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Le rouge, le noir, et l’inégalité: tax
policy and inequality in the
European Union

James Ming Chen1*, Nika Šimurina2 and Martina Solenički2

1College of Law, Michigan State University, East Lansing, MI, United States, 2Department of Finance,
Faculty of Economics & Business, University of Zagreb, Zagreb, Croatia

This article analyzes the impact of tax policy on income inequality in the European
Union (EU). Each EU member-state has adopted a distinct set of fiscal policies.
Although most member-states have coordinated their tax systems to promote
economic growth, EU countries hold politically divergent views about income
inequality and the power of taxation to redress inequality. This research applies
linear regressionmethods incorporating regularization aswell as fixed and random
e�ects. Stacking generalization produces a composite model that dramatically
improves predictive accuracy while aggregating causal inferences from simpler
models. Social contributions, income taxes, and consumption taxes ameliorate
inequality. Government spending, however, exacerbates inequality.
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1 Introduction

This article evaluates the impact of tax policy on income inequality within the member-
states of the European Union (EU). The task is daunting because it is difficult to isolate
taxation from other economic phenomena. Income inequality is a very complex topic in its
own right and needs to be investigated on a multidisciplinary basis. In search of explanations
for country-by-country differences in inequality, this study also examines indicators of
economic freedom and macroeconomic traits such as the debt-to-GDP ratio.

This article applies advanced linear methods in order to predict the Gini coefficient
and draw causal inferences among hypothesized drivers of inequality. This article combats
collinearity through regularized regression and offsets omitted variable bias with fixed
and random effects. Stacking generalization through a machine-learning ensemble weaves
these weaker but diverse methods into a dramatically more accurate model. Stacking
generalization also produces a composite model, expressible in closed form and containing
signed coefficients, standard errors, confidence intervals, and p-values—the conventional
statistical apparatus in econometrics.

Part two summarizes the literature on drivers of income inequality and their impact
on the political economy of the European Union. Part three discusses data sources and
preparation. It also introduces a rigorous empirical strategy based on regularized and fixed
and random effects regression as well as stacking generalization. Part four reports results.
Part five discusses those results, taking care to identify weaknesses in causal inference. Part
six offers policy recommendations and directions for future research.
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2 Literature review

2.1 Inequality in developed nations

The social significance and economic impact of inequality
attract intense academic and political attention [1]. Societies with
greater income inequality have less social mobility [2]. As a society
becomes less economically equal, a typical citizen’s ability to move
upward lags behind themobility of citizens inmore equal countries.
As upward mobility shrivels, current inequality will be transmitted
to future generations [3].

The debate over inequality seems intractable, burdened by the
fear that high levels of inequality are inevitable. Globalization pits
highly qualified workers against manual workers, because routine
tasks can be performed in low-wage countries [4]. Globalization
and technology-driven inequality are therefore interdependent
phenomena [5].

One counter narrative disputes conventional accounts of wage
inequality driven by globalization and technological change. Under
this more optimistic interpretation, governments should emphasize
factors beyond wages, such as technological change and guarantees
of public employment [6, 7].

Income inequality in the most developed countries has risen in
recent decades. The benefits of economic growth since the 1980s
have been unevenly distributed within countries [8]. In the 1980s,
the richest tenth earned about seven times more than the bottom
tenth. By the mid-2010s, this ratio approached 10:1 [9].

2.2 The sociopolitical context of the
European Union and its member-states’ tax
policies

In addition to inequality within the European Union, this
article also examines the diverse histories and political cultures of
EU countries. Before identifying theoretical and methodological
details and surveying regional studies of inequality, this article will
briefly review the sociopolitical history of the European Union.

Significant differences in taxation among EU countries arise
from political divisions and historical circumstances spanning
centuries. After the Second World War, Europe was devastated
and deeply divided. Two eastern powers, the Soviet Union and
Yugoslavia, kept half the continent out of postwar institutions,
especially the North Atlantic Treaty Organization and Western
Europe’s steps toward economic and political integration. After
the fall of the Soviet Union (and secondarily, the dissolution
of Yugoslavia), eastern and southern countries became “new”
member-states of the European Union.

In the west, nations that would form the “old” core of the
European Union strove to heal the violent rift between France
and Germany. Proposed in 1950, the Schuman Plan promised to
coordinate coal and steel production [10]. The European Coal
and Steel Community (ECSC) was established in 1952 under the
leadership of Jean Monnet, a veteran of the League of Nations and
a proponent of a United States of Europe. The ECSC pooled the
coal and steel resources of six European countries: France, West
Germany, Italy, Belgium, the Netherlands, and Luxembourg.

By greatly reducing the threat of war between France and
West Germany, the ECSC represented the first step toward a
federal Europe. In 1955, Belgian foreign minister Paul-Henri Spaak
proposed further integration of European economies based on
the experience of the Benelux countries. The Messina conference
in Italy produced a draft version of the treaty establishing the
European Economic Communities (EEC).

The EEC created a common market between the original six
member-states of the ECSC. The six members of the ECSC signed
the Treaty Establishing the European Economic Community in
Rome on 25March 1957. The Treaty of Rome transformed the EEC
into the main vehicle for the political and economic integration of
Europe [11].

In the 1960s, the elimination of customs duties and the
assertion of joint control over food production spurred economic
growth among EEC members. Denmark, Ireland, and the
United Kingdom joined the European Communities on 1 January
1973, raising the number of member-states to nine.

In 1981, Greece became the tenth member of the European
Communities. Spain and Portugal joined five years later.

By the end of the 1980s, communist regimes in central and
Eastern Europe collapsed. The Berlin Wall fell in 1989, and the
border between East and West Germany opened for the first
time in 28 years. German reunification brought the former East
Germany into the European Communities in October 1990. In
1991, Yugoslavia began to break apart. Wars in former Yugoslav
republics would last throughout the 1990s and inflict tens of
thousands of casualties.

The 1990s witnessed significant steps toward European
integration, especially the Maastricht Treaty on European Union of
1991 and the Treaty of Amsterdam in 1999. In 1993, a single market
enshrined the “four freedoms” of free movement for people, goods,
services, and money. Austria, Finland, and Sweden joined the EU
in 1995, bringing the Union’s membership to 15. The “old” nations
of the EU-15 (later EU-14) comprised a European Union that
spanned most of Western Europe (except Switzerland, Norway,
and Iceland).

Taking effect in 1995, the Schengen agreement would gradually
allow travel throughout much of the EU without passport
checks. On 1 January 1999, the euro was introduced in 11
EU countries: Austria, Belgium, Finland, France, Germany,
Ireland, Italy, Luxembourg, the Netherlands, Portugal, and Spain.
Denmark, Sweden, and the United Kingdom opted against
adopting the euro. Greece joined the euro zone in 2001,
paving the way for further adoptions of the common currency
after 2002.

The Treaty of Nice, signed in 2003, aimed to reform EU
institutions in anticipation of the next wave of new members.
Cyprus and Malta joined the EU along with eight central and
eastern European countries: Czechia, Estonia, Hungary, Latvia,
Lithuania, Poland, Slovakia, and Slovenia. Two more eastern
European countries—Bulgaria and Romania—joined the EU,
emphatically ending the division of Europe after World War II and
bringing the number of member-states to 27. Those 27 countries
signed the Treaty of Lisbon in 2007, with the goal of making the EU
more democratic, efficient, and transparent, and therefore better
able to tackle global challenges such as climate change, security, and
sustainable development.
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The Treaty of Lisbon entered into force in December 2009.
After a long period of negotiation, Croatia became the 28th
member of the EU in 2013. In a 2016 referendum, however,
the United Kingdom voted to leave the EU after 47 years
of membership.

Tax systems in the EU are quite diverse. Many of these systems
were created before European policies on trade and economic and
political integration took full effect. Some countries place greater
weight on the realization of the social rights of citizens through
tax policy. Others emphasize financial and political principles
of taxation. Although tax systems have converged through
harmonization, member-states have not waived the prerogative to
specify their own tax policies. These are distinctions that this study
strives to extract through quantitative analysis.

Economic and political differences continue to divide the “old”
nations of the EU-14 from the “new” nations of the EU-13. This
division is reflected in numerous differences in tax structure and tax
burden. As a general rule, the tax systems of the old member-states
developed over a long period of time and are therefore more stable
and relatively more complex and comprehensive. Although the tax
systems of the newmember-states are younger and simpler, they are
not necessarily more efficient. In terms of tax structure—namely,
the share of total revenues derived from specific taxes—most old
EU-14 countries collect roughly equal shares of revenue from direct
and indirect taxes and from social contributions. By contrast, many
new EU-13 countries collect a significantly smaller share of their
total revenues from direct taxes.

