrequent intervals [8, 9].

RS has extensive applications in industries with continuous,

high-frequency production processes. It is especially valuable in

scenarios where immediate detection and response to deviations

are crucial for maintaining product quality. RS has been employed

in various sectors, including manufacturing, healthcare, and

telecommunications, to monitor and control processes effectively.

Aslam et al. [11] proposed Shewhart control charts using RS and

Ahmad et al. [12] designed a process capability control chart using

RS. Further details on control charts using RS can also be seen

in Mughal et al. [13], Adeoti and Olaomi [14], Enami and Torabi

[15], Al-Nasser et al. [16], Nezhad and Nesaee [17], and Adeoti and

Rao [18].

In a recent study by Saleh et al. [19], an intriguing finding

emerged. Increasing the sample size could enhance the effectiveness

of the Shewhart control chart compared to utilizing repetitive

sampling in control chart analysis. Furthermore, their research

proposed the utilization of control charts with repetitive sampling

specifically for count data. When Aslam et al. [9] introduced

attribute and variable control charts using repetitive sampling, they

overlooked the optimization aspect where the fixed sample size

aligned with or was less than the average sample number (ASN).

As emphasized by Saleh et al. [19], it is crucial for the fixed sample

size to match the ASN for both in-control and shifted processes.

The objective of this study is to outline the design of the X-

bar control chart using RS, adhering to the optimization principles

outlined in De Araújo Rodrigues et al. [20]. We aim to demonstrate

that when the optimal sample size and ASN are less than or equal

to the fixed sample size, the control chart using repetitive sampling

outperforms the Shewhart control chart in terms of average run

length. Our findings will illustrate that the optimized repetitive

sampling (RS) chart consistently demands smaller sample sizes

compared to the corresponding fixed sample sizes of the Shewhart

control chart. Furthermore, we aim to provide evidence that the

optimized RS chart consistently functions with reduced sample

sizes, indicating a more resource-efficient approach to process

monitoring. Our findings are presented through simulations and

a real-world example.

2 X-bar control chart using RS

The X-bar control chart using RS is outlined in this section. The

operational process and control limits are taken from Aslam et al.

[9] and stated as follows:

Step 1: Compute X from the sample size of n from the

production process.

Step 2: The process is in-control if LCL2 < X < UCL2 and out-

of-control if X > UCL1 or X < LCL1. In case of indecision, go

to Step 1.

The inner control limits of X chart are given by

UCL1 = m+ k1σ/
√
n (1)

LCL1 = m− k1σ/
√
n (2)

The upper control limits of X chart are given by

UCL2 = m+ k2σ/
√
n (3)

LCL2 = m− k2σ/
√
n, (4)

wherem and σ are the mean and standard deviation of the averages,

n is the sample size in each subgroup, and k1 and k2 are the control

chart coefficients, which will be determined using an optimization

model. Let PRSin be the probability of the in-control state:

PRSin =
P

(

LCL2 < X < UCL2
)

1− Prep
, (5)

where Prep = P
(

LCL1 < X < LCL2
)

+ P
(

UCL2 < X < UCL1
)

The simplified form of PRSin is given by

PRSin =
28

(

k2
)

− 1

1− 2
[

8
(

k1
)

− 8
(

k2
)] (6)

Suppose that µ = m + cσ is the shifted mean, where c is ≥ 0
and it is a shift constant. Let PRS1 be the probability of in-control at
µ, and it is defined by

PRS1 =

8
(

k2 − c
√
n
)

+ 8
(

k2 + c
√
n
)

− 1

8
(

k2 + c
√
n
)

− 8
(

k1 + c
√
n
)

− 8
(

k1 − c
√
n
)

+ 8
(

k2 − c
√
n
)

+ 1
(7)

The average run length (ARL) for the in-control process is

given by

ARL0 =
1

1− PRSin
(8)
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The ARL for the shifted process is given by

ARL1 =
1

1− PRS1
(9)

The average sample number (ASN) is given by

ASN =
n

1− Prep
(10)

3 Optimization model

The parameters of the proposed control chart are determined

using the following optimization model:

minimize ARL1

decision variables : k1, k2, n

restrictions :

5 < n < 2(n0)

ASN < n0

ARL0 > r0

k2 < k1

For the above model, r0 sets a predefined lower limit for the

average number of samples between false alarms. Concurrently,

configuring n0 compels the algorithm to seek a setup, ensuring

that, while the process is in control, the sampling load does not

surpass the equivalent of scrutinizing n0 units per sample used in

the classical Shewhart chart, i.e., the ASN value is limited by the

fixed sample n0 of the classical Shewhart chart.

