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Malaria is an infectious disease caused by intracellular parasites of the genus

Plasmodium. It is a major health problem around the world. In this study, a cell-

level mathematical model of malaria parasites with antimalarial drug treatments

is formulated and analyzed. The model consists of seven compartments for cell

populations. We analyzed the qualitative behavior of the model using various

techniques. The stability analysis of the parasite-free equilibrium is obtained,

whereas it is locally and globally stable if the basic reproduction number R0 < 1.

The parasite persistence equilibrium point exists, and it is locally asymptotically

stable if R0 > 1. The sensitivity analysis of the basic reproduction number

is computed, and the results show that the infection rate of the erythrocyte

by merozoites, the average number of merozoites per ruptured infected

erythrocyte cells, the natural death rate of merozoites, and the requirement rate

of the uninfected erythrocyte are the most influential parameters within-host

dynamics of malaria infection. Di�erent numerical simulations are performed to

supplement our analytical findings. The e�ect of primary tissue schizontocides,

blood schizontocides, and gametocytocides on infected hepatocytes, infected

erythrocytes, and gametocytes have been investigated, respectively. Finally, some

counterplots are presented in order to investigate the impact of parameters on the

basic reproduction number. The in-host basic reproduction number decreases

as the antimalarial treatment administration increases. Therefore, increasing

antimalarial treatment administration is the best way to mitigate the in-host

malaria infection.

KEYWORDS

blood schizontocides, gametocytocides, dynamical system, sensitivity analysis,
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1 Introduction

Malaria still poses a danger to global health as well as affects economic growth and

progress in high-burden areas. Nearly half of the world population is at risk for malaria

infection, with approximately half a million deaths per year [1, 2], mainly in African

countries, among children under 5 years of age [3]. Malaria is caused by intracellular

parasites of the genus Plasmodium; of these, Plasmodium falciparum is the most virulent

form among the five species (P. vivax, P. ovale, P. malaria, P. falciparum, and P. knowlesi)

that infect humans [4]. Malaria is a life-threatening disease that is transmitted between

humans via vectors (during the blood meal of female Anglophile mosquitoes).

Malaria infection begins when malaria parasites in the form of sporozoites are deposited

by female Anopheles mosquitoes into the host’s skin during a blood meal. After a short

period of time, the sporozoites travel to the liver. The liver-stage of Plasmodium infection

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2023.1282544
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2023.1282544&domain=pdf&date_stamp=2023-12-19
mailto:jemalmuhammed332@gmail.com
https://doi.org/10.3389/fams.2023.1282544
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2023.1282544/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Ahmed et al. 10.3389/fams.2023.1282544

is required and occurs when mosquito-transmitted Plasmodium

sporozoites infiltrate hepatocytes [5]. This stage is clinically silent

and untreatable, and affected individuals are asymptomatic. Inside

the hepatocyte, a parasite divides into thousands of merozoites

through a process called schizogony, where they differentiate into

pre-erythrocytic forms (PEFs) [6]. The matured infected liver

(schizont) ruptures and releases thousands of merozoites into the

bloodstream, invading red-blood cells (RBCs) [7].

The infected red-blood cells developed through the ring,

trophozoites, and schizont phases [8]. The parasite remains in

its ring form, which has low morphological change and limited

metabolic activity. The parasite then progresses to the mature

trophozoite (feeding) stage, where it develops quickly and becomes

more metabolically active. The parasite eventually transforms into

a schizont with the commencement of nuclear division [9], and

the resulting mature schizont contains 16–32 daughter merozoites.

These schizonts ruptured, releasing daughter merozoites to invade

new RBCs. This cycle of erythrocytic development depends on the

parasite species [8, 9], and it is during this stage that an individual

will start to experience malaria-related symptoms such as periodic

fever upon each bursting phase of the infected red-blood cells to

release the merozoites. The fever decreases during the parasite

replicating phase inside the RBCs, and the patient appears to be

improving [10].

A certain amount of merozoites develop into sexual

gametocytes within the host in the form of male (microgametes)

and female (macrogametes) gametocytes in the infected red-blood

cells. The mosquito ingested these gametocytes while feeding on

blood. In the mosquito’s gut, the male and female gametocytes

join to produce a zygote [11], which grows into an ookinete

and migrates through the midgut epithelium of the mosquito

to become an oocyst between 24 and 36h later. The oocyst then

develops into sporozoites through asexual sporogenic replication

[12–16]. The WHO suggests using combination therapy against

parasites in the asexual hepatocytic, and erythrocytic stages that

has been associated with clinical symptoms and the accompanying

mortality. The development of vaccinations, vector control,

chemotherapy with antimalarial medications, chemoprophylaxis,

and other methods are the primary ways that malaria is eliminated

or reduced in prevalence. Most antimalarials act by targeting two

or more phases of the parasite’s life cycle in order to prevent it [17].

The antimalarial therapies have been developed and classified

as primary tissue schizontocides act on the pre-erythrocytic forms

(primary tissue phases) of the malaria parasite. Administration

of medications that destroy sporozoites or the primary tissue

forms entirely avoids erythrocytic infection. The primaquine and

pamaquine are active in the primary tissue schizonts. Additionally,

metformin therapy inhibits Plasmodium falciparum development

in human hepatocytes, which may result in pretreatment-induced

defects in parasite invasion or effective clearance of liver-stage

Plasmodium parasites [18]. Blood schizontocides act on the asexual

erythrocytic forms of all malaria parasites. Quinine, mepacrine, 4-

aminoquinolines, and chloroquine are used to treat and effectively

reduce blood schizonts due to their powerful and quick actions [19].

Gametocytocidal drugs (gametocytocides) prevent the transmission

of parasites into mosquitoes and reduce the human reservoir

of the disease. The 8-aminoquinolines, pamaquine, plasmocide,

primaquine, and quinocide are most active in the sexual forms of

all species of malaria parasites [20].

