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The active contour model, also known as the snake model, is an elegant approach 
for image segmentation and motion tracking. The gradient vector flow (GVF) is 
an effective external force for active contours. However, the GVF model is based 
on isotropic diffusion and does not take the image structure into account. The 
GVF snake cannot converge to very deep concavities and blob-like concavities 
and fails to preserve weak edges neighboring strong ones. To address these 
limitations, we first propose the directionally weakened diffusion (DWD), which is 
anisotropic by incorporating the image structure in a subtle way. Using the DWD, a 
novel external force called directionally weakened gradient vector flow (DWGVF) 
is proposed for active contours. In addition, two spatiotemporally varying weights 
are employed to make the DWGVF robust to noise. The DWGVF snake has been 
assessed on both synthetic and real images. Experimental results show that the 
DWGVF snake provides much better results in terms of noise robustness, weak 
edge preserving, and convergence of various concavities when compared with 
the well-known GVF, the generalized GVF (GGVF) snake.
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1 Introduction

SNAKES or active contours, proposed originally by Kass et al. (1) in 1988, are elastic curves 
that move and change their shapes within an image domain under the control of internal and 
external forces. The internal force controls the continuity and smoothness of the curve, while 
the external force, derived from image data, drives the snake contour to approach objects. The 
snake models provide a good solution for shape modeling of objects in visual data and have 
gained widespread popularity in the community of computer vision. The active contours can 
usually be  categorized into region-based models (2–22) and edge-based models (1, 23–32) 
according to how the image data are utilized. The region-based models usually employ certain 
region homogeneity criteria to guide the evolution of the active contours, such as the local region 
descriptors in Ref. (12–15) and the histogram in (17). The advantages of region-based models 
include robustness to noise and weak edge and insensitivity to initial contour. Edge-based 
models utilize the image edge map to stop the evolution of the contour; as a result, the active 
contours follow a high gradient to extract object boundaries and are effective only when the 
contrast between foreground and background is high. Depending on the representation scheme 
used, active contours can also be classified as a geometric model, which utilizes an implicit 
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representation (33), and a parametric model, which adopts an explicit 
parametric manner. The region-based active contours always adopt an 
implicit representation under the level-set framework, and the edge-
based models usually take an explicit parametric form. Recently, the 
deep learning-based approaches have gained popularity in image 
segmentation (34–37); however, the deep learning methods need a 
large number of training examples, and the active contours are still an 
active topic in the computer vision community; for example, the 
studies in (4, 14, 20–22, 30). In addition, we  refer the interested 
readers to Antonelli et al. (38) for the review of the computational 
models for image segmentation. In this study, we also focus on the 
edge-based parametric active contour.

Under the framework of edge-based active contours, the typical 
external force is derived from the gradient of the edge map. However, 
this gradient-based external force is ‘myopic’ due to its local nature and 
not regular enough owing to noise; as a result, the initial snake contour 
has to be laid close to the object boundary. In order to overcome the 
shortcomings of this gradient-based external force, Xu and Prince (39, 
40) proposed the gradient vector flow (GVF) external force, which 
largely solved the problem of limited capture range. The graceful 
behavior of GVF has appealed to many researchers, and there are many 
improved versions, for example, the motion gradient vector flow (41), 
the harmonic gradient vector flow (42), the dynamic directional gradient 
vector flow (43), the boundary vector field (44), the multi-direction 
gradient vector flow (45), the GVF in normal direction (46), the edge-
preserving gradient vector flow (47), the gradient vector convolution 
(48) and quasi-automatic initialization using gradient vector flow (49), 
the virtual electric field (50), the normally biased GVF (51), the 4D GVF 
(52), and the GVF over manifold (53); there are also several interesting 
applications of GVF (54–59); for instance, Yu and Chua (54) integrated 
the GVF into anisotropic diffusion for image restoration, Prasad and 
Yegnanarayana (55) utilized the GVF to find the axes of symmetry, and 
Hassouna and Farag extracted the object skeleton based on GVF (56).

The GVF is endowed with a large capture range by employing a 
certain smoothness constraint, which has also been used in optical 
flow (60). But as pointed out by Nagel (60), ‘this smoothness 
requirement is applied indiscriminately across all gray value edges 
despite the fact that such edges might separate image regions’, which 
signifies that the image structure is not taken into account. This would 
lead to the fact that the GVF could not preserve weak edges. In this 
study, we explore the integration of local image structure into the 
smoothness constraint and thereby present a novel external force, 
which we call directionally weakened gradient vector flow (DWGVF), 
for active contours. This DWGVF weakens the diffusion in the 
gradient direction of the image, and consequently, the DWGVF 
behaves much better than the GVF and GGVF models.