Even within the EU-14 and EU-13 as the broadest subgroups of
member-states, the European Union contains many smaller, more
historically cohesive cohorts. Much of the territory of the original
six members of the ECSC and EEC (especially if Italy is excluded)
overlaps the Carolingian Empire founded by Charlemagne. The
Nordic countries of Denmark, Sweden, and Finland are quite
distinct from the Iberian countries of Spain and Portugal.

Among the new member-states of the EU-13, the Visegrád
Group (Poland, Czechia, Slovakia, and Hungary) are readily
distinguished from the Baltic states of Estonia, Latvia, and
Lithuania. True to the entire peninsula’s reputation, the Balkan
region awkwardly combines Greece (an older member-state
classified with the EU-14) with the ex-Yugoslav republics of
Slovenia and Croatia and two former members of the Warsaw
Pact, Romania and Bulgaria. Historic events associated with the
Roman Republic and Empire—from the Punic Wars and the
Battle of the Teutoburg Forest to Diocletian’s establishment of
the Imperial Tetrarchy—still reverberate throughout contemporary
European society.

2.3 Some points of theory and method: the
Kuznets curve and the Theil index

According to the Kuznets curve, inequality initially
grows with income per capita until it reaches a turning
point [12]. After attaining a threshold of prosperity,
inequality declines as income grows. The Kuznets curve
and, more generally, the relationship between income and
inequality are intensely debated. For instance, Forbes [13]
argues that income inequality, at least in the short and

medium term, has a significant positive relationship with
economic growth.

A steady-state financial Kuznets curve—a long-term inverse-
U-shaped linkage between inequality and income growth—has
taken hold in the 19 countries of today’s euro area since the
mid-1980s [14]. Convergence toward a common turning point
(estimated at 13,000 euros) generates a more even distribution of
income by lowering the threshold at which further income growth
lowers inequality.

The Theil index is a decomposable measure of concentration
and inequality in income distributions [15–17]. This tool
decomposes inequality into components reflecting differences
between countries and differences within countries. Hoffmeister
[18] detected a convergence of national income levels and within-
country income inequality in the European Union from 1994 to
2000. Inequality rose in social-democratic regimes but decreased
in Mediterranean welfare states.

Papatheodorou and Pavlopoulos [19] calculated Theil indexes
for the old EU-15. Between-country inequality decreased from
14.8% in 1996 to 4.9% in 2008. Southern and libertarian
countries experienced the highest inequality and contributed the
most to aggregated inequality. Nordic countries exhibited the
opposite result.

2.4 Income inequality in the European
Union

Eurofound [20] measured aggregated inequality for the EU-
28 between 2005 and 2013 and reported a decrease in between-
country inequality and an increase in overall inequality since 2008.
Kranzinger [21] showed that inequality in disposable income is
highest for households headed by persons older than 59 and
lowest for households with children. Relative to low-income
countries, high-income countries have lower inequality, higher
social expenditures, and more effective reduction of inequality after
transfers and taxes. Social-democratic countries have the lowest
income inequality and redistribute the most. The opposite holds
true for Baltic countries.

A panel of 50 countries from 1995 to 2015 showed that the
direction of causality between corruption and income inequality is
country-specific and may be bidirectional [22]. Income inequality
positively affects corruption, while corruption does not appear to
have a significant impact on inequality. When income inequality
is high and poverty is widespread, several mechanisms may
be responsible for increasing corruption. Petty corruption may
increase as poor people undertake more illegal activities. Income
inequality may also increase corruption by giving wealthy people
greater motivation and opportunity to engage in corruption.

A study of Ireland and Poland concluded that income
taxes and social insurance contributions were by far the most
important factors in reducing income inequality [23]. Meanwhile,
the impact of benefits was negligible. While many transfers have
purposes besides income distribution, taxes and social insurance
contributions are significantly correlated with income. Income
taxes andmeans-tested social transfers aremore effective than other
measures in reducing inequality, because these measures are more
progressive [24].
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Wildowicz-Szumarska [25] found that social transfers were
much more effective than taxes in combating income inequality.
The largest increase in income inequality took place in libertarian
states, and the smallest increases occurred in social-democratic
states. Croatia can substantially reduce poverty and inequality
by careful reallocation of expenditures and improvement of
coordination among existing social programs [26].

Šimurina and Barbić [27] examined the connection between
tax reform and income inequality in the European Union during
the last financial crisis. A panel analysis covering 2000 to 2011
confirmed that certain fiscal measures can reduce inequality.
Increases in social contributions and the share of income tax
relative to GDP reduce inequality.

Political attitudes, even naked ideology, also affect inequality.
Rising inequality is legitimated by popular beliefs that the income
gap is meritocratically deserved [28]. The more unequal a society,
the more likely its citizens are to explain success in meritocratic
terms, and the less important they deem non-meritocratic factors
such as a person’s family wealth and connections. Citizens
in more unequal societies are more likely to explain success
according to meritocratic factors and less likely to believe in
structural inequality. While countries have grown more unequal
since the 1980s, nowhere have citizens lost faith in meritocracy.
Indeed, the western world’s belief in meritocracy has never
been stronger.

This article’s title alludes to Le Rouge et le Noir [29]. This
French Bildungsroman is celebrated for its pioneering exploration
of psychological and sociological themes [30]. The colors red and
black, referring respectively to the army as a state instrumentality
and a secular institution and to the Catholic Church, also
describe a popular card game [[31], p. 200]. In its review of
the impact of tax policies and ideological attitudes on income
inequality, this article never loses sight of stochasticity—either as
a statistical property or as a socioeconomic factor. What appears
superficially to be an allegory of morals may ultimately be a game
of chance.

3 Materials and methods

3.1 Dataset and data preparation

This study’s dataset contains 15 predictive variables and a target
variable, the Gini coefficient of income inequality. All predictors
describe some aspect of tax policy, macroeconomic conditions, or
political attitudes in the 27 member-states of the European Union
for the 15 years from 2005 to 2019 inclusive:

1. contributions—social contributions as a percentage of GDP
2. labor—taxes on labor as a percentage of GDP
3. capital—taxes on capital as a percentage of GDP
4. consumption—taxes on consumption as a percentage of GDP
5. rgdp_pc—real gross domestic product per capita
6. debt_to_gdp—government consolidated gross debt as a

percentage of GDP
7. property—property rights
8. spending—governmental spending
9. business—business freedom
10. labor—labor freedom

11. monetary—monetary freedom
12. trade—trade freedom
13. investment—investment freedom
14. financial—financial freedom
15. corruption—corruption perception index

Variables 7 through 14 represent eight out of the 10
components of the Heritage Foundation’s annual Index of
Economic Freedom. Two other components, governmental
integrity and overall tax burden as a percentage of GDP,
were omitted because their inclusion elevated collinearity and
jeopardized this model’s causal inferences. Had they been
included, these variables would have been called integrity

and tax_burden.
All other variables except corruptionwere drawn from Eurostat.

Compiled by transparency.org, the Corruption Perception Index
ranks countries according to perceptions of public sector
corruption. The 16 histograms and kernel density estimates in
Figure 1 depict all 15 predictors and the target.

The correlation matrix among these variables portrays the
manageable level of correlation (Figure 2). No correlation is
more extreme than ±0.700. Throughout this article, statistical
significance is indicated as follows:

∗∗∗ p < 0.001
∗∗ p < 0.01
∗ p < 0.05
+ p < 0.10

This study’s baseline model relies upon the ordinary least
squares (OLS) regression of the foregoing predictive variables
against the Gini coefficient:

yit = β0 + x
′

itβ + εit (1)

where x
′

it is the array of independent variables, β is the vector
of coefficients, and εit is the error term [32]. A simplification
of the OLS model, omitting the it subscript for entity- and
time-specific instances, restates the specification as: ŷ =

β0 +
∑p

i=1 βixi + ε, x ∈ {contributions, . . . , corruption}. More
elaborate specifications for advanced methods, which incorporate
ℓ2 and/or ℓ1 penalties or fixed and/or random effects, appear in
Sections 3.2 and 3.3.

We split data into randomized subsets for training and testing
[[33], p. 17, 18]. Retaining test data helps generalize the model to
data not seen during training. This study’s training and test sets
respectively comprise ¾ and ¼ of all data. The training set contains
303 records; the test set, 102.