Although most of the time, artemisinin-based combination

therapies (ACT) are recommended by the WHO to treat malaria

with Plasmodium, such as artemether plus lumefantrine, artesunate

plus amodiaquine, artesunate plus mefloquine, dihydroartemisinin

plus piperaquine, artesunate plus sulfadoxine–pyrimethamine (SP),

artesunate plus tetracycline or doxycycline or clindamycin, and

quinine plus tetracycline or doxycycline or clindamycin [21], which

are recommended for uncomplicated malaria infection [22].

Several mathematical malaria models have been developed

and studied at in-host levels, with important results toward the

evolution of malaria, Plasmodium. Anderson et al. [23] developed

a within-host model. The authors analyzed non-linear dynamical

phenomena in host-parasite interactions with reference to a series

of different problems ranging from the impact on the transmission

of control measures based on vaccination and chemotherapy to the

effects of immunologic responses targeted at different stages in a

parasite’s life cycle. Hetzel and Anderson [24] discovered the blood-

stage malaria parasite in the absence of a human immune response.

They consider the densities of three cell populations: healthy red-

blood cells, infected red-blood cells, and free merozoites. Elaiw and

Agha [25] studied a reaction-diffusion model for the blood-stage

dynamics of malaria infection with CTL and antibody immune

responses. The model explores the interactions between uninfected

red-blood cells (erythrocytes), three types of infected red-blood

cells, free merozoites, CTLs, and antibodies. They introduced

some parameters to measure the effect of antimalarial drugs and

isoleucine starvation on the blood cycle of malaria infection.

In the study by Li et al. [26], the blood-stage dynamics of

malaria in an infected human host including susceptible red-

blood cells, infected red-blood cells, malaria parasitemia, and

immune effectors, a mathematical model was discovered. The

authors generalized from Anderson [27] and Anderson et al. [23]

using non-linear bounded Michaelis-Menten-Monod functions to

describe how the immune system interacts with the infected red-

blood cells and merozoites. The model displayed that periodic

oscillations occur as a result of Hopf bifurcation at the positive

equilibrium, illuminating the fact that the immune response and

malaria infections are always linked. Song et al. [28] investigated

the two inside-the host mathematical models (with and without

immune responses) for replicating the dynamics of the malaria

parasites. The researchers also incorporate competition (between

parasites that are drug-sensitive and those that are drug-resistant),

drug treatment, and immunologic response whenever examining

the evolution of drug resistance inside an infected host. The studies

[29–33] are projected for the blood stage malaria parasites with

immune response.

In a study by Tabo et al. [34], the interaction of the malaria

parasite in sexual and asexualual stages during its life cycle, i.e., a

combination of hepatocyte stage, erythrocyte stage, and mosquito-

stage malaria parasite into one mathematical model is studied. The

authors also include blood-stage treatment as a control strategy

and investigate the effect of the treatment for malaria control

within the host. The model that represents the dynamics of healthy

hepatocytes, infected hepatocytes, sporozoites in the infected

liver, healthy erythrocytes, infected erythrocytes, merozoites in
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the blood, and gametocytes in the mosquito, and oocysts in the

mosquito. The study [35] proposed the within-host dynamics of

malaria infection with the immune system and treatment. The

researchers considered the interactions of the hepatocyte cells,

erythrocyte cells, malaria parasites, and immune cells. The findings

indicated the progression of malaria and control of the disease

with a treatment strategy that combines very efficient medications

against malaria parasites with effective immune responses. The

studies [34, 36, 37] are proposed the in-host dynamics of malaria

infection by considering both erythrocyte stage and hepatocyte

stage malaria infection. However, to the best of our knowledge, no

study has considered the within-host dynamics of malaria parasites

with stage-specific antimalarial drug treatment.

In this study, we investigated the within-host dynamics

of malaria infection with primary liver-stage antimalarial drug

treatment (tissue schizontocides), blood-stage antimalarial drug

treatment (blood schizontocides), and gametocytocidal drug

treatment (gametocytocides). We present the local and global

stability of the parasite-free equilibrium point. It shows that the

parasite-free equilibrium point is both local and global stable

if basic reproduction is less than one. The existence and local

stability analysis of the parasite-persistence equilibrium is shown.

In addition, in order to supplement the theoretical and analytical

results, we instantiate different numerical simulations. The rest of

the study is organized as follows: In Section 2, the mathematical

model is formulated. In Section 3, qualitative analysis of the model

is investigated. Numerical simulation is performed in Section 4.

The conclusion of the study is conferred in Section 5.

2 Model formulation

In this study, we provide a deterministic model that describes

the inside-human-host dynamics of malaria Plasmodium. Our

model contains seven compartments, as follows: uninfected

hepatocyte H(t), infected hepatocyte HI(t), uninfected RBCs R(t),

infected red-blood cell (iRBCs) RI(t), malaria parasite in the form

of sporozoite S(t), malaria parasite in the form of merozoite M(t),

and gametocyte G(t) at time t.

The malaria parasite in the form of sporozoites is recruited

from the salivary gland of the female Anopheles mosquito, with the

blood meals at a constant rate πS and die naturally at a rate µS.

The hepatocyte cells are supplied from the bone marrow at a rate

πH . The hepatocytes are invaded by sporozoites that are injected

into the human body during mosquito blood feeding at a constant

rate β1. This invasion is reduced due to tissue schizontocides (liver-

stage antimalarial drug treatment) which is administrated pre-

erythrocytic stage of malaria infection at a rate (1− ξ1)β1, where ξ1

(0 < ξ1 ≤ 1) is the efficacy of antimalarial drug on pre-erythrocytic

malaria stage. The hepatocytes suffered natural death at a constant

rate µH . The population of infected hepatocytes increases as the

healthy hepatocytes get infection at a rate (1− ξ1)β1 and decreases

owing to ruptured and die at a rate δ. The healthy erythrocytes

(RBCs) are recruited from the bone marrow at a constant rate

πR. They acquire infection due to the invasion of merozoites that

are released from the liver schizont at a rate β2. The invasion

rate is attenuated when blood-stage antimalarial drug treatment

(blood-schizontocides) is administrated at the rate (1−ξ2)β2, where

ξ2(0 < ξ2 ≤ 1) is the efficacy of antimalarial treatment on

erythrocytic invasion, and the RBCs die naturally at a constant rate

µR. The iRBCs burst and die at a constant rate σ . The merozoite

population is produced when the infected hepatocyte ruptures and

releases thousands of merozoites into the blood system at a rate δN,

where N is the average number of merozoite released per ruptured

infected hepatocytic cells, and during the iRBCs ruptured and

release 16–32 merozoites per ruptured iRBC into the bloodstream

at a constant rate σQ to invade fresh erythrocytes (RBCs), where Q

is the average number of merozoites per ruptured iRBCs.