This study is organized as follows: Section 2 briefly reviews the 
snake model and four gradient-based external forces; the proposed 
DWD diffusion and DWGVF snake are presented in Section 3; 
experiments and comparisons are presented in Section 4, and 
conclusions are drawn in Section 5.

2 Background

Here, we give a brief review of the active contour model with four 
well-known gradient-based external forces, which we will later apply 
for comparison against our proposed external force.

2.1 Snakes: active contours

A snake is a curve c(s) = [x(s),y(s)], s∈[ ]01,  that moves and 
changes its shape by minimizing the following energy function:

 
E E s dssnake s ss ext= ∫ +( ) + ( )( )1

2

2 2α βc c c
, 

(1)

where cs(s) and css(s) are the first and second derivatives of c(s) 
with respect to arc length s and α and β are weighting parameters 
that control the smoothness and rigidity of the curve, respectively. 
The external energy Eext(c(s)) is derived from the image data and 
takes smaller values at the features of interest, such as boundaries. 
By the calculus of variations, the Euler equation to minimize 
Esnake is

 α βc css ssss exts s E( ) − ( ) −∇ = 0. (2)

This can be considered as a force balance equation:

 F Fint ,+ =ext 0  (3)

where Fint = αcss(s)- βcssss(s) and Fext=−∇Eext. The internal force Fint 
keeps the snake contour smooth, while the external force Fext attracts 
the snake to the desired image features.

The typical external force for gray-value image I is defined as the 
gradient vector of the edge map, as follows:

 Fext extE G I= −∇ = ∇ ∇ ⊗σ
2
, (4)

where Gσ is the Gaussian kernel with standard deviation σ, ⊗ 
denotes convolution, and ∇denotes gradient operator. However, this 
gradient vector is local and not regular enough to guide the evolution 
of the snake model. More effective external forces should 
be developed.

2.2 Gradient vector flow: gradient vector 
flow external force

In order to overcome the limitations of the typical external force 
in (4), Xu and Prince proposed to replace Fext in (4) with the GVF 
external force. The GVF is a vector field v x y u x y v x y, , , ,( ) = ( ) ( )( )  
obtained by minimizing the following energy functional,

 
( ) 2 22 2 2 2 ,µ= + + + + ∇ −∇∫∫GVF x y x yE u u v v f f dxdyv

 
(5)

where ux, uy, vx, vy are the spatial derivatives of the field, f is the 
edge map of an image, μ is a regularization parameter governing the 
tradeoff between the first term and the second term in Eq. (5). As 
pointed out in Ref. (39), when ∇f  is large, the second term in Eq. (5) 
is dominant and produces the effect of keeping vnearly equal to ∇f . 
Whereas when ∇f  is small, the first term dominates the energy, 
yielding a slowly varying field. Using the calculus of variations, the 
Euler equation to minimize EGVF  reads,
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v v v vt f f f= − ∇ −∇( ) = ∇µ∆ 2

0, ,
 (6)

where Δ is the Laplacian operator. As the GVF is derived by 
diffusing the gradient vector further away from the edges, it greatly 
enlarges the capture range of the snake and enhances its ability to 
converge to concavity.

The GGVF is an extension of the GVF by replacing μ and f fx y
2 2+  

in (6) with two spatially varying functionsw f k1

2 2= − ∇( )exp /  and 
w w2 11= − , respectively (40);k  acts as a threshold and controls the 
smoothing effect. The introduction of such terms makes the GGVF 
snake behave better than the GVF snake on thin concavity convergence.

2.3 NGVF: gradient vector flow in normal 
direction

From a viewpoint of image interpolation, Ning et al proposed 
the gradient vector flow in the normal direction (NGVF) by 
discarding the second derivative in the tangential direction in the 
Laplace operator. It is well known that the Laplace operator can 
be decomposed into two terms, taking u x y,( ) as an example,

 ∆u u uTT NN= + ,  (7)

where uTT and uNN  are the second derivatives of u x y,( ) in the 
tangential and normal directions of the isophotes, respectively. It was 
pointed out in (61–63) that, as an interpolation operator, uNN  has the 
best performance, Δu the second, and uTT  the last. By taking the 
diffusion process in Eq. (6) as an interpolation process, the NGVF is 
proposed using the best interpolator, as follows:

 

u u u f f

v v v f f

t NN x

t NN y

= − −( ) ∇ =

= − −( ) ∇ =







µ

µ

2

2

0

0

,

 

(8)

where ∝ is also a positive weight as in Eq. (6).