Aslam et al. [9] used a similar optimization model but

considered k1 and k2 as decision variables only, and these were

constant for any shift value (c). Here, we considered different k1,

k2, and n values in each shift, and we also set limits for n. A lower

limit is useful so that the chart does not choose a value close to 1

when the change in the mean is close to zero or zero. An upper

limit prevents the chart from taking very large values for n. De

Araújo Rodrigues et al. [20] established an optimization model for

double sampling np control chart where 0.5n ≤ n1 ≤ 0.8n and

n1 ≤ n2 ≤ 5n1. In this study, we set n to < 2(n0). This was

because, after several runs, it was concluded that the model does

not yield solutions beyond this limit. Further, we had taken into

consideration a considerable maximum value twice the sample size

used by the Shewhart control chart.

The r0 and n0 are user-set constants, which indicate the ARL0
value and sample size, respectively, pertaining to the Shewhart

control chart.

4 Comparison between the Shewhart
and optimized RS control chart

This section shows the performance of Shewhart and optimized

RS control charts through the ARL1 values under multiple

scenarios. Tables 1–6 present the ARL1 value for the Shewhart

control chart and k1, k2, n, ASN, ARL0, and ARL1 values for the

optimized RS control chart. Tables 1, 2 show the comparison for

n = 20, Tables 3, 4 for n = 30, and Tables 5, 6 show it for n = 40.

All the tables contain r0 values of 300 and 370.

From Tables 1–6, it is possible to conclude the following:

• In general, for small and moderate changes in the mean in

control (c = [0.2 − 0.7]), the proposed RS control chart has

small values in the ARL1 metric compared to the Shewhart

control chart while maintaining a lower ASN. This could be

beneficial in scenarios where small and moderate shifts are

important while maintaining the false alarm rate.

• The optimized RS chart consistently requires sample sizes

(n) that are lower than the corresponding values of n0 from

the Shewhart control chart. The fact that the optimized RS

chart consistently operates with smaller sample sizes suggests

a more efficient use of resources in process monitoring.

• For all cases, when there is no change in the mean of the

process (c = 0), the optimized control chart takes the lowest

value of n allowed in the optimization model, i.e., it is not

necessary to use large sample sizes since the process has not

had a change in its mean.

• For any value of n0, the optimized RS chart shows, on

average, a greater difference in ARL1 values with respect to

the Shewhart chart as r0 increases. This implies that when

the process is consistently in the control state (higher ARL0),

the optimized RS chart tends to be more effective at detecting

out-of-control conditions compared to the Shewhart chart.

• For any value of r0, the optimized RS chart shows a lower

difference in ARL1 values with respect to the Shewhart chart

as n0 increases. This implies that, when a larger sample size is

required to effectively monitor the process, the performance

gap in detecting out-of-control conditions between the

optimized RS chart and the Shewhart chart diminishes.

• For any value of n0, the ARL1 values in the Shewhart

and optimized RS control charts are larger as r0 increases.

In practical terms, this means that when the process is

consistently in control for extended periods (higher ARL0),

both the Shewhart and optimized RS control charts will, on

average, take longer to signal an out-of-control condition.

• For any value of r0, the ARL1 values in the Shewhart and

optimized RS control charts decrease as n0 increases. This is

consistent because the larger the sample size, the easier it is to

detect a change in the state of the process while maintaining

the desired level of ARL0 rate. However, increasing the

sample size is only a partially good method because it incurs

higher costs.