The production of the merozoite is reduced when antimalarial

drug treatments; primary tissue(pre-erythrocytic) schizontocides

and blood schizontocides are administrated at the rate of (1− ξ3)N

and (1− ξ3)Q, respectively, where ξ3(0 < ξ3 ≤ 1) is the efficacy of

antimalarial drug treatments on the average number of merozoites

rupturing rate of pre-erythrocytic schizont and blood schizont.

The population of merozoite will reduce due to the natural death

rate µM . After the invasion of the red-blood cells, some number

of merozoites develop into male (microgametes) and female

(macrogametes) gametocytes that arise within-host at a rate c. The

sexual form (gametocytes) are destroyed due to the administration

of gametocytocide [19] at a rate ξ4 (0 < ξ4 ≤ 1). The gametocytes

die naturally at a rate µG. Note that, ξi = 0, i = 1, . . . , 4

implies that the antimalarial drug treatments are not effective at

all, and ξi = 1 means that they are 100% effective. Assume

that an uninfected erythrocyte’s observation of merozoites and an

uninfected hepatocyte’s observation of sporozoites are ignored. The

state variables and all the model biological parameters are listed

in Tables 1, 2, respectively. Based on the above descriptions and

the model schematic diagram (Figure 1), the formulated model

equation is given by

dH

dt
= πH − (1− ξ1)β1HS− µHH,

dHI

dt
= (1− ξ1)β1HS− δHI ,

dR

dt
= πR − (1− ξ2)β2RM − µRR,

dRI

dt
= (1− ξ2)β2RM − σRI ,

dS

dt
= πS − µSS,

dM

dt
= (1− ξ3)NδHI + (1− ξ3)QσRI − µMM,

dG

dt
= cRI − ξ4G− µGG,

(1)

with non-negative initial condition

H(0) = H0,HI(0) = HI0,M(0) = M0, S(0) = S0,R(0) = R0,

RI(0) = RI0,G(0) = G0. (2)

3 Qualitative analysis of the model

In this section, we investigate the positivity and boundedness of

the developed model, equilibria, stability analysis of the equilibria,

and sensitivity analysis of basic reproduction number.
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TABLE 1 State variables and their description.

State
variables

Description

H(t) Concentrations of the uninfected hepatocyte cells at time t

HI (t) Concentrations of the infected hepatocyte cells at time t

S(t) Concentrations of the malaria parasite in the form of

sporozoites at time t

M(t) Concentrations of the malaria parasite in the form of

merozoites at time t

R(t) Concentrations of the uninfected erythrocyte cell at time t

RI (t) Concentrations of the infected erythrocyte cell at time t

G(t) Concentrations of the malaria gametocytes at time t

TABLE 2 Model parameters and their description.

Parameters Description

πP The recruitment rate of sporozoites from the salivary gland of

the mosquito during blood meal

πH Production rate of the uninfected hepatocyte from the bone

marrow

πR Production rate of the uninfected erythrocyte from the bone

marrow

β1 The infection rate of the hepatocyte by sporozoites

β2 The infection rate of the erythrocyte by merozoites

δ The death rate of the infected hepatocyte

N The average number of merozoite per ruptured infected

hepatocyte cells

Q The average number of merozoite per ruptured infected

erythrocyte cells

µH The natural death rate of hepatocyte cells

µM The natural death rate of merozoites

µP The natural death rate of sporozoites

µR The natural death rate of erythrocyte cells

σ The death rate of infected erythrocyte cells

µG The death rate of gametocyte

c The rate of sexual replication of merozoites

ξ1 Efficacy of antimalarial drugs on pre-erythrocytic malaria stage

ξ2 Efficacy of antimalarial treatment for erythrocytic invasion

ξ3 The efficiency of antimalarial drug treatments on the bursting

rate of pre-erythrocytic schizont and blood schizont

ξ4 The efficiency of gametocytocidal on the sexual development

of the merozoites

3.1 Positivity and boundedness of the
solution

Theorem 1. The solutions of system (Equation 1) with non-

negative initial conditions, H0,HI0,R0,RI0,M0, S0, and G0, remain

non-negative for all time t ≥ 0.

FIGURE 1

Schematic diagram of the dynamical system of

hepatocytic-erythrocytic stage malaria parasite.

Proof 1. The first equation of dynamical system (Equation 1) gives

rise to

dH

dt
= πH − (1− ξ1)β1HS− µHH ≥ −((1− ξ1)β1S+ µH)H,

dH

H
≥ −((1− ξ1)β1S+ µH)dt,

∫ t

0

dH

H
≥ −

∫ t

0
((1− ξ1)β1S+ µH)dt,

H(t) ≥ H0e
−

∫ t
0 ((1−ξ1)β1S+µH )dt > 0.

The second equation of dynamical system (Equation 1) gives

rise to

dHI

dt
= (1− ξ1)β1HS− δHI ≥ −δHI ,

dHI

HI
≥ −δdt,

∫ t

0

dHI

HI
≥ −

∫ t

0
δdt,

HI(t) ≥ HI0e
−δt ≥ 0.

In the same procedure, it can be shown that the state variables

R(t),RI(t), S(t),M(t), and G(t) are non-negative for all t ≥ 0.