To avoid leakage between training and test data, we applied
Gaussian scaling drawn exclusively from training data [[33], p.
138–140]. Gaussian scaling yields beta coefficients [34], which can
be evaluated without regard to the units in which raw variables
are expressed [[35], p. 387]. The sign and scale of coefficients
accompanying each predictor indicate the direction and strength
of the impact on the target.
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FIGURE 1

Histograms and kernel density estimates (KDEs) of predictive and target variables. Skewness and kurtosis for each variable are also reported.
Departures from normality, wherever they occur, are readily visible in the histograms and KDEs as visual representations of the distribution of
each variable.

3.2 Regression methods and the
no-free-lunch theorems

Especially in policymaking, regression serves two distinct
purposes, corresponding to each side of the regression equation
[[36], p. 702]. Some applications emphasize β̂ , the vector of
coefficients for explanatory variables on the right-hand side. Other
applications focus on the fitted value of the response variable,
y, on the left-hand side [[37], p. 1445]. Although this article

emphasizes causal inference from β̂ , it does use variability in
predictive accuracy to evaluate the stability of causal inferences.

Causal inference among a set of predictors often requires

selecting the correct subset of variables and assigning effect sizes

reflecting either positive or negative impact on the response
variable [38]. Type I errors through the mistaken inclusion of a

predictor may arise [39]. Type II errors of omission also occur,
if the design matrix fails to include a relevant variable [40, 41].
Null hypothesis significance testing—the analytical framework
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FIGURE 2

Correlation among all variables. Pearson’s r is indicated on a sliding color scale where bright red indicates +1.000 and dark blue indicates −1.000.

for an overwhelming majority of studies in economics and
other social sciences—relies upon statistical conventions indicating
the probability that a particular effect may have arisen by
chance [42]. This study applies additional tools to strengthen
the reliability of causal inferences regarding a highly complex
socioeconomic phenomenon.

The no-free-lunch (NFL) theorems describe a pair of related
propositions in mathematics and computer science, one for
search [43] and the other for optimization through statistical
inference [44]. In effect, the NFL theorems posit that there
is no way to determine ex ante which mathematical tools
will work best with a particular dataset for a particular task
[45, 46]. The NFL theorems negate the notion that a fixed
protocol can determine which methods will work best with a

particular dataset and for the twofold goals of causal inference
and predictive accuracy. Amid the inescapable uncertainty that
bedevils efforts to evaluate large, complex collections of data,
proper experimental design does not consist so much of a choice

among specific methods, but rather a systematic application of all
plausibly and potentially helpful methods, with an understanding
of the rationales motivating the deployment of a particular
methodological toolkit.

The inclusion of potential predictors in a design matrix is
often—perhaps too often—constrained by the availability of data.
It is entirely possible for a chosen set of predictors to be at
once overinclusive and underinclusive. Regularized regression,
broadly speaking, addresses the Type I error of injecting too many
confounding variables into the design matrix. Fixed and random
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effects tests, by contrast, offer possible relief from omitted variable
bias as a variant of Type II error in experimental design.

The proper focus therefore falls upon the goals of regression as a
tool for interpreting a hypothesized model and estimating the effect
of proposed predictors, as opposed to an unattainable set of a priori
criteria for selecting specific regression methods. Some scientific
applications, including this study, may be willing to sacrifice a
degree of predictive accuracy for stability in experimental design
and improved interpretability of a model. Among linear regression
methods, any departure from OLS necessarily satisfies the optimal
fitting of a predictive model, in the hope of improving the model’s
generalizability to new data.

Conscious departures from OLS may be informed by broad
intuitions about families of advanced regression methods. Beyond
coarse choices between regularization (on one hand) and fixed and
random effects (on the other hand), the application of specific
regression methods may hinge upon finer distinctions. Some
specific choices may be guided by formal statistical tests such as
the Hausman test. Distinct implementations of the ℓ1 penalty have
different tendencies to induce sparsity. In stacking generalization,
the choice among supervised machine-learning methods might
hinge on differences in the resilience of decision tree ensembles.
Unsurprisingly, the mathematical clarity of methodological choices
informed by formal tests or mere intuitions tends to decline as
reliance on stochastic machine learning increases. Further details
will emerge in this article’s discussion of specific methods.

3.3 Regularized regression

To strengthen the credibility of its interpretive conclusions, this
article deploys two distinct sets of advanced regression methods.
The first of these departures from OLS is regularized regression.
The second departure involves fixed and random effects regression.
Each set of methods addresses a distinct obstacle to the proper
interpretation of regression models.

First, collinearity may arise from irrelevant or redundant
variables. When variables are collinear, one of those variables can
draw an extremely large positive coefficient, only to be offset by a
comparably large negative coefficient on another variable. These
coefficients are unreliable, perhaps even misleading. Neither their
size nor even their sign can be trusted [47].

The variance inflation factor (VIF) is often used to detect
collinearity [48]. VIF > 10 [49] or even VIF > 5 raises cause for
concern [[50], p. 119]. The VIF target is fluid because collinearity
becomes less confounding as the amount of data increases [[51],
p. 32].

Variable inflation factor analysis shows mostly acceptable
values, with at most marginal cause for concern (Figure 3). No VIF
value exceeds 5. Only four variables exhibit VIF values>3: personal
(4.100), rgdp_pc (3.770), property_rights (3.331), and spending

(4.724). Even mild collinearity, at VIF as low as 2.5, portends
“difficulty in separating out the contribution of (affected) variables”
[[52], p. 1958, 1959].

FIGURE 3

Variable inflation factor (VIF) analysis. Most VIF values fell below the conservative threshold of 2.5. All VIF values fell below 5.
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Penalized (or regularized) regression methods can
ameliorate collinearity. Ridge applies the ℓ2 penalty to linear
regression [53–56].

Ridge is most readily understood by its departure from OLS.
OLS projects an n×1 column vector y onto n×p design matrix X.
Multiplying the columns by the vector of coefficients, β ∈ R

p×1,
produces the projection Xβ . The estimator of β is:

β̂ = (XTX)
−1

XTy (2)

Ridge regression adds a “ridge” named for the diagonal of the p
× p identity matrix Ip:

β̂Ridge = (XTX + αIp)
−1

XTy (3)

Ridge’s penalization parameter, α ≥ 0, controls the degree of
regularization. At α = 0, Ridge is equivalent to OLS. Increasing α

raises the ℓ2 penalty and redistributes weights within β̂Ridge toward
zero relative to the least-squares estimate [[57], p. 237].

Regularization incorporating a ℓ1 penalty can induce sparsity
by assigning zero weight to inconsequential variables [38, 58].
Feature selection through sparsity removes irrelevant variables
without excessive loss of information [59]. It also deletes otherwise
relevant features rendered redundant by collinearity [60].

In principle, the induction of sparsity is the ideal method
for removing irrelevant or redundant variables. Assigning zero
weight unequivocally removes these variables from the design
matrix and identifies an unambiguously active subset of predictors.
At a minimum, however, all forms of regularized regression can
shrink parameters. The shrinkage of parameters, paired with larger
standard errors, tends to elevate p-values. Therefore, even in the
absence of sparsity—an unavoidable attribute of Ridge parameters,
which can be driven toward zero but never to zero—all regularized
regression methods can work together with the apparatus of null
hypothesis significance testing.

An efficient method for inducing sparsity exploits the least
absolute shrinkage and selection operator, or Lasso [61–63]. The
Lasso parameter λ adjusts the ℓ1 penalty, specified as

∑p
1

∣

∣βj

∣

∣ [[64],
p. 68, 69].

A hybrid of the ℓ1 and ℓ2 norms, ElasticNet combines the effects
of Ridge and Lasso [65]. Like Lasso, ElasticNet can simultaneously
shrink coefficients and select variables by inducing sparsity.
ElasticNet tends either to include or to remove entire groups of
highly correlated variables. Again, ceteris paribus, sparsity delivers
clearer answers with respect to causal inference. Paradoxically,
ElasticNet as a hybrid method incorporating an ℓ2 penalty
alongside an ℓ1 penalty can be more efficient in inducing zero-
weight coefficients. Surprises such as these, once again, demonstrate
the no-free-lunch theorems and the futility of ex ante efforts to steer
regularized regression methods according to the understandable
but perhaps unattainable preference for sparse solutions over a
merely shrunken set of parameters.

Sparse Bayesian learning can also generate zero-weight
coefficients [66]. This trait invites the synonym, Bayesian Lasso
[67]. SciKit-Learn adopts the name of the broader family of sparse
Bayesian methods, automatic relevance determination (ARD).