3 Directionally weakened diffusion 
and DWGVF snake

3.1 DWD: directionally weakened diffusion

It is clear that the GVF equations in Eq. (6) and the NGVF 
equations in Eq. (8) are diffusion equations. Diffusion partial 
differential equations (PDEs) have been one of the most influential 
tools for image restoration during the last two decades, and it is well-
known that the anisotropic PDEs are more competent than its 
isotropic peers in preserving edges while removing noise. The GVF 
model is based on isotropic diffusion and the NGVF is based on 
anisotropic diffusion. However, neither the GVF model nor the NGVF 
model takes into account the structure of the original image; as a 
result, the active contour cannot discern objects of complex shapes, 
such as various concavities and weak edges neighboring strong ones. 
In order to address this issue, we propose the directionally weakened 
diffusion (DWD), which incorporates the structure of the original 

image in a subtle way. Let I(x,y) denote the image, Ix(x,y), Iy(x,y) 
denote the partial derivatives of I(x,y) with respect to x, y, respectively, 
n x y,( )  is a unitary normal vector of I(x,y), i.e., 

n x y I I I Ix y x y, ,( ) = ( ) +/
2 2 , t x y,( ) is a unitary vector orthogonal to 

n x y,( ) and t x y I I I Iy x x y, ,( ) = −( ) +/
2 2. Taking u(x,y) as an example, 

let ux(x,y), uy(x,y) denote the partial derivatives of u(x,y) with respect 
to x,y, respectively; the second directional derivative of u x y,( ) along 
the normal direction of image I(x,y), i.e., n x y,( ) reads

 
u

u I u I I I u
I I

xx x yy y x y xy

x y
nn =

+ +

+

2 2

2 2

2
,

 
(9)

It is different from the uNNin Eqs (7–8) that is the second directional 
derivative of u x y,( ) along the normal direction of u x y,( ) itself. Similarly, 
the second directional derivative of u x y,( ) along t x y,( ) is as follows:

 
u

u I u I I I u
I I

xx y yy x x y xy

x y
tt =

+ −

+

2 2

2 2

2
,

 
(10)

As a result, the proposed DWD for u(x,y) is as follows,

 u ut = −∆ unn , (11)

That is, the diffusion in the direction n x y,( ) is weakened, this is 
the reason why it is called directionally weakened diffusion (DWD in 
short), and this diffusion possesses three traits,

 1 The image structure of image I(x,y), i.e., ∇ ∇( )I I
T  is 

incorporated into the diffusion process; it means the diffusion 
process can refer to any other structure, for example, of image 
I(x,y), not of u(x,y) itself, in this way.

 2 Theoretically, ∆u u− =unn tt , it means the diffusion extends 
u(x,y) along the tangential direction of image I(x,y), i.e., the 
edge direction; in an anisotropic manner, it is helpful to 
preserve the edge.

 3 Meanwhile, when (Ix, Iy) is zero, ∆u − unn  degenerates to Δu 
that is isotropic, but if utt is directly employed, the diffusion 
stops since utt = 0 when (Ix, Iy) is zero. As a result, the proposed 
formulation is helpful to diffuse u(x,y) when (Ix, Iy) is zero and 
preserve edges when (Ix, Iy) is not zero.

These properties make the DWD very suitable to compute the 
gradient vector flow (GVF) as the GVF aims at recovering the vector 
field v x y u x y v x y, , , ,( ) = ( ) ( )( ) from another one ∇f ; the details are 
presented in the next subsection.

3.2 Directionally weakened gradient vector 
flow: DWD for gradient vector flow

Based on the novel DWD in the preceding subsection, we argue 
that the diffusion along the normal direction of Ishould be removed 
so that the diffusion is anisotropic and tends to preserve the edges of 
image I , not that of u x y,( ). Thus, the proposed GVF based on DWD 
is derived by solving the following anisotropic diffusion equations,
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g u u u h u u f
g v v v h v v f

x

y

( ) −( ) − ( ) −( ) =
( ) −( ) − ( ) −( ) =







∆
∆

nn

nn

0
0
 

 
(12)

where g k⋅( ) = − ∇ ⋅( )( )exp /
2 2  and h g⋅( ) = − ⋅( )1  are two 

spatiotemporally varying weighting functions. This DWGVF model 
becomes distinctive in two ways:

 ➢ Conceptually, ∆u u− nn  equalsutt, which implies that, on high 
gradient regions (∇ >I 0, hence,unn ↑ 0), the current point may 
be located on an edge; the diffusion along the normal direction 
of image I  would be removed, and only that along the tangent 
direction of imageI  is preserved. This would be beneficial for 
removing noise and maintaining edges. However, when the local 
geometry is flat and does not contain any edges (∇ →I 0, hence, 
unn = 0 ); the diffusion should be isotropic, i.e., with no preferred 
diffusion direction.