Therefore, the solution of the dynamical system (Equation 1) is

non-negative for all t ≥ 0.

Theorem 2. The biologically feasible region

� =

{

(H,HI ,R,RI , S,M,G) ∈ R7+ :NH ≤
πH

d1
,NR ≤

πR

d2
and NS ≤

πS

d3

}

is positively invariant to the dynamical system (Equation 1).

Proof 2. The total hepatocyte population at a time t is denoted by

NH(t) and defined as
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NH(t) = H(t)+HI(t). (3)

By differentiating (Equation 2) with respect to time t, we obtain

dNH

dt
= πH − (1− ξ1)β1HS− µHH + (1− ξ1)β1HS− δHI

= πH − µHH − δHI ,

≤ πH − d1NH , where d1 = min{µH , δ},

NH(t) ≤
πH

d1
+

(

NH0 −
πH

d1

)

e−d1t .

(4)

Similarly, we can apply this procedure to red-blood cells

NR(t) = R(t)+ RI(t).

dNR

dt
= πR − (1− ξ2)β2RM − µRR+ (1− ξ2)β2RM − σRI − cRI ,

= πR − µRR− σRI ≤ πR − d2NR, where d2 = min{µR, σ },

NR(t) ≤
πR

d2
+

(

NR0 −
πR

µR′

)

e−d2t .

(5)

Lastly, the total malaria parasite population in the form of

sporozoites, merozoites, and gametocytes at a time t is given as

NS(t) = S(t)+M(t)+ G(t),

dNS

dt
= (1− ξ3)NδHI + (1− ξ3)QσRI − µMM + πS − µSS

+ cRI − µGG− ξ4G,

≤ (1− ξ3)NδHI + (1− ξ3)QσRI + cRI + πS − d3NS,

where d3 = min{µM ,µG,µS}

NS(t) ≤
πS

d3

+

(

NS0 −
πS

d3
+

∫ t

0
(1− ξ3)NδHI + (1− ξ3)QσRI + cRIdt

)

e−d3t .

(6)

Taking the limit as t → ∞ for the Equations (4), (5), and (6),

we obtained NH(t) ≤
πH
d1
, NR(t) ≤

πR
d2
, and NS(t) ≤

πS
d3
. Therefore,

the biologically feasible region � is positive invariant to the in-host

malaria model (Equation 1).

3.2 Parasite-free equilibrium point

The parasite-free equilibrium point is the steady-state solution

where there is no parasite in the host cell. It is obtained by setting

the right-hand side of the dynamical system (1) to zero. Thus,

E0 = (H0,HI0,R0,RI0, S0,M0,G0) = ( πH
µH

, 0, πR
µR

, 0, 0, 0, 0).

3.3 The basic reproduction number

The in-host basic reproduction number is the average number

of secondary infections due to the introduction of sporozoites in

human host cells. It is computed using the technique of the next-

generation matrix approach described by Van den Driessche and

Watmough [38]. We consider only the infected compartments

HI ,RI ,M and G. Let Fi be the rate of new appearance and Vi be the

rate of transfer from one compartment to another by any means

and given as

Fi =















(1− ξ1)β1HS

(1− ξ2)β2RM

0

0

0















, (7)

Vi =















δHI

σRI
−πS + µSS

−(1− ξ3)NδHI − (1− ξ3)QσRI + µMM

−cRI + ξ4G+ µGG















.

The Jacobian matrix of vectors F and V are obtained via the

differentiating Fi and Vi of the Equation (7) with respect to the

infected compartments at the parasite-free equilibrium point E0 =

( πH
µH

, 0, πR
µR

, 0, 0, 0, 0) and give as

F =















0 0 (1− ξ1)β1H0 0 0

0 0 0 (1− ξ2)β2R0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0















, (8)

V =















δ 0 0 0 0

0 σ 0 0 0

0 0 µS 0 0

−(1− ξ3)Nδ −(1− ξ3)Qσ 0 µM 0

0 −c 0 0 ξ4 + µG















. (9)

Hence, the inverse of the matrix V is

V−1 =

















1
δ

0 0 0 0

0 1
σ

0 0 0

0 0 1
µS

0 0
(1−ξ3)Nδ

δµm

(1−ξ3)Qσ
µmσ

0 1
µM

0

0 c
σ (µg+ξ4)

0 0 1
ξ4+µG

















. (10)

The basic reproduction number R0 is the spectral radius of

ρ(FV−1). Thus,

R0 = ρ(FV−1) =
(1− ξ2)(1− ξ3)β2πRQ

µRµM
. (11)

3.4 Local stability analysis of parasite-free
equilibrium point

In this section, we present the local stability analysis of the

parasite-free equilibrium (PFE) point, by linearizing the dynamical

system (Equation 1) at E0. The Jacobian matrix at any point is

given as
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J(E) =




















−A1 − µH 0 0 0 −(1− ξ1)β1H 0 0

A1 −δ 0 0 (1− ξ1)β1H 0 0

0 0 −A2 − µR 0 0 −(1− ξ2)β2R 0

0 0 A2 −σ 0 (1− ξ2)β2R 0

0 0 0 0 −µS 0 0

0 (1− ξ3)Nδ 0 (1− ξ3)Qσ 0 −µM 0

0 0 0 c 0 0 −(ξ4 + µG)





















,
(12)

where A1 = (1− ξ1)β1S and A2 = (1− ξ2)β2M.

Theorem 3. The parasite-free equilibrium E0 is locally

asymptotically stable ifR0 < 1 and unstable ifR0 > 1.