• For larger shifts (c = [0.8 − 3.00]), both charts have ARL1
values close to 1, indicating that they are effective in quickly

detecting larger shifts in the process. This result is logical and

consistent since it is expected that the larger the change in the

state of the process, the sooner any control chart is able to

detect it, with the minimum value being 1.

5 Experiment through simulated data

We then tested the performance of the optimized RS chart

compared to the performance of the Shewhart chart through
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TABLE 1 ARL1 values for Shewhart and optimized RS when n0 = 20 and r0 = 300.

Shewhart Optimized RS

Shift (c) ARL1 k1 k2 n ASN ARL0 ARL1

0.00 300.02 2.9367 2.6457 6.00 6.01 300.00 300.00

0.15 83.82 2.9513 1.9634 19.00 19.93 301.32 83.21

0.20 48.31 2.9655 1.6946 18.00 19.72 302.11 47.27

0.25 28.88 2.9674 1.6483 17.00 18.81 300.90 28.54

0.30 18.01 2.9866 1.4348 17.00 19.97 301.80 15.33

0.35 11.72 2.9839 1.4501 17.00 19.86 300.72 9.12

0.40 7.95 2.9836 1.4475 17.00 19.88 300.11 5.60

0.45 5.62 2.9863 1.4375 17.00 19.95 301.80 3.62

0.50 4.13 3.0036 1.2757 16.00 19.98 300.12 2.48

0.60 2.50 3.0035 1.2797 16.00 19.95 300.47 1.48

0.70 1.73 3.0113 1.2788 16.00 19.96 308.16 1.15

0.80 1.35 3.0058 1.2828 16.00 19.92 303.22 1.05

0.90 1.16 3.0050 1.2774 16.00 19.97 301.70 1.01

1.00 1.07 3.0063 1.2847 16.00 19.91 303.92 1.00

1.50 1.00 3.0027 1.4384 17.00 19.95 318.48 1.00

2.00 1.00 2.9927 1.6356 18.00 19.98 325.75 1.00

3.00 1.00 2.9720 1.7401 11.00 11.94 311.36 1.00

TABLE 2 ARL1 values for Shewhart and optimized RS when n0 = 20 and r0 = 370.

Shewhart Optimized RS

Shift (c) ARL1 k1 k2 n ASN ARL0 ARL1

0.00 370.00 3.0004 2.7949 6.00 6.02 370.00 370.00

0.15 99.46 3.0149 1.9564 19.00 19.95 370.37 98.37

0.20 56.55 3.0292 1.6985 18.00 19.71 372.34 55.37

0.25 33.38 3.0463 1.4637 17.00 19.79 370.82 31.13

0.30 20.55 3.0389 1.6423 18.00 19.96 379.84 17.60

0.35 13.21 3.0495 1.4500 17.00 19.88 373.07 10.26

0.40 8.85 3.0486 1.4342 17.00 19.98 370.05 6.12

0.45 6.18 3.0479 1.4432 17.00 19.92 370.30 3.91

0.50 4.49 3.0680 1.2791 16.00 19.97 371.83 2.65

0.60 2.66 3.0660 1.2862 16.00 19.91 370.53 1.52

0.70 2.66 3.0683 1.2759 16.00 20.00 371.71 1.16

0.80 1.81 3.0679 1.2787 16.00 19.97 371.62 1.05

0.90 1.39 3.0669 1.2776 16.00 19.98 370.28 1.01

1.00 1.18 3.0700 1.2876 16.00 19.89 375.75 1.00

1.50 1.08 3.0678 1.4400 17.00 19.95 395.30 1.00

2.00 1.00 3.0324 1.6337 18.00 20.00 370.98 1.00

3.00 1.00 3.0250 1.7394 11.00 11.95 370.24 1.00
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TABLE 3 ARL1 values for Shewhart and optimized RS when n0 = 30 and r0 = 300.