 ➢ The two weighting functions g ⋅( ) and h ⋅( ) distinguish themselves 
from the two weights w w1 2,  in GGVF as g ⋅( ) and h ⋅( )are 
spatiotemporally varying while w w1 2,  are merely spatially 
varying. This property makes DWGVF more robust to noise than 
GGVF because the noise is gradually smoothed away, and u x y,( ) 
and v x y,( ) are more and more regular during iteration; therefore, 
g ⋅( ) increases and h ⋅( ) decreases gradually at noise points; hence, 
a smoother result can be obtained.

These properties signify that the DWGVF is not just a slight 
modification of the GGVF. In order to illustrate these properties, 
we apply the GVF, GGVF, and DWGVF to a synthetic edge map which 
includes an impulse noise, a strong edge, and a weak edge as shown in 
Figure 1A. The magnitude of the noise is equal to that of the strong 
edge and much bigger than that of the weak edge. The results of GVF 
and GGVF are shown in Figures  1B,C respectively. Due to the 
isotropic nature of GVF and GGVF, it is a big challenge for them to 
preserve weak edges and to smooth away the noise of much bigger 
magnitude synchronously; GGVF performs even worse as the weights 
w w1 2,  exert a stronger smoothing effect on the weak edge than on the 
noise. In sharp contrast, DWGVF erases the noise thoroughly and 
identifies both strong and weak edges clearly (see Figure  1D). 
Parameters ∝ for GVF and k  for GGVF and DWGVF are all set to 0.1.

3.3 Numerical implementation

One can get the solution of Eq. (12) by finding the equilibrium 
solution of the following PDEs in an iterative manner,

 

u g u u u h u u f
v g v v v h v v f
t x

t y

= ( ) −( ) − ( ) −( )
= ( ) −( ) − ( ) −( )







∆
∆

nn

nn
 

 
(13)

Taking u x y,( ) as an example, the first and second derivatives of 
u x y,( ) are calculated as follows,

 
( )1

, ,
1 += −
∆

n n
t i j i ju u u

t

 u u ux i j i j= −+1, ,

 u u uy i j i j= −+, ,1

 u u u uxx i j i j i j= + −+ −1 1 2, , ,

 u u u uyy i j i j i j= + −+ −, , ,1 1 2

 
u u u u uxy i j i j i j i j= + − −( )+ + − − + − − +

1

4
1 1 1 1 1 1 1 1, , , ,

where superscript n indicates the iteration number, and 
those for v x y,( ) can be calculated in a similar way; Ix, Iy, fx, fy are 
not changed during iteration and can be discretized using the 
central difference scheme; for example, Ix, Iy are calculated 
as follows,

 
I I Ix i j i j= −( )+ −

1

2
1 1, ,

 
I I Iy i j i j= −( )+ −

1

2
1 1, , .

4 Experimental results

In this section, we will demonstrate some desirable properties 
of the DWGVF snake in terms of noise robustness, narrow and deep 
concavity convergence, weak edge preserving, and neighboring 
objects separation; the GVF (39) and GGVF (40) snakes are 
employed for comparison. All edge maps derived in this section are 
normalized to [0, 1]. The parameters for snakes in all experiments 
areα β= =0 1 0. ,  and time stepτ = 0 25. . Parameter μ for GVF is 
0.2  in Figures  2, 3 to obtain a large capture range and 0.1  in 
Figures 4–9 for the sake of preserving edges. Parameter k acts as a 
threshold and controls the smoothing effect; according to the 
analysis in You and Xu (62), it should be slightly larger for heavy 
noise; as a result, for DWGVF and GGVF, it is 0.2 in Figures 2, 3, 
0.08 in Figure 4, and 0.1 in Figures 5–7 for the sake of preserving 
weak edges; it is specifically configured for real medical images in 
Figures 8, 9.

4.1 Noise robustness

To demonstrate the noise robustness of the DWGVF snake, 
we employ the U-shape image, which was first introduced in Xu 
and Prince (39); however, in this subsection, it is contaminated by 
‘salt and pepper’ noise and ‘speckle’ noise as shown in Figures 2A,B, 
respectively. Figure 2C presents another noisy image as an example 
with a concavity of 5 pixels wide and 30 pixels deep. The three 
noisy images are kept intact to calculate the GVF, GGVF, and 
DWGVF external forces. It can be seen from the results in Figure 2 
that the proposed DWGVF snake could overcome the noise and 
converge to concavities successfully, whereas the GVF and GGVF 
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snakes failed. The GGVF snake performs even worse as it is more 
sensitive to noise. In (39), the U-shape image with speckle noise 
was also employed to verify noise robustness of the GVF snake (see 
Figure 7 therein). However, the noisy U-shape image in Xu and 
Prince (39) is preprocessed with a Gaussian filter while the noisy 
image in our example is kept intact. Noise is usually unavoidable 
in applications, and noise insensitivity is a major concern in active 
contour-based image segmentation. The proposed DWGVF snake 
performs effectively and would be  considerably beneficial to 
applications in this scenario.