Ridge, Lasso, ElasticNet, and ARD are machine-assisted
regression methods. Cross-validation, which uses iterative

resampling from different portions of training data to achieve
out-of-sample testing [68], can set penalization parameters in
Ridge [69], Lasso [70], and ElasticNet [[71], p. 3]. ARD uses
Bayesian optimization of the ℓ1 penalty as a “relevance vector
machine” [66].

This study implemented automated, cross-validated versions of
regularized regression in the SciKit-Learn library for Python. By
default, that library cross-validates Ridge through the leave-one-out
method. SciKit-Learn uses k-fold cross-validation, k = 5, for Lasso
and ElasticNet. ARD in SciKit-Learn is a fully automated Bayesian
method. This study coerced each regression method to find a zero
intercept. In the interest of stability, this study raised the maximum
number of iterations for Lasso and ElasticNet from 1,000 to 10,000.
This study set the range of Ridge α as 150 (common) logarithmic
intervals between 10−2 and 104 and the range of the ℓ1 ratio in
ElasticNet at 11 arithmetic intervals between 0.052 (0.0025) and
0.952 (0.9025). In all instances requiring a seed for Python’s random
number generator, this study used a seed of 1.

3.4 Fixed and random e�ects

Whereas collinearity typically arises from the overinclusion
of variables, the opposite problem of under inclusion also vexes
causal inference. The failure to identify an otherwise relevant, non-
redundant variable can produce omitted variable bias [40, 41]. The
coefficient of an omitted determinant of the dependent variable is
non-zero. The covariance of an omitted variable z with specified
independent variable x is also no-nzero: cov(z, x) 6= 0. Fixed effects
regression [72, 73], particularly the inclusion of time-invariant,
country-specific effects [[13], p. 871, 872], can eliminate one source
of omitted variable bias.

Since this dataset consists of 15 yearly observations for 27
countries, this study sought to neutralize omitted variable bias by
deploying entity-, time-, and entity-and-time-based variants of a
fixed effects model. The balance of this article will refer to these
models as FEE, FTE, and FETE.

The FEE model may be written as:

yit = αi + x
′

itβ + εit , εit ∼ IID
(

0, σ 2
ε

)

(4)

where αi represents entity-specific heterogeneity and εit ∼

IID(0, σ 2
ε ) indicates that all xit are independent of all εit [[32],

p. 386–388; [74], p. 484–486]. Each fixed effect unit (whether a
geographic entity or a year) adds a dummy variable. The FTEmodel
may be written similarly, with γt substituting for αi.

By extension, the FETE model would include both αi and γt :

yit = αi + γt + x′itβ + εit , εit ∼ IID
(

0, σ 2
ε

)

(5)

The random effects (RE) model assumes that all factors
affecting the dependent variable, but not included among
independent variables, can be expressed by a random error term.
By analogy to FEE, the RE model may be written as:

yit = µ + αi + x′itβ + εit , εit ∼ IID
(

0, σ 2
ε

)

, αi ∼ IID
(

0, σ 2
ε

)

(6)

where αi + εit represents an error term containing a time-invariant
specific component and a remainder component, presumably
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uncorrelated over time. In addition to being mutually independent,
each component is also independent of xit for all I and all t [[32],
p. 347].

As applied to this dataset, the Hausman test [[75], p. 27, [76],
1251, 1252, [77, 78], 747] reports a result of χ2 = 8.380128 at
15 degrees of freedom. The Hausman test begins with the null
hypothesis that exogenous variables in the model are not correlated
with omitted country- or time-specific attributes [[79], p. 123].
The p-value of 0.907641 associated with the Hausman test favors
retention of the null hypothesis at any conventional threshold of
statistical significance and adoption of the more efficient random
effects model over a fixed effects model [[76], p. 1251, 1252].

Although the Hausman test favors random over fixed effects,
other sources advise using both fixed and random effects when
panel data covers a defined number of countries over a defined time
period [[74], p. 495, 496]. Fixed effects may avoid potential biases
arising in random effects from correlations between predictive
variables and omitted attributes of each country [[80], p. 2771].

3.5 Stacking generalization

In order to aggregate predictions and inferences from nine
linear regression methods, this article uses stacking generalization.
This machine-learning method aggregates predictions from

other models into a set of meta-predictions [81, 82]. Stacking
generalization delivers “super learning” in high-stakes applications
such as motion detection [83, 84].

Like all other machine learning ensembles [85, 86], a stacking
model gracefully accommodates weaker methods. Thanks to this
Delphic accumulation of learning from diverse sources, stacking
can produce predictions more accurate than any of its tributary
methods. Amid the profusion of advanced linear methods, stacking
generalization can also produce an ex post sense of methodological
order that cannot be attained until each of these underlying
methods is applied and completes its work. In other words, meta-
inferences generated by stacking generalization rationalizes the
relative contributions of individual methods whose value to a study,
according to the no-free-lunch theorems, cannot be predicted
in advance.

This meta-ensemble stacks predictions from the nine linear
methods as “level 0” in a new predictive model. Instead of the 15
features in the original dataset, stacking treats each distinct method
in level 0 as an independent variable. A meta-learner, or blender,
then enters the stacking model as level 1. After learning from
training set predictions in level 0, the trained blender can produce
its own predictions.

The level 1 blender can apply any regression method, linear
or otherwise. This study devised its own stacking model to
accommodate fixed and random effects regression, which relies on

FIGURE 4

OLS regression: Beta coe�cients, confidence intervals, and statistical significance. Indications of statistical significance follow the conventions
described in Part 3.1.
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larger design matrices. This custom-built stacking generalization
model can use a decision-tree ensemble such as random forests
[87, 88]. Instead of searching for the best feature when splitting a
node, random forests search for the best feature within a random
subset. Randomizing thresholds for each feature, as opposed to
searching for the optimal threshold, yields the extremely random
trees algorithm, or extra trees [89].

Both random forests and extra trees, as ensemble-based
methods of supervised machine learning, must be calibrated
through cross-validation. Consistent with its reliance on default
settings for the automatic cross-validation of Lasso and ElasticNet,
this study manually implemented k-fold cross-validation, at
a value of k = 5, for the random forest-powered and extra
trees-powered stacking blenders. Again, Python’s random
number generator was seeded with the integer 1. Each stacking
blender was calibrated so that each constituent decision tree
would have a maximum depth of seven and no more than
eight features.

The extra trees-powered blender delivered superlative accuracy.
Relative to random forests, extra trees ensembles are more resistant
to overfitting. This resilience arises from randomization of the

subset of features and the point at which to split each tree within
the ensemble [[90], p. 645, [91], p. 5].

The sum of a stacking blender’s vector of feature importances
is invariably 1. That vector may therefore be interpreted as the
probability that a method in level 0 influences any prediction by the
blender. Let the 15× 9 matrix C represent all coefficients for the 15
predictive variables generated by the nine predictive methods. A 9
× 1 vector, called F, represents each of the feature importances in
the stacking blender. The product of the matrix of coefficients and
the vector of feature importances, C · F, yields a new 15 × 1 vector
V corresponding to the original 15 independent variables.

4 Results

4.1 The OLS baseline

The baseline OLS model ascribes a statistically significant
relationship (at conventional thresholds of p< 0.10 or less) between
the Gini coefficient and 12 out of 15 predictors (Figure 4).

FIGURE 5

Coe�cients and their statistical significance for nine linear methods and a composite drawn from an extra trees-powered stacking blender.
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The only predictors lacking significance at even p < 0.10 were
corporate, monetary_freedom, and financial_freedom. Three out
of four forms of taxation—social contributions, personal income
taxes, and consumption taxes—exhibit a negative relationship
with inequality. The higher the levels of these forms of taxation,
the less unequal the distribution of income. Corporate taxation
reported a weakly positive but statistically insignificant relationship
with inequality.

The two macroeconomic features pointed in opposite
directions. Real GDP per capita has one of the strongest negative
effects on inequality. Larger European economies tend to be less
unequal. By contrast, the higher the ratio of public debt to GDP,
the more unequal the country’s distribution of income.

Among the eight Heritage Foundation index components,
the impact on inequality is roughly divided. Property rights,
labor freedom, and trade freedom are all associated with
reductions in inequality. Government spending, business freedom,
and investment freedom point toward greater inequality. The
relationship between inequality, on one hand, and monetary or
financial freedom is negligible. Perceptions of corruption have a
mildly positive relationship with inequality.

4.2 Regularized regression: Ridge, Lasso,
ElasticNet, and ARD

Figure 5 reports coefficients and p-values for this study’s nine
linear regression methods as well as the composite model emerging
from stacking generalization.