Shewhart Optimized RS

Shift (c) ARL1 k1 k2 n ASN ARL0 ARL1

0.00 300.01 2.9361 2.7314 6.00 6.02 300.00 300.00

0.15 57.60 2.9578 1.8192 28.00 29.97 301.46 56.03

0.20 30.37 2.9799 1.4933 26.00 29.97 300.86 28.02

0.25 17.04 2.9795 1.5116 26.00 29.81 302.08 14.39

0.30 10.19 2.9851 1.5017 26.00 29.90 306.74 7.70

0.35 6.48 2.9914 1.3741 25.00 30.00 300.14 4.29

0.40 4.38 2.9926 1.3763 25.00 29.98 301.56 2.66

0.45 3.13 3.0042 1.2755 24.00 29.98 300.61 1.83

0.50 2.37 3.0050 1.2740 24.00 30.00 301.27 1.41

0.60 1.57 3.0019 1.2883 24.00 29.81 300.08 1.10

0.70 1.23 3.0035 1.2877 24.00 29.82 301.52 1.02

0.80 1.08 3.0037 1.2783 24.00 29.94 300.55 1.01

0.90 1.02 3.0032 1.2796 24.00 29.93 300.18 1.00

1.00 1.01 3.0041 1.3933 25.00 29.79 315.05 1.00

1.50 1.00 2.9785 1.6329 27.00 29.99 310.86 1.00

2.00 1.00 2.9607 1.7895 25.00 26.90 302.83 1.00

3.00 1.00 2.9610 1.7400 11.00 11.94 300.45 1.00

TABLE 4 ARL1 values for Shewhart and optimized RS when n0 = 30 and r0 = 370.

Shewhart Optimized RS

Shift (c) ARL1 k1 k2 n ASN ARL0 ARL1

0.00 370.00 3.0004 2.8000 6.00 6.01 370.00 370.00

0.15 67.72 3.0286 1.6816 27.00 29.68 370.31 66.71

0.20 35.14 3.0368 1.7139 27.00 29.48 383.06 33.62

0.25 19.41 3.0316 1.6346 27.00 29.99 370.12 16.14

0.30 11.43 3.0421 1.5084 26.00 29.85 370.64 8.52

0.35 7.17 3.0545 1.3796 25.00 29.96 370.15 4.69

0.40 4.78 3.0564 1.3779 25.00 29.98 372.30 2.83

0.45 3.37 3.0558 1.3775 25.00 29.98 371.52 1.91

0.50 2.52 3.0678 1.2773 24.00 29.97 371.29 1.45

0.60 1.63 3.0677 1.2829 24.00 29.90 372.09 1.11

0.70 1.25 3.0695 1.2984 24.00 29.70 376.84 1.03

0.80 1.09 3.0719 1.2775 24.00 29.97 376.45 1.01

0.90 1.03 3.0658 1.2850 24.00 29.87 370.02 1.00

1.00 1.01 3.0666 1.2881 24.00 29.83 371.60 1.00

1.50 1.00 3.0598 1.6358 27.00 29.99 406.46 1.00

2.00 1.00 3.0258 1.7891 25.00 26.91 374.53 1.00

3.00 1.00 3.0254 1.7402 11.00 11.95 370.81 1.00
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TABLE 5 ARL1 values for Shewhart and optimized RS when n0 = 40 and r0 = 300.