Proof 3. The Jacobian matrix at parasite-free equilibrium point E0
is given by

J(E0) =

























−µH 0 0 0 −(1−ξ1)β1πH
µH

0 0

0 −δ 0 0 (−(1−ξ1)β1πH
µH

0 0

0 0 −µR 0 0 −(1−ξ2)β2πR
µR

0

0 0 0 −σ 0 (1−ξ2)β2πR
µR

0

0 0 0 0 −µS 0 0

0 (1− ξ3)Nδ 0 (1− ξ3)Qσ 0 −µM 0

0 0 0 c 0 0 −(ξ4 + µG)

























. (13)

The eigenvalues of the Jacobian matrix, J(E0) are obtained

from the corresponding characteristic polynomial equation |J(E0)−

λI| = 0. Clearly, the first, third, and seventh column of the

Jacobian matrix (Equation 13) has only diagonal entries. Thus, the

eigenvalues λ1 = −µH , λ3 = −µR and λ7 = −(ξ4 + µG). The

remaining eigenvalues are obtained from the sub-matrix

J1(E0) =











−δ 0 (−(1−ξ1)β1πH
µH

0

0 −σ 0 (1−ξ2)β2πR
µR

0 0 −µS 0

(1− ξ3)Nδ (1− ξ3)Qσ 0 −µM











.

(14)

The associated characteristic equation of the Jacobian matrix

Equation (14) is |J1(E0)− λI| = 0, which means

(δ + λ)(µS + λ)

(

(σ + λ)(µM + λ)−
(1− ξ3)(1− ξ2)β2πRσQ

µR

)

= 0.

(15)

Simply, we have λ2 = −δ, λ5 = −µS, and the remaining

eigenvalues are obtained from the equation

λ2 + B1λ + B0 = 0, (16)

where

B0 = σ + µM , and B1 = µMσ −
(1− ξ3)(1− ξ2)β2πRσQ

µR
.

Applying Routh–Hurwitz stability criterion, the characteristic

Equation (16) has roots with a negative real part if B0 > 0 and

B1 > 0. Obviously, B0 > 0. We now need to show B1 > 0. Now,

B1 = µMσ −
(1− ξ3)(1− ξ2)β2πRσQ

µR
,

= µMσ

(

1−
(1− ξ3)(1− ξ2)β2πRQ

µRµM

)

,

= µMσ (1−R0) .

We observe that B1 > 0 ifR0 < 1. Therefore, the parasite-free

equilibrium point is locally asymptotically if R0 < 1 and unstable

ifR0 > 1.

3.5 Global stability analysis of parasite-free
equilibrium point

Here, we provide the global stability analysis of a parasite-free

equilibrium point using a suitable Lypounove function.

Theorem 4. If R0 ≤ 1, then the parasite-free equilibrium E0 is

globally asymptotically stable.

Proof 4. A suitable Lyapunov functional defined as

L = N(H − H0 −H0 ln
H

H0
)+ NHI + Q(R− R0 − ln

R

R0
)

+ NRI + QRI + S+
1

1− ξ3
M + QG.

A Lyapunov functional L is non-negative and strictly

minimized to the parasite-free equilibrium point.We now compute

the derivative of L as follows:

dL

dt
=N

(

1−
H0

H

)

dH

dt
+ N

dHI

dt
+ Q

(

1−
R0

R

)

dR

dt
+ Q

dRI

dt

+
dS

dt
+

1

1− ξ3

dM

dt
+ Q

dG

dt
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=N

(

1−
H0

H

)

(πH − (1− ξ1)β1HS− µHH)

+ N((1− ξ1)β1HS− δHI)

+ Q

(

1−
R0

R

)

(πR − (1− ξ2)β2RM − µRR)

+ Q((1− ξ2)β2RM − σRI)

+ πS − µHS+
1

1− ξ3
((1− ξ3)NδHI

+ (1− ξ3)QσRI − µMM)+ cRI − ξ4G− µGG

=N

(

1−
H0

H

)

(µHH
0 − (1− ξ1)β1HS− µHH)

+ N((1− ξ1)β1HS− δHI)

+ Q

(

1−
R0

R

)

(µRR
0 − (1− ξ2)β2RM − µRR)

+ Q((1− ξ2)β2RM − σRI)+ µSS
0 − µSS

1

1− ξ3
((1− ξ3)NδHI + (1− ξ3)QσRI − µMM)+ cRI

− ξ4G− µGG

= −µHN
(H −H0)2

H
− N(1− ξ1)β1HS+ N(1− ξ1)β1HS

+
H0

H
(1− ξ1)β1HS

− µRQ
(R− R0)2

R
− Q(1− ξ2)β2MR+ Q(1− ξ2)β2MR

+
R0

R
Q(1− ξ2)β2MR−

µMM

1− ξ3

+ µSS
0 − µSS− QcRI + QcRI − (ξ4 + µG)G

= −µHN
(H −H0)2

H
+

πH

µH
(1− ξ1)β1S− µRQ

(R− R0)2

R

+
πR

µR
Q(1− ξ2)β2M − µSS−

µMM

1− ξ3
− (ξ4 + µG)G

= −µHN
(H −H0)2

H
− µRQ

(R− R0)2

R

+
µM

(1− ξ3)
(R0− 1)M − µS

(

1−
S0

S
−

πH(1− ξ1)β1

µHµS

)

S

− (ξ4 + µG)G.

The expression dL
dt

≤ 0 if R0 < 1 and S0

S +
πH (1+ξ1)β1

µHµS
≤ 1

for any positive H,HI ,R,RI , S,M,G. The equality dL
dt

= 0, holds

if and only if for H = H0, R = R0,G = G0, R0 = 1,

and πH(1 − ξ1)β1/µHµS + S0/S = 1. Therefore, by LaSalle’s

Invariance Principle [39], the parasite-free equilibrium E0 is global

asymptotically stable forR0 < 1.

3.6 Parasite persistence equilibrium point

The parasite persistence equilibrium point is the steady-state

solution at which the malaria parasite persists in the host cells.