Despite mild collinearity, regularized regression did not induce
(much) sparsity or discernibly shrink coefficients. The ℓ2 penalty, α
= 16.652388, did not materially distinguish Ridge from OLS. Ridge
did deprive two variables, investment_freedom and corruption, of
statistical significance. In light of misgivings over p-values [92]
and the larger apparatus of null hypothesis significance testing
[93], minor realignments within the conventional constellation of
“significance stars” may justifiably be discounted or even ignored.

Two of the three methods incorporating an ℓ1 penalty – Lasso
and ElasticNet —failed to induce any sparsity. ARD assigned a zero
coefficient tomonetary_freedom and drove coefficients on corporate
and financial_freedom nearly to zero. Among regularized methods,
ARD achieved the greatest reduction in the absolute values of
coefficients relative to OLS (Table 1).

4.3 Fixed and random e�ects

Fixed and random effects regression also temper causal
inferences drawn from OLS, but for reasons wholly distinct
from those justifying regularization. Indeed, these two classes
of regression methods have diametrically opposed motivations.
Whereas Ridge, Lasso, ElasticNet, and ARD constrain collinearity
among a possible surfeit of predictors, fixed and random effects
remedy the possible omission of relevant, non-redundant variables.

This subsection first reports parameter estimates for FEE, FTE,
FETE, and RE. These methods’ fitted coefficients can and should be
compared with those generated by OLS and regularized regression.

TABLE 1 The sum of the absolute value of coe�cients generated by each

regression method provides a crude indicator of each method’s reduction

or increase in the e�ect sizes reported by the baseline OLS model.

Regression method Sum of the absolute value of
coe�cients

OLS 2.566678

Ridge 2.281806

Lasso 2.400696

ElasticNet 2.329281

ARD 2.151439

FEE 1.960244

FTE 2.773118

FETE 2.033182

RE 1.704710

Composite 2.226558

This subsection then discusses entity- and time-specific effects, the
most distinctive contributions of fixed effects methodology.

4.3.1 Parameter estimates for FEE, FTE, FETE, and
RE

Among fixed and random effects models, fixed time effects
(FTE) come closest to the OLS baseline. The close resemblance
between OLS and FTE implies that annual differences from 2005 to
2019 do not materially affect predicted values of the Gini coefficient
or the inference of causal relationships.

If anything, FTE amplifies effect sizes reported by OLS.
Indeed, FTE is the only method to increase effect sizes relative
to OLS. The absolute value of an FTE coefficient is often larger
than that of its corresponding OLS coefficient. The most salient
and intriguing instance involves FTE’s treatment of corruption.
FTE’s estimate for corruption is nearly 2.6 times as large as the
corresponding OLS coefficient. But FTE deprives that variable
of statistical significance, because standard errors for corruption

exceed the effect size by a multiple of nearly 2.4, and the p-value
is 0.676.

The inclusion of fixed entity effects, whether in FEE or FETE,
dramatically shifts the alignment of causal relationships among
the 15 predictors. Two of the tax-specific predictors, contributions
and personal, have much higher effect sizes relative to their
corresponding coefficients under OLS and the regularizedmethods.
FEE and FETE also deepened the negative coefficient for rgdp_pc.

Even more dramatically, FEE and FETE collapsed effect sizes
for debt_to_gdp and all components of the Heritage Foundation
index. Only spending retains statistical significance, and only under
FEE. FETE reverses the sign on the coefficients for debt_to_gdp,
business_freedom, and investment_freedom. All of these variables,
identified by othermethods as exacerbating income inequality, bear
negative coefficients under FETE. Relative to OLS, the regularized
methods, and FTE, FEE also flips business_freedom from positive
to negative. Extreme shrinkage in effect sizes, to say nothing of
a reversal of the sign, undermines causal inferences otherwise
attributable to these variables.
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Recall that the Hausman test prefers random over fixed effects
for this dataset. These disparate treatments of potentially omitted
variables are ultimately compatible. RE results are most closely
aligned with FEE or FETE. Any difference between fixed and
random effects proves inconsequential. The convergence of results
for random and fixed effects vindicates recommendations that both
of these tests be applied to panel data containing both intertemporal
and geographic diversity [[74], p. 495, 496].

Like tests incorporating fixed entity effects, random effects
deepen the association between higher levels of taxation (except
corporate taxes) and lower income inequality. Relative to OLS,
RE attributes a greater effect size to contributions, personal,
consumption, and rgdp_pc. For all of these variables, RE is less
exuberant than FEE and FETE. RE matches FEE and FETE in
denying statistically significance to the debt-to-GDP ratio and
all Heritage Foundation variables except spending. Confusingly
enough, RE agrees with OLS and FEE in assigning a positive and
statistically significant coefficient to corruption. FETE remains the
lone method to attribute a negative (but insignificant) relationship
between corruption and the Gini coefficient.

A review of Table 1, which reports the sum of the absolute
value of coefficients in each model, heightens these comparisons
of fixed and random effects with OLS and regularized regression.
Intriguingly, RE assigns by far the most conservative vector of
coefficients, as measured by the sum of their absolute value.

The sum of absolute values of coefficients is also lower for FEE
and FETE relative to the regularized methods. This phenomenon

can be attributed to the presence in fixed effects tests of 27 or 42
dummy variables, accounting (respectively) for the 27 EUmember-
states or those 27 countries plus the 15 years in this dataset. FTE,
by contrast, has the highest sum of absolute values. Fixed time
effects do not redirect values away from the coefficients assigned
to core variables.

By conventional measures of statistical significance, FETE is
even more conservative than random effects. FETE recognizes
only three significant variables: contributions, personal, and
consumption. All of those variables represent levels of taxation, and
all three show a negative effect on the Gini coefficient. Remarkably,
FETE assigns a coefficient of −0.539 to rgdp_pc, the largest effect
size in this study, even as it deprives that variable of statistical
significance. Again, this is an artifact of standard errors; the p-value
for rgdp_pc in FETE is approximately 0.135—relatively low, but not
low enough to satisfy any conventional p-value threshold.

4.3.2 Entity- and time-specific e�ects
FEE and FETE generated their own estimates of entity-specific

effects. The subplot at left in Figure 6 shows eachmethod’s estimates
and the similarity between the two sets of estimates. Even more
helpfully, entity-specific effects correlate with the Gini coefficient
for each member-state of the EU. For FEE alone, r = 0.517788.
Because FETE produces a poorer fit with Gini, the average of
entity-specific effects for FEE and FETE lowers r to 0.478948.

FIGURE 6

At left: Fixed entity e�ects plotted against Gini coe�cient averages for each member-state of the European Union. FEE appears in green; FTE, in
orange. At right: Combined fixed entity e�ects as the average of FEE and FETE, plotted against national Gini coe�cient averages. The direction,
color, and size of the triangles indicate real GDP per capita relative to the EU average.
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FIGURE 7

At left: Fixed time e�ects (FTE) plotted against year-specific Gini coe�cient averages. At right: Fixed entity and time e�ects (FETE) plotted against
year-specific Gini coe�cient averages.

A simple visualization of the relationship between (1) the
average FEE and FETE parameter estimates for entity-specific
effects and (2) the average Gini coefficient for each EU country
demonstrates the basic soundness of these entity-specific estimates
(Figure 6, right). Linear regression of country-wide Gini against the
average of the FEE and FETE parameter estimates shows a positive
slope (m= 0.406) and r2 = 0.229392.

The two fixed-entity effects methods, FEE and FETE, provide
additional information through country-specific parameter
estimates. The combined subplot at right in Figure 6 adds
triangles to each country. Red, upward-pointing triangles indicate
higher-than-average real GDP per capita. Poorer countries
are marked by blue, downward-pointing triangles. The size
of each triangle indicates the degree of departure from the
European mean.

The richer red cohort comprises all six of the founding
members of the European Economic Community; the three Nordic
states of Denmark, Sweden, and Finland; and Austria and Ireland.
From the Treaty of Rome onward, many of these countries have
had greater engagement in pan-European politics. The poorer blue
cohort contains the extended Mediterranean group of Cyprus,
Greece, Malta, Spain, and Portugal—a geographic swath evocative
of the Odyssey, the Aeneid, or even the Punic Wars—plus every EU
member-state that experienced a socialist frolic and detour after
World War II.

The division between the richer, more equal countries in red
and their poorer, less equal counterparts in blue may be imperfect,
but it is evident and striking. By and large, the countries in red are
the old member-states of the EU-14 (minus Portugal, Spain, and

Greece). The countries in blue are mostly the new member-states
of the EU-13.