Shewhart Optimized RS

Shift (c) ARL1 k1 k2 n ASN ARL0 ARL1

0.00 300.00 2.9378 2.5265 6.00 6.05 300.00 300.00

0.15 42.48 2.9674 1.6393 36.00 39.92 300.32 40.41

0.20 21.08 2.9753 1.5450 35.00 39.75 300.81 18.44

0.25 11.38 2.9769 1.5419 35.00 39.78 302.19 8.81

0.30 6.68 2.9853 1.4346 34.00 39.93 300.52 4.47

0.35 4.25 2.9963 1.3489 33.00 39.98 302.01 2.56

0.40 2.92 2.9952 1.3484 33.00 39.99 300.83 1.70

0.45 2.15 3.0039 1.2742 32.00 40.00 300.14 1.31

0.50 1.70 3.0047 1.2799 32.00 39.90 301.69 1.14

0.60 1.24 3.0069 1.2906 32.00 39.71 305.30 1.03

0.70 1.07 3.0286 1.2855 32.00 39.81 327.16 1.00

0.80 1.02 2.9943 1.3523 33.00 39.93 300.44 1.00

0.90 1.00 3.0435 1.2829 32.00 39.86 343.27 1.00

1.00 1.00 2.9951 1.3605 33.00 39.80 302.21 1.00

1.50 1.00 2.9827 1.6318 36.00 39.99 315.01 1.00

2.00 1.00 2.9583 1.7900 25.00 26.89 300.54 1.00

3.00 1.00 2.9676 1.7402 11.00 11.94 306.96 1.00

TABLE 6 ARL1 values for Shewhart and optimized RS when n0 = 40 and r0 = 370.

Shewhart Optimized RS

Shift (c) ARL1 k1 k2 n ASN ARL0 ARL1

0.00 370.00 3.0004 2.8002 6.00 6.01 370.00 370.00

0.15 49.57 3.0223 1.7930 37.00 39.80 370.53 47.20

0.20 24.15 3.0390 1.5699 35.00 39.51 373.18 21.39

0.25 12.82 3.0488 1.4434 34.00 39.84 371.46 9.82

0.30 7.40 3.0498 1.4330 34.00 39.98 371.36 4.88

0.35 4.63 3.0586 1.3527 33.00 39.95 371.51 2.73

0.40 3.13 3.0579 1.3545 33.00 39.92 370.90 1.77

0.45 2.28 3.0670 1.2760 32.00 39.99 370.06 1.34

0.50 1.77 3.0665 1.2794 32.00 39.93 370.03 1.15

0.60 1.27 3.0577 1.3546 33.00 39.92 370.65 1.03

0.70 1.08 3.0681 1.2772 32.00 39.97 371.61 1.00

0.80 1.02 3.0669 1.2766 32.00 39.98 370.01 1.00

0.90 1.01 3.0481 1.4466 34.00 39.80 370.91 1.00

1.00 1.00 3.0765 1.4432 34.00 39.85 407.39 1.00

1.50 1.00 3.0521 1.6376 36.00 39.97 396.45 1.00

2.00 1.00 3.0254 1.7904 25.00 26.91 374.12 1.00

3.00 1.00 3.0252 1.7393 11.00 11.95 370.49 1.00
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FIGURE 1

(A) Schemes for optimized RS and Shewhart charts with simulated data when m = 15, σ = 3, n0 = 20, c = 0.3, and r0 = 300. (B) Replication 1 of
schemes for RS and Shewhart charts with simulated data when m = 15, σ = 3, n0 = 20, c = 0.3, and r0 = 300. (C) Replication 2 of schemes for RS
and Shewhart charts with simulated data when m = 15, σ = 3, n0 = 20, c = 0.3, and r0 = 300.

two scenarios with simulated data. This section details the

two simulations.

For the first case, we simulated 15 subgroups in control under

the following arbitrarily chosen conditions: m = 15, σ = 3, n0 =
20, c = 0.3, and r0 = 300. Having n0 and r0, from Table 2, it can

be observed that k1 = 2.9866, k2 = 1.4348, and n = 17. Therefore,

the control limits are UCL1 = 17.17, LCL1 = 12.83, UCL2 =
16.04, and LCL2 = 13.96. On the other hand, for the Shewhart

control chart, we have k = 2.9352, UCL = 16.97, and LCL =
13.03. From subgroup 16, simulated data are generated with the

change in the process mean: u = 15+ 0.3∗3 = 15.9.

For the second case, we simulated 15 subgroups in control also

under the following arbitrarily chosen conditions: m = 10, σ =
2, n0 = 30, c = 0.25 and r0 = 370. Having n0 and r0, from

Table 6, it can be observed that k1 = 3.0316, k2 = 1.6346, and

n = 27. Therefore, the control limits are UCL1 = 11.17, LCL1 =
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FIGURE 2

(A) Schemes for optimized RS and Shewhart charts with simulated data when m = 10, σ = 2, n0 = 30, c = 0.25, and r0 = 370. (B) Replication 1 of
schemes for optimized RS and Shewhart charts with simulated data when m = 10, σ = 2, n0 = 30, c = 0.25, and r0 = 370. (C) Replication 2 of
schemes for optimized RS and Shewhart charts with simulated data when m = 10, σ = 2, n0 = 30, c = 0.25, and r0 = 370.