It is computed by setting the right hand side of the system

Equation (1) to zero. The parasite persistence equilibrium point E∗

is investigated and given as

E∗(H∗,H∗
I ,R

∗,R∗I , S
∗,M∗,G∗) =



















































H∗ =
πH

(1−ξ1)β1
πS
µS

+µH
,

H∗
I =

(1−ξ1)β1πSπH

δ(µS(1−ξ1)
πS
µS

+µH )
,

R∗ =
πR

(1−ξ2)β2M∗+µR
,

R∗I =
(1−ξ2)πRβ2M

∗

((1−ξ2)β2M∗+µR)σ

S∗ =
πS
µS
,

G∗ =
c(1−ξ2)πRβ2M

∗

((1−ξ2)β2M∗+µR)σ (ξ4+µG)
,

whereM∗ is the positive roots of

P(M∗) = d0M
∗2 + d1M

∗ + d2 = 0, (17)

and the coefficients d2, d1, and d0 are given as

d0= µS(1− ξ1)
πS

µS
+ µHµM(1− ξ2)β2σ ,

d1 = (µS(1− ξ1)
πS

µS
+ µH)µMµRσ (1−R0)

− (1− ξ3)N(1− ξ1)β1πSπH(1− ξ2)β2σ ,

d2 = −(1− ξ3)N(1− ξ1)β1πSπHµR(σ + c).

(18)

By Descarts’ rule of sign, the system Equation (1) has a parasite

persistence equilibrium, if d1 < 0 implies that R0 > 1 and/or if

d1 < 0 implies that R0 > 1, and if the discriminant ∆ = 0, where

1 =d21 − 4d2d0

=

(

(µS(1− ξ1)
πS

µS
+ µH)µMµR(σ + c) (1−R0)

−(1− ξ3)N(1− ξ1)β1πSπH(1− ξ2)β2σ
)2
,

+4(µS(1− ξ1)
πS

µS
+ µH)(µM(1− ξ2)β2σ )(1− ξ3)N(1

− ξ1)β1πSπHµR(σ + c).

From Equation (18), it is not difficult to see that d0 is

always positive and d2 is negative. Thus, by Descarts’ rule of sign

and/or discriminant, a parasite persistence equilibrium point exists

if R0 > 1.

3.7 Local stability analysis of parasite
persistence equilibrium point

In this section, we examine the local stability analysis of parasite

persistence equilibrium via linearzing the system Equation (1)

at E∗.

Theorem 5. The parasite persistence equilibrium point is locally

asymptotically stable if R0 > 1 and unstable if R0 < 1.

Proof 5. The Jacobian matrix at parasite persistence equilibrium,

E∗ is given as
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J(E∗) =






















−A1 − µH 0 0 0 −(1− ξ1)β1H 0 0

A1 −δ 0 0 (1− ξ1)β1H 0 0

0 0 −A2 − µR 0 0 −(1− ξ2)β2R
∗ 0

0 0 A2 −σ 0 (1− ξ2)β2R
∗ 0

0 0 0 0 −µS 0 0

0 (1− ξ3)Nδ 0 (1− ξ3)Qσ 0 −µM 0

0 0 0 c 0 0 −(ξ4 + µG)























,
(19)

where A1 = (1− ξ1)β1S
∗ and A2 = (1− ξ2)β2M

∗.

The associated characteristic equation is given as det(J(E∗) −

λI) = 0. To simplify the steps now, the last column of the Jacobian

matrix (19) has only diagonal entry; thus, we have λ7 = −(ξ4+µG).

The fifth row of the Jacobian matrix has only a diagonal entry, and

we can easily obtain the λ5 = −µS. The remaining eigenvalues are

obtained from the submatrix

J1(E
∗)

=













−A1 − µH 0 0 0 0

A1 −δ 0 0 0

0 0 −A2 − µR 0 −(1− ξ2)β2R
∗

0 0 A2 −δ (1− ξ2)β2R
∗

0 (1− ξ3)Nδ 0 (1− ξ3)Qσ −µM













.

(20)

The associated characteristic equation is given as det(J1(E
∗) −

λI) = 0. Thus,

(A1 + µH + λ)(δ + λ)(λ3 + B0λ
2 + B1λ + B0) = 0, (21)

where

B0 = δ + µM + A2 + µR,

B1 = δµM + (A2 + µR)(δ + µM),

B2 = δµM(A2 + µR)− (1− ξ2)(1− ξ3)Qδβ2R
∗

+ (1− ξ2)(1− ξ3)β2A2QδR∗.

From characteristic polynomial Equation (21), we have λ1 =

−A1 − µH , λ2 = −δ or

λ3 + B0λ
2 + B1λ + B0 = 0. (22)

Applying the Routh-Hurwitz stability criteria, the polynomial

Equation (22) has roots with negative real part if B0 > 0,B1 > 0,

B2 > 0, and B2 − B0B1 > 0. Therefore, the parasite persistence

equilibrium point is locally asymptotically stable if R0 > 1. This

completes the proof.

3.8 Sensitivity analysis

In this section, we present the sensitivity analysis for the

basic reproduction number R0 to identify the parameters that

have a high impact on disease elaboration within the host. The

normalized forward sensitivity index of a variable to a parameter

is the ratio of the relative change in the variable to the relative

change in the parameter. If the variable is a differentiable function

TABLE 3 Sensitivity index of within-host basic reproduction numberR0.

Parameters Elasticity index Value Parameters Elasticity index Value

β2 2
ℜ0
β2

+1 πR 2ℜ0
πR

+1

Q 2
ℜ0
Q +1 µM 2ℜ0

µM
−1

µR 2ℜ0
µR

−1

TABLE 4 Model parameter values.