Aside from two low-inequality outliers (Slovakia and Malta),
poorer countries in blue tend to lie close to the regression line
treating fixed entity effects as a function of the Gini coefficient.
Fixed entity effects, however, tend to overestimate inequality in
the richer red cohort. Ireland is a notable exception; entity effects
underestimate Irish inequality.

On balance, fixed entity effects—including their errors in
estimation—capture deeply historical differences within Europe.
At their most effective, regression and related forms of supervised
machine learning can perform tasks typically associated with
classification and clustering. An examination of fixed entity effects,
real GDP per capita as a surrogate for prosperity, and the ground
truth of the Gini coefficient bifurcated Europe along historical,
economic, and political differences.

By contrast, time-specific effects are more confounded. Though
both contained a temporal element, the FTE and FETE methods
assigned opposite effects to individual years from 2005 through
2019. Figure 7 plots FTE and FETE parameter estimates against
Gini coefficients by year.

The regression line for FTE estimates of time-specific effects
has a negative slope, while the regression line for FETE estimates
slopes upward. The upward spike in year-by-year Gini coefficients
after 2012 is readily apparent in FETE estimates. In truth, Gini
coefficients trended upward from 2005 to 2019 in Europe (Figure 8)
and elsewhere throughout the developed world [9].

When contrasted with the upward trend in Gini coefficients,
the downward slope in FTE’s estimate of time effects reveals a
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FIGURE 8

Year-specific Gini Coe�cient averages as a function of actual years, 2005–19.

misattribution of the relationship between time and economic
inequality. FTE mistakenly implies that later years have lower
inequality, when in reality the opposite happened.

Why, then, did FETE succeed in capturing the evolution
over time of economic inequality while FTE failed? There may
be unresolved collinearity between the FTE model’s dummy
variables for each of the years, on one hand, and the tax-based,
macroeconomic, and nakedly political variables in the rest of the
design matrix. Though not fully explored in this study, economic
intuition suggests that autocorrelation and other time-series effects
are embedded in factors such as the debt-to-GDP ratio or GDP
per capita.

The same year-by-year dummy variables also appear in FETE.
But the design matrices for OLS and the fixed effects methods differ
radically in shape. Training data for all methods contained 303
observations, or roughly three-fourths of 405 total observations (27
countries over 15 years). OLS contains the same 15 basic predictors
common to all models. FTE adds 15 dummies for the years. FETE
adds another 27 dummies for EU member-states. The FTE design
matrix therefore assumes a 303 × 30 shape, while FETE uses a 303
× 57 design matrix.

Ordinarily, collinearity compounds as the dimensionality of
a design matrix increases. In this instance, however, the addition
of 27 entity-specific dummies nearly doubles the number of
predictors in FETE relative to FTE. Time-specific dummy variables,
whatever their collinearity with the baseline economic predictors,
evidently did not interact in a destructive way with the entity-
specific dummies.

Put another way, the introduction of time-specific dummy
variables in FTEmay have exaggerated latent time-dependent traits
in variables reflecting macroeconomic conditions, tax policy, and
political ideology. As often happens amid excessive collinearity,
FTE assigned arbitrary large coefficients to the time-specific
dummies, pointing the opposite direction from those years’
relationship with economic inequality.

By contrast, the introduction of 27 entity-specific dummies in
FETE diluted the deleterious impact that time-specific effects may
have had on collinearity. The stability of FEE and FETE reinforces
confidence in the validity of entity-specific effects. Those models
evidently capture something unique to the European Union’s
geographically, socially, and economically diverse member-states.
True to the mission of fixed effects regression, entity-specific
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effects successfully identify factors missing from OLS and its
regularized extensions.

4.4 Both sides now: the two faces of
stacking generalization

Stacking generalization typically enhances predictive accuracy
in supervised machine learning. But the insertion of an extra trees
blender as the “level one” aggregator of the linear methods in
level zero produces a vector of feature importances that assigns a
probability that a particular method has influenced the blender’s
predictions. This vector therefore measures the contributions of
methods, fromOLS to regularized regression and fixed and random
effects, to predictions made by the stacking blender. The weights
attributed to each method in level zero produce a composite
model whose coefficients, confidence intervals, and p-values can be
compared to the conventional statistical apparatus of OLS and its
advanced cognates.

This subsection reports each contribution of stacking
generalization in turn. It first reports fitted values for all methods
and the aggregation of those predictions through stacking
generalization. This subsection then extracts a composite linear
model from parameter estimates by all methods in level 0, as
weighted by the feature importances of the extra trees blender in
level 1.

4.4.1 Fitted values in ŷ and measures of
predictive accuracy

Since most applications of stacking generalization strive for
predictive accuracy, this subsection is the best place to present
predictions from all methods. The grid of 12 subplots in Figure 9
presents ŷ, the vector of fitted values for all nine linear methods,
from OLS to four regularized methods and the four fixed and
random effects tests. It also includes three composite predictions:
a soft voting regressor that aggregates Ridge, Lasso, ElasticNet, and
ARD [94, 95], plus random forest and extra trees blenders.

Perhaps the most striking result is stacking generalization’s
improvement in accuracy. The extra trees blender outperforms
random forests, but either blender is more accurate with respect
to test data than even OLS in training. The extra trees blender is
particularly impressive, with r2 scores of 0.864675 in training and
0.641269 as applied to test data. Corresponding r2 scores in OLS are
0.502846 and 0.402768.

Because of its “sometimes unintended and exasperatingly
precise . . . results,” stacking generalization as a form of ensemble
learning is said to bear “an uncanny resemblance to the Delphic
Oracle in mythology” [[96], p. 11]. Machine learning based on
a Delphic chorus of weak predictors can deliver more accurate
results than a single, more elaborate predictor. As often happens
in machine learning, this stacked ensemble outperformed its
individual components. Indeed, predictive improvement is so
stark that stacking generalization can be said to have revealed
countervailing strengths among the constituent models. Again,
regularization and fixed or random effects tests address different
sources of bias. Accordingly, these distinct families of methods

should be expected to yield diverse results on both sides of the
regression equation.

Strong test set accuracy also demonstrates stability in stacking
generalization and the credibility of the methods in level 0.
Retaining three-quarters of the r2 score in the transition between
training and testing suggests that the stacking blender is doingmore
than merely fitting instances seen during training.

Predictive accuracy among methods in level 0 also warrants
closer examination. Regularization and fixed and random effects
are celebrated as weapons against collinearity and omitted variable
bias on the right-hand side of the regression equation. Nevertheless,
the retention or loss of accuracy with respect to test data reveals the
stability and reliability of each method. OLS always outperforms
regularized regression in training.

Every regularized method and the voting regressor aggregating
Ridge, Lasso, ElasticNet, and ARD outperformed OLS on test
data. This attribute of the predictions, however modest, validates
resort to regularization. Despite the conscious sacrifice in training
accuracy through an ℓ2 and/or ℓ1 penalty, regularized regression
is more stable and generalizable than OLS. Regularization reduced
variance without sacrificing predictive accuracy on new data.

Fixed and random effects varied in their predictive
performance. Fixed and random effects should not be expected
to be as robust against overfitting as regularized regression, since

these methods affirmatively expand the design matrix. Methods

incorporating fixed entity effects, FEE and FETE, slipped badly on
test data. But FTE and random effects showed stability comparable

to the regularized methods. RE’s superior accuracy and stability

vindicate the Hausman test, which recommended random over
fixed effects for this dataset. For its part, FTE outperformed every

other linear method on test data, attaining r2 of 0.415237.
The superlative performance of FTE on test data, however,

does not eliminate the possibility that the addition of time-specific
effects elevated collinearity. Collinearity does not ordinarily impair
predictive accuracy or the ability to fit a model to new data,
as long as the predictors follow the same pattern of collinearity
[[97], p. 369–70; [98], p. 283]. Sampling variability, however, does
affect predictive accuracy as well as causal inference in collinear
data. Declines in accuracy as between training and test data may
therefore stem in part, though perhaps not substantially, from
latent or introduced collinearity.

4.4.2 A composite linear model based on
stacking blender feature importances

Gini impurity in the extra trees blender’s predictions enables
the attribution of feature importances to all of the methods in
level 0. These feature importances are readily interpreted as the
weight of each method’s contribution to the stacking blender’s
meta-predictions (Figure 10).