8.83, UCL2 = 10.63, and LCL2 = 9.37. On the other hand, for the

Shewhart control chart, we have k = 2.9997, UCL = 11.09, and

LCL = 8.90.

Each case of simulation has two replications. Figures 1A–

C show the schemes for the Shewhart and optimized RS

control charts, respectively, in these conditions. Furthermore, from

subgroup 16, simulated data are generated with the change in the

process mean: u = 10 + 0.25∗2 = 10.5. Figures 2A–C show the

schemes for the Shewhart and optimized RS control charts. The red

dots in all the figures show the subgroup where each chart detects

the change in the mean.

By analyzing Figures 1A–C, it is evident that the RS chart

identifies process shifts ahead of the Shewhart control chart. In

these illustrations, the RS control chart detects shifts at sample

#25, sample #21, and sample #25. Conversely, the Shewhart control

chart only detects these shifts at sample #31, sample #33, and

sample #32. Figures 1A–C unequivocally demonstrate that the RS

chart outperforms the Shewhart control chart in terms of ARL1.
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FIGURE 3

Application of Shewhart and RS schemes using real data from Montgomery [21].

Similarly, in Figures 2A–C, we observe a similar trend—the RS

chart detects process shifts before the Shewhart control chart

does. In these instances, the RS control chart identifies shifts at

sample #28, sample #29, and sample #28, while the Shewhart

control chart registers them at sample #34, sample #35, and

sample #32. Figures 2A–C provide compelling evidence that the

RS chart surpasses the Shewhart control chart in terms of ARL1
performance. Based on these simulations, it is evident that the

optimized RS control chart consistently delivers superior ARL1
performance while maintaining a lower ASN value.

6 Application of Shewhart and RS
schemes using real data

In this section, we detail the use of actual data taken from

Montgomery [21]. The data shown here are taken with a size n= 10

and 15 subgroups. These data concern soft drink bottle fill volume

and are presented at a nominal level of 0. For graphical purposes,

we have taken a nominal level of 10.

Because these data pertain to a process under control, from

Table 2, we took the RS and Shewhart chart conditions for c = 0.

When the RS chart takes sample sizes n = 6, set size n0 = 20 should

be taken for the Shewhart chart. Since the real data are taken with

n = 10, we need to simulate 10 more variables by gathering their

mean and standard deviation in order to obtain the Shewhart chart

averages. For the RS chart, we arbitrarily took the last 6 variables to

plot the averages. Figure 3 shows the graph of the averages of these

actual data.

Figure 3 shows that the RS chart shows a process mean output

in two subgroups (subgroups 3 and 12), while the Shewhart chart

shows a process mean output in four subgroups (subgroups 2, 5,

9, and 15). This reflects the ability of the RS chart to maintain the

desired level of ARL0 and being efficient with ARL1 compared to

the Shewhart chart. Furthermore, it is worthmentioning that the RS

chart highlights subgroups 2 and 4 as being in a state of indecision.

Conversely, the Shewhart control chart does not offer insights into

data points within repetitive areas.

7 Concluding remarks

The X-bar control chart using the RS procedure is discussed

in this study. The parameters of the X-bar control chart using RS

were determined using an optimized model. To explain the X-bar

control chart using RS, simulated studies and extensive tables were
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provided. The study showed that the X-bar control chart using

RS provided smaller values of ARL1 compared to the Shewhart

control chart. Based on this discussion, it is concluded that the X-

bar control chart using RS outperforms the Shewhart control chart.

The X-bar control chart using RS can be applied in the industry

for monitoring the process. The variance control chart using RS

and the optimized model can be studied in future research. The

efficiency of the X-bar control chart using RS using a cost model

can be extended in future research.
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