Parameters Value Units Source Parameters Value Units Source

πS 30 sporozoite /day [40] µS 1.2×10−11 /day [41]

πH 3000 cells/ml/day [41] µR 0.0083 /day [42]

πR 3×105 cells/day/µl [40] σ 1.0 /day [24]

β1 0.001µl µl/cell/day [43] µG 0.0000625 /day [41]

β2 2×10−6 /sporozoite Estimated c 0.02 /day [44]

δ 0.02 cell/day [40] µH 0.029 cell/day [40]

N 10000 /day [41] Q 16 /day [45]

µM 48 /day [45]
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FIGURE 2

Dynamical behavior of the system Equation (1) without malaria drug treatments, i.e., ξ1 = 0, ξ2 = 0, ξ3 = 0, ξ4 = 0,R0 = 24.695 and all the other

parameters are fixed as in Table 4.
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of the parameter, the sensitivity index is then defined using partial

derivatives .
Definition: The normalized forward sensitivity index of a variable
M that depends differentiability on a parameter u is defined as

2M
u =

∂M

∂u
×

u

M

As we have an explicit formula for R0 given in Equation (11),

we derive an analytical expression for the sensitivity of R0

2
R0
ϑ =

∂R0

∂ϑ
×

ϑ

R0
,

where ϑ is represented the model parameters which belongs to

basic reproduction numberR0. Now,

2
R0
β2

=
∂R0

∂β2
×

β2

R0
= +1, 2R0

πR
=

∂R0

∂πR
×

πR

R0
= +1,

2
R0
Q =

∂R0

∂Q
×

Q

R0
= +1, 2R0

µM
=

∂R0

∂µM
×

µM

R0
= −1

2R0
µR

=
∂R0

∂µR
×

µR

R0
= −1.

From Table 3, we see that the infection rate of the erythrocyte

by merozoites β2, average number of merozoites per ruptured

infected erythrocyte cells Q, the production rate of the uninfected

FIGURE 3

Impact of primary tissue schizontocides (pre-erythrocytic treatment) ξ1 (A) on susceptible hepatocytes (B) on infected hepatocytes using the

following parameter values: πS = 30,πH = 3000,πR = 3× 105,β1 = 0.001,β2 = 2× 10−6, δ = 0.02,N = 10000,µM = 48,µS = 1.2× 10−11,µR =

0.0083, σ = 1.0,µG = 0.0000625, c = 0.02,µH = 0.029,Q = 16 and all the other parameters are fixed as in Table 4.

FIGURE 4

(A) Impact of blood schizontocides ξ3 on iRBCs. (B) Impact of blood schizontocides ξ3 on merozoites using the following parameter values:

πS = 30,πH = 3, 000,πR = 3× 105,β1 = 0.001,β2 = 2× 10−6, δ = 0.02,N = 10, 000,µM = 48,µS = 1.2× 10−11,µR = 0.0083, σ = 1.0,µG =

0.0000625, c = 0.02,µH = 0.029,Q = 16 and all the other parameters are fixed as in Table 4.
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erythrocyte πR, natural death rate merozoites µM , and natural

death rate of red-blood cells µR are the most sensitive parameters.

A 10% increase (or decrease) in β2, Q, and πR is a 10% increase (or

decrease) in ℜ0. A 10% increase (decrease) in µM and µR is a 10%

decrease (or increase) in ℜ0.

4 Numerical simulations

In this section, we present the numerical simulation of model

(Equation 1) in order to supplement the analytical results. The

initial conditionwe used in this simulation isH(0) = 3000,HI(0) =

10,R(0) = 500000,RI(0) = 200, S(0) = 200,M(0) = 40, 000,

and G(0) = 20, and the model parameters are given in Table 4.

Using the model parameter values, we have within host basic

reproduction number R0 = 24.0964 without antimalarial drug

treatment (ξ1 = 0, ξ2 = 0) and R0 = 6.0241 with antimalarial

drug treatment 50% effective (ξ1 = 50%, ξ2 = 50% effective). The

simulation of the system equations are integrated using the ode45

solver in MATLAB.

Figure 2 reveals the dynamical behavior of model (Equation

1) in the absence of antimalarial drug treatments, i.e., all-stage

FIGURE 5

Impact of the blood schizontocides ξ2 (A) on healthy RBCs (B) on iRBCs using the following parameter values: πS = 30,πH = 3000,πR = 3× 105,β1 =

0.001,β2 = 2× 10−6, δ = 0.02,N = 10, 000,µM = 48,µS = 1.2× 10−11,µR = 0.0083, σ = 1.0,µG = 0.0000625, c = 0.02,µH = 0.029,Q = 16 and all the

other parameters are fixed as in Table 4.

FIGURE 6

Impact of average number of merozoites per ruptured infected erythrocyte cells Q (A) on iRBCs and (B) on merozoites using the following parameter

values: πS = 30,πH = 3, 000,πR = 3× 105,β1 = 0.001,β2 = 2× 10−6, δ = 0.02,N = 10, 000,µM = 48,µS = 1.2× 10−11,µR = 0.0083, σ = 1.0,µG =

0.0000625, c = 0.02,µH = 0.029,Q = 16 and all the other parameters are fixed as in Table 4.
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antimalarial drug treatment is not administered (ξ1 = 0, ξ2 =

0, ξ3 = 0, and ξ4 = 0). The vulnerable hepatocytes and

red blood cells decrease over time, whereas the other state

variables are rise. All the system solutions converge to an endemic

equilibrium point. The effect of primary tissue schizontocides

on healthy and infected hepatocytes is shown in Figure 3. As

metformin’s antimalarial effectiveness rises, the number of healthy

hepatocytes also rises (see Figure 3A). Figure 3B reveals that

when the effectiveness of metformin antimalarial treatment rises,

the number of infected hepatocytes declines. Figure 4A shows

the iRBCs decrease as the efficiency of blood schizontocides

increases. Figure 4B indicates the impact of blood schizontocide

and primary tissue schizontocide on merozoites. The merozoite

population decreases as the blood schizontocides and primary

tissue schizontocides efficiency increases. The impact of blood

schizontocides (blood-stage antimalarial medication treatment) on

red blood cells is depicted in Figure 5. As blood schizontocides

(blood-stage antimalarial drug therapy) increases, the number of

uninfected red blood cells rises (see Figure 5A). As indicated in

Figure 5B, the infected red blood cells gradually declines as the

FIGURE 7

(A) Impact of gametocytocidal drugs (gametocytocides) on sexual replication of malaria parasites. (B) E�ect of the average number of merozoite

released per ruptured infected hepatocytic cells using the following parameter values: πS = 30,πH = 3, 000,πR = 3× 105,β1 = 0.001,β2 =

2× 10−6, δ = 0.02,µM = 48,µS = 1.2× 10−11,µR = 0.0083, σ = 1.0,µG = 0.0000625, c = 0.02,µH = 0.029,Q = 16 and all the other parameters are

fixed as in Table 4.