Contributions from the nine constituent methods are not
equal. FTE generated the most accurate test set predictions. It
received the highest weight in stacking generalization. OLS and
the four regularized methods all received more than their expected
weight. Aside from FTE, fixed and random effects methods received
modestly less weight.
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FIGURE 9

Twelve subplots depicting training and test-set predictions for all methods: OLS, regularized regression, fixed and random e�ects, and stacking
blenders. Goodness-of-fit statistics [r2 and root-mean-square error (RMSE)] are reported for training and testing subsets for each method.
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FIGURE 10

Feature importances among regression methods as reported by their Gini impurity within the extra-trees-powered stacking blender.

These weights help build a composite linear model. Parameter
estimates can be straightforwardly multiplied by the extra
trees blender’s feature importances as a vector of weights. For
instance, FTE received 0.130688 of the blender’s importances.
Multiplying that weight against all coefficients in ˆβFTE, FTE’s
fitted vector of coefficients, yields FTE’s contribution to the
composite. The same process is repeated for t-values for each
predictive variable in each of the nine linear models. These
composite t-values are readily transformed into standard errors
(the ratio of the coefficient to the t-value) and p-values
(p = 2 · [1− CDFStudent′ s T

(

|t| , df = 287
)

]).
The final composite model closely resembles OLS, with the

same configuration of positive and negative coefficients (Figure 11).
These coefficients also appear in the right-most column of Figure 5.
The composite model deprives exactly one predictor of statistical
significance: investment_freedom. Relative to OLS, the composite
model does widen confidence intervals for most variables and,
consequently, reduce the level at which 11 of 15 variables
are considered statistically significant. But there is a consensus
that corporate taxation, monetary_freedom, and financial_freedom

are inconsequential.

5 Discussion

The relationship between tax policy choices and income
inequality demands extremely close and careful scrutiny. This
study’s results provide ample reason to doubt many of the causal
inferences that might be superficially and prematurely drawn from
OLS, any advanced linear method, or the stacked composite. Some
or perhaps even many of the 11 variables emerging from stacking
generalization’s meta-analysis of weaker models may not survive
deeper scrutiny.

5.1 The switching of signs on coe�cients:
fixed and random e�ects

Recall Figure 5’s presentation of all parameter estimates and
their statistical significance. Instability in the sign for each
coefficient across all nine methods cautions against reflexive
reliance on conventional indications of significance. If all nine
methods rest on a credible basis, then even a single reversal in the
sign of a coefficient undercuts causal inferences arising from the
sign, size, and (if one insists) statistical significance of a coefficient.

Effect size matters more than arbitrary p-value cutoffs. The
farther a coefficient lies from zero, the harder it will be to flip its
sign. By contrast, a coefficient whose absolute value is lower, even
if statistically significant at some conventional threshold, is more
vulnerable to a change in sign.

Coefficients for these six variables reverse sign:

• The ratio of public debt to GDP (from positive to negative,
relative to OLS)

• Property rights (negative to positive)
• Business freedom (positive to negative)
• Trade freedom (negative to positive)
• Investment freedom (positive to negative)
• Corruption (positive to negative)

In all but one of these instances, one of the methods
incorporating fixed entity effects flips the sign. FETE flips five
out of six (every one of these variables except trade_freedom).
FEE reverses property_rights, business_freedom, and trade_freedom.
Although FEE and FETE are the weakest predictive models, both of
these fixed entity effects methods delivered credible entity-specific
estimates for the 27 member-states of the European Union. The
random effects test reversed the sign on property_rights, the flipped
variable with the greatest effect size under OLS.
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FIGURE 11

A composite of all generalized linear methods after stacking generalization: OLS, regularized regression, and fixed and random e�ects.

Almost all of these reversals in sign took place in fixed effects
regression, specifically in models including fixed entity effects. The
design matrices for FEE and FETE included 27 dummy variables
for each of countries in the EU. These models did not have the
most conservative parameter estimates as measured by the sum of
the absolute value of coefficients (Table 1). Rather, FEE and FETE
ranked between ARD (the most conservative of the regularized
methods) and random effects, by far the most conservative method
overall. Moreover, FEE and FETE redistributed some of their effect
sizes to three of the tax-related variables (contributions, personal,
and consumption) and to rgdp_pc. FEE and FETE evidently
shifted effect sizes on public indebtedness, many of the Heritage
Foundation index components, and corruption to decidedly non-
zero entity-effect estimates.

5.2 The switching of signs on coe�cients:
Ridge path

The Ridge path provides a second, more mathematically
rigorous basis for eliminating variables from the active set, or at
least downgrading their credibility [99]. It is possible to test a wide
variety of values for penalization parameters such as Ridge α. If a
coefficient, across plausible values for α, changes its sign, its transit
across zero undercuts its predictive validity and credibility.

The Ridge path flipped the signs on these four variables
(Figure 12):

• corporate

• business_freedom

• investment_freedom

• corruption

Three of these variables, unsurprisingly, were among those
whose coefficients flipped under FEE, FETE, or RE. The fourth,
corporate taxation, is the only tax-specific variable that failed to
attain statistical significance under any method.

The combined effect of an across-the-board evaluation of
parameter estimates by all nine linear methods and a look at the
Ridge path is to undermine trust in four out of 11 variables deemed
statistically significant by the composite:

• debt_to_gdp

• property_rights

• business_freedom

• corruption

The variables that have not survived further scrutiny are the
debt-to-GDP ratio, two components of the Heritage Foundation
index, and corruption. These are variables that have received mixed
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FIGURE 12

The Ridge path: Ridge coe�cients as a function of regularization at values of α ∈ (100, 105).

treatment in literature evaluating drivers of income equality. Public
indebtedness and corruption, in particular, are not associated with
an unequivocal impact on inequality. Contested in the literature,
these factors emerge from this study with mixed results.

Moreover, the finding that citizens of relatively unequal
societies favor meritocratic accounts of inequality suggests that
abstract notions of economic freedom, embraced or rejected
in varying degrees across developed democracies, do not serve
as universal, invariant drivers (in either direction) of income
inequality. Though beliefs treating inequality as meritocratic
suggest that voters in unequal societies may want that they get,
after-the-fact rhetorical support for unequal outcomes does not
necessarily imply that these voters get what they want. Post-hoc
rationalization is an emotional salve, not evidence of the heart’s true
desire ex ante [100, 101].

5.3 An evaluation of surviving predictors

This study has used the totality of its data analysis and the
Ridge path to supplement conventional thresholds of statistical
significance. In concert, these tools winnowed out variables
that might warrant closer attention under rigid adherence
to statistical convention. Seven variables remain worthy of
continued consideration:

• contributions (negative)
• personal (negative)
• consumption (negative)
• rgdp_pc (negative)
• spending (positive)
• labor_freedom (negative)

• trade_freedom (negative)

By contrast to ideological variables, tax-related variables (with the
notable exception of corporate taxation) all have a statistically
significant and negative impact on the Gini coefficient. Alongside
real GDP per capita, a proxy for nationwide affluence, tax policy
has the greatest impact on income inequality. More modestly,
this study can conclude that tax policy appears to have a greater
impact on inequality than ideological or behavioral indicators
such as corruption or the Heritage Foundation’s libertarian index
of freedoms.

The two freedoms credibly related to inequality are associated
with labor and trade. The emergent intuition is that freedom vis-

à-vis international trade softens economic inequality. A similar
inference arises with respect to the domestic labor market.
Comparative advantage and the freedom to sell one’s labor on
favorable terms presumably reduce inequality. Both of these
inferences contradict the conventional account that ascribes rising
inequality to globalization and the widening gap in the earning
potential of educated and uneducated workers. Atkinson’s more
optimistic view [6, 7] finds some support in the parameter estimates
for labor and trade freedom.

The most intriguing variable may be spending. This variable
has the highest positive effect on the Gini coefficient. Government
spending, as the side of fiscal policy opposite taxation, apparently
has the opposite and perhaps unexpected or counterintuitive effect
relative to taxation. Whereas, taxation is generally associated with
reductions in inequality, higher levels of spending are associated
with more rather than less economic inequality.

There is some principled mathematical basis for doubting this
causal inference. Spending has this study’s highest variable inflation
factor (Figure 3). It is palpably related to tax-based variables, since
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countries collecting higher taxes can spendmore. It is also related to
GDP per capita. Wealthier countries, ceteris paribus, spend more—
privately and in the public sector. Those expenditures may advance
policies that are more effective in reducing inequality, such as
universal education and preventive health care, but less likely to be
adopted in poorer countries. Even if conclusions regarding specific
expenditures are elusive or premature, the literature does suggest
that social spending is more effective in reducing inequality in
richer countries.

Among other possible reasons for lower inequality in
wealthier countries, the efficacy and efficiency of public-sector
expenditures may contribute to the Kuznets curve. Even if the
effect of wealth cannot be inferred from the opposite signs on
spending and three tax-based variables, entity effects in FEE and
FETE support Kuznets’ hypothesis that inequality reverses its
relationship to economic growth once a society reaches a critical
turning point.

In order to alleviate collinearity, this study omitted two
originally contemplated variables: the tax_burden and integrity

components of the Heritage Foundation index. Tax_burden is
manifestly collinear with the tax-specific variables of contributions,
personal, corporate, and consumption. To a lesser extent, so
is spending. The presence of a large and opposite-signed
coefficient on spending, almost as a mirror image of the negative
coefficients on contributions, personal, and consumption, raises
legitimate concern that residual collinearity undermines this study’s
causal inferences.

On the other hand, there truly are meaningful differences
between the revenue side of fiscal policy and the government’s
spending priorities. Omitting variables does not come free of
epistemological cost. Mistakenly omitting a relevant variable,
despite alleviating pressure on the variable inflation factor, may
introduce specification bias [[97], p. 365, 366]. Moreover, both the
omitted tax_burden variable and the retained spending variable are
positively correlated with gini. In both instances, 0.44 < r < 0.45
(Figure 2).

It is entirely plausible that government spending can
exacerbate income inequality, while three of four modes
of taxation (all except corporate taxation) correspond with
reductions in the Gini coefficient. This finding is consistent
with commonplace economic wisdom that taxation is a more
effective weapon against inequality than spending. Unless
tax policy is aggressively or even maliciously regressive, the
incidence of taxation falls more heavily on higher-income
taxpayers. The resulting reduction in economic inequality
is unambiguous.

By contrast, spending reduces inequality only if it effectively
targets poorer recipients. There are ample reasons to doubt
whether certain governments achieve or even intend any such
thing. Governments are not known for effectively directing
payments toward poorer recipients, even when they consciously
seek to transfer wealth. Defense and health care expenditures
notoriously evade the poor [102–104]. Evidence from poor
countries (admittedly outside Europe) suggests that expenditures
on infrastructure and basic services such as education and
health care disproportionately benefit non-poor citizens [105,
106]. If spending favors more affluent citizens, it may aggravate
economic inequality.

6 Conclusion

6.1 An overview of this study’s conclusions

Economic policy and its implementation can affect both
growth and inequality. Reductions in inequality will depend on
policies and reforms implemented by the member-states of the
European Union. Effective policy depends in turn on knowledge
of the drivers of income inequality. This study has examined
the impact of tax policies, indicators of economic freedom, and
macroeconomic traits.

The tax system and social benefit programs are key instruments
for redressing income inequality. Used appropriately, these
measures can directly reduce inequality. These policy implications
are stronger for the poorer countries of the “new” member-
states of the EU-13. Even among countries in central and Eastern
Europe, which share many historical and political commonalities,
differences in tax policy and social spending yield divergent
outcomes as between the Baltic states and the Visegrád countries
of Hungary, Czechia, Slovakia, and Poland [107].

6.2 Methodological conclusions

This article has deployed a novel analytical apparatus to
evaluate the relationship between tax policy, macroeconomic
conditions, political attitudes, and income inequality. Each set
of tools addressed a potential source of econometric bias
or uncertainty.

Regularized regression did not appreciably change causal
inferences drawn by baseline OLS. Modest collinearity remained
under control and did not undermine the model’s generalizability
and reliability.

Fixed effects regression successfully identified country-specific
effects not captured by the basic designmatrix. FETE outperformed
FTE in capturing time-specific effects. These advanced methods
emphasized tax policies at the expense of the debt-to-GDP ratio
and ideological factors. All models were consistent with the Kuznets
curve hypothesis and with literature arguing that Europe (or
at least its richer countries) has apparently crossed the turning
point beyond which further economic growth reduces rather than
increases inequality. Higher GDP per capita, ceteris paribus, should
be expected to lower the Gini coefficient.

Diversity among regression methods strengthened the
predictive power of stacking generalization. The extra trees blender
improved test accuracy by roughly 0.25 in r2. Feature importances
within the blender assigned a weight to each linear method in level
0 and enabled the extraction of a composite model.

Although the composite did not appreciably differ from the
OLS baseline, instability in parameter estimates across this article’s
full range of methods cast doubt upon causal inferences that might
be upheld according to statistical convention. Fixed and random
effects undermined the credibility of OLS and methods applying an
ℓ2 or ℓ1 penalty. Variables that crossed zero along the Ridge path
likewise invited analytical skepticism.

Tempered by these reservations, the composite model found
that real GDP per capita and all forms of taxation except
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corporate taxes have a negative relationship with the Gini
coefficient. Two Heritage Foundation index components—trade
and labor freedom—also attracted parameter estimates suggesting
a reduction in inequality. Perhaps counterintuitively but consistent
with at least some of the literature, higher social spending is
associated with affirmative increases in inequality.

6.3 Policy implications

This study’s policy implications vary in their clarity. Three
forms of taxation—social contributions, personal income taxes,
and consumption taxes—are strongly connected with reductions
in income inequality. These findings reinforce conventional trust
in progressive taxation as the most effective instrument against
inequality. The case for universal basic income and other social
transfers is more ambiguous. Spending appears to exacerbate
inequality. No other factor compounding inequality has a higher
effect size, and other hypothesized aggravators of inequality did not
survive closer analytical scrutiny.

By the same token, this study gives at best qualified support
for the proposition that a high ratio of debt to GDP worsens
income inequality. ThoughOLS and regularized regression support
this inference, fixed and random effects disagree. Challenges
posed by growing inequality squarely enter the debate over the
relationship between government debt and economic growth.
Whether Reinhart and Rogoff [108] correctly identified public debt
as a barrier to growth is one of the most thoroughly contested
propositions in contemporary economics [109–111].

On one hand, public borrowing can stimulate investments with
positive externalities throughout the economy. Stimulus spending
can also alleviate economic downturns. On the other hand, elevated
public debt crowds out private actors from credit markets and raises
the long-term cost of borrowing.

Prosperity, as measured by real GDP per capita, has a negative
effect on the Gini coefficient. This finding is consistent with the
literature on the Kuznets curve. If lower-income countries have
passed the turning point on the Kuznets curve, growth-enhancing
fiscal andmonetary policies may reduce inequality. These questions
are impossible to extricate from the broader debate over debt
and growth.

Among the ideological factors in the Heritage Foundation’s
index, trade and labor freedom appear to alleviate inequality.
As a rule, these index components have lower effect sizes and
more ambiguous support than tax-related factors and GDP
per capita. Previous research reached contradictory conclusions
about corruption. This study likewise found a possible positive
relationship between perceptions of corruption and the Gini
coefficient, but also ample reason to doubt this conclusion.

6.4 Future work

These conclusions guide future work. The most obvious
extension would apply this study’s experimental design beyond
Europe. Economic, social, and political differences within Europe,

though substantial, would be magnified in a global sample.
Greater diversity within a worldwide dataset should highlight
the methodological contributions of all the tools deployed
in this study: regularization, fixed and random effects, and
stacking generalization.

Other methodological extensions await. The first step may
consist of applying other generalized linear methods. The
prevalence of quadratic relationships throughout this branch
of economics invites the application of polynomial regression.
Although that method is canonically associated with overfit models
[[112], p. 2–4], regularized regression tempers that concern.
Quadratic regression may sharpen understanding of the Kuznets
curve and its relationship to tax policy. Because the Laffer curve
assumes a very similar shape, a quadratic model may add helpful
nuance as scholars and politicians seek the optimal, revenue-
maximizing level of taxation [113, 114].

A statistical apparatus for evaluating interaction effects is
the natural byproduct of polynomial regression [115]. That class
of effects describes the impact of prosperity (as measured by
real GDP per capita) on the most confounded variables in this
study: social spending, the debt-to-GDP ratio, and corruption. The
presence of data on differences in real GDP per capita among
European countries also invites an effort to decompose inequality
into the between-countries and within-countries component of the
Theil index.

This study applied stacking generalization strictly to linear
models. Future work can use more computationally intense
methods involving decision tree ensembles and/or support vector
machines. Supervised machine learning can evaluate datasets
curated for linear methods. Although supervised machine learning
methods lack the interpretive clarity of linear regression, they do
generate feature importances. Imperfect though the comparison
may be, supervised machine learning can be evaluated alongside
linear methods.

Unsupervised machine learning, particularly through
clustering and manifold learning, may identify economically
distinct subgroups among the member-states of the European
Union. Entity effects and errors in their estimation have already
revealed categorical differences within Europe. Future research
should quantify differences among countries as well as inequality
within them.
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