FIGURE 8

(A) Contour plot of R0 with respect to infection rate of the erythrocyte β2 and e�cacy of antimalarial treatment on erythrocytic invasion (blood

schizontocides e�cacy) ξ2. (B) Contour plot of R0 with respect to the infection rate of the erythrocyte β2 and e�ciency of antimalarial drug

treatments on the bursting rate of erythrocytic (blood schizontocides e�cacy) ξ3.
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blood schizontocides (antimalarial drug treatment at the blood-

stage) increases. Figure 6 demonstrates that as the average number

of merozoites per ruptured infected erythrocyte grows, both the

population of merozoites and the infected RBCs increases.

Figure 7A displays the gametocyte population declines

as the effectiveness of gametocytocidal medication therapy

(gametocytocidal) increases. Figure 7B exhibits the effect of

the average number of merozoites discharged per ruptured

infected hepatocytic cell on merozoites. As the average number

of merozoites discharged per ruptured infected hepatocytic

cell increases, the merozoite population increases. Figure 8A

depicts the impact of the infection rate of erythrocyte β2 and

the antimalarial treatment on erythrocytic invasion (blood

schizontocides efficacy) ξ2 on the basic reproduction number

R0. Figure 8B displays the impact of the infection rate of the

erythrocyte β2 and blood schizontocides drug treatment ξ3 on

the basic reproduction number R0. As imagined, to reduce the

R0 value below unity, the infection rate of the erythrocyte must

be very low, almost irrespective of the blood schizontocides. That

is, despite the availability of antimalarial treatment, inconsiderate

mixing needs to be observed to prevent an excessive number of

parasites inside the host cell. Figure 9A indicates the influence of

FIGURE 9

(A) Contour plot of R0 with respect to the average number of merozoite per ruptured infected erythrocyte cells Q and blood stage antimalarial drug

treatment (e�cacy of antimalarial treatment on erythrocytic invasion) ξ2. (B) Contour plot of R0 average number of merozoite per ruptured infected

erythrocyte cells Q and e�ciency of antimalarial drug treatments on the bursting rate of pre-erythrocytic schizont and blood schizont ξ3.

FIGURE 10

(A) Contour plot of R0 with respect to the infection rate of the erythrocyte β2 and an average number of merozoite per ruptured infected

erythrocyte cells Q. (B) Contour plot of R0 with respect to an infection rate of the erythrocyte β2 and an average number of merozoite per ruptured

infected hepatocyte cells N.
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the average number of merozoite per ruptured infected erythrocyte

cell Q and blood-stage antimalarial drug treatment (efficacy of

antimalarial treatment on erythrocytic invasion) ξ2 on the basic

reproduction number R0. Figure 9B shows the impact of the

average number of merozoite per ruptured infected erythrocyte

cells Q and efficiency of antimalarial drug treatments on the

bursting rate of pre-erythrocytic schizont and blood schizont ξ3.

The figures illustrates decreasing the average number of merozoites

per ruptured infected erythrocyte cell Q and raising blood-stage

antimalarial drug treatment ξ2 and blood schizontocide ξ3

decreases the in-host basic reproduction number R0, which, in

turn, decreases the in-host malaria parasite. Figure 10A exhibits

the impact of the infection rate of erythrocyte β2 and the average

number of merozoite per ruptured infected erythrocyte cells Q

on the basic reproduction number, R0. The within-host basic

reproduction number is rises as both the infection rate of the

erythrocyte and the average number of merozoite per ruptured

infected erythrocyte cells increases. Figure 10B demonstrates the

within-host reproduction number increases as the infection rate

of the erythrocyte increases; however, the average number of

merozoites per ruptured infected hepatocyte cell N has no impact

on the reproduction number.

5 Conclusion

In this study, we investigated a cell-level mathematical

model for malaria parasite infection with antimalarial drug

treatment. The model includes the interactions of hepatocyte

cells, red blood cells, and malaria parasites. The qualitative

analysis of the developed model, such as the positivity, and

boundedness of the solution is discussed. The equilibria and

their stability analysis are investigated, where the parasite-free

equilibrium point is both local and global stable if the basic

reproduction number R0 is less than unity. The global stability

analysis of the parasite-free equilibrium point is investigated

using a suitable Lyponove function. The existence of parasite

persistence equilibrium points is reached using Descarts’ rule of

sign and its local stability is investigated by applying Routh-

Hurwitz stability criterion. We computed a sensitivity analysis

of the in-host basic reproduction number to investigate most

influential parameters in the within-host malaria parasites using

the normalized forward sensitivity index. As a result, the infection

rate of the erythrocyte by merozoites, the average number of

merozoites per ruptured infected erythrocyte, the natural death

rate of merozoites, and the requirement rate of the uninfected

erythrocytes are the most influential ones. Different numerical

simulations are performed to supplement our analytical findings

and it is observed to be in good agreement. Furthermore, the

simulation result reveals that the administration of antimalarial

drug treatment, such as primary tissue schizontocides, blood

schizontocides, and gametocytocides, are used to the eliminate

the malaria parasites from the human host cells. This study’s

findings offer guidance for antimalarial medication therapy and

malaria control. By lowering the average number of merozoites

per ruptured infected infected erythrocyte and hepatocyte, we can

restrict the generation of malaria parasites within the host and

prevent them from being infected. Primary tissue schizontocide

and blood-stage schizontocides will be administered in order to

achieve this. In this study, we consider the constant antimalarial

treatment and single strains of malaria infection. In future, we

will extend it to optimal control problems using time-dependent

antimalarial drug treatment, fractional order differential equations

in order to investigate the memory effect, and different strains of

malaria infection.
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