4.2 Narrow and deep concavity 
convergence

It has been pointed out in Xu and Prince (40) that the GVF 
snake would fail to converge when the concavity is very narrow 
and very deep. Although the GGVF snake shows better 
performance than the GVF snake, when the concavity is deep 
enough, the GGVF snake still cannot converge. Figure 2C shows 
that the DWGVF snake can converge to a 5-pixel-wide and 
30-pixel-deep indentation. What will happen if the concavity is 

narrower? Figure  3 shows the evolutions and convergences of 
GVF, GGVF, and DWGVF snakes on a 3-pixel-wide, 30-pixel-deep 
concavity. Even though there is no noise, the GGVF snake still 
fails to converge due to its isotropic nature. The result of the GVF 
snake is far from success, and only the DWGVF snake dives into 
concavity without hesitation. More satisfactory results have been 
achieved on much deeper concavities, but due to page limitations, 
the results are not presented here.

4.3 C-shape concavity convergence

U-shape concavity convergence is a difficult problem for classical 
snakes, but it can be  easily handled in GVF-based snake models. 
Further studies show that the GVF and GGVF snakes cannot converge 
to C-shape concavity, see Figures 4A,B, respectively. C-shape concavity 
convergence is also important to many applications, but as far as 
we know, there is no GVF-based method aiming at this problem. The 
difference between U-shape and C-shape concavities is that the 
U-shape is open at the entrance while the C-shape is semi-close. 
Figure 4C shows the remarkable success of the proposed DWGVF 
snake in C-shape convergence.

FIGURE 1

(A) Synthetic edge map including an impulse noise, a strong edge, and a weak edge. Vector fields of (B) GVF. (C) GGVF. (D) DWGVF.
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FIGURE 2

(A) U-shape image with salt and pepper noise. (B) U-shape image with speckle noise. (C) Deep concavity with salt and pepper noise. In each panel, the 
left is the convergence of the GVF snake, the middle is that of the GGVF snake, and the right is that of the DWGVF snake.

FIGURE 3

Evolutions and convergences to the deep concavity of (A) GVF snake, (B) GGVF snake, and (C) DWGVF snake.
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The DWGVF snake is further applied to S-shape, e-shape, and 
spiral concavities, and the results are shown in Figure 5. These 
concavities are a little more complex than C-shape as there is 
orientation rotation, especially for e-shape and spiral concavities, 
whereas we can observe from Figure 5 the success of the DWGVF 
snake in extracting these concave boundaries.

4.4 Weak edge preserving and neighboring 
objects separation

The DWGVF snake also behaves well in weak edge 
preservation and neighboring objects separation, especially when 
the edge of one object is weak and that of the other is strong. This 
assertion is verified using two examples. One is a torus in Figure 6, 
but the upper left part of which is blurred and the edge of the 
outer circle is weak while that of the inner circle is strong. Neither 
the GVF snake nor the GGVF snake can correctly locate the outer 
circle. In contrast, the DWGVF snake shows satisfactory 
performance; see the results in Figure 6.

The other example is in Figure  7; there is one gray disk 
neighboring one white rectangle on a black background, and the 
spacing between the two objects is only three pixels. The boundary 
of the gray disk can be considered a weak edge while that of the 
rectangle is strong. Similar to the results in Figure 6, the failure of 
the GVF and GGVF snakes and the success of the DWGVF snake 
can be observed in Figure 7. The DWGVF snake outperforms the 
GVF and GGVF snakes once again. To note, Parameter k for 
DWGVF and GGVF is identical in these two examples.

4.5 Real images

After specific advantages of the DWGVF snake have been 
demonstrated on several synthetic images, it is further applied to real 
medical images. The first one is a cardiac CT image as shown in 
Figure 8A, and its edge map is shown in Figure 8B. Our purpose is to 
extract the endocardium of the left ventricle; to achieve this goal, we have 
to handle noise, inhomogeneity, and weak edges. Figures 8C,D shows 
that the GVF and GGVF snakes struggle with this case, whereas the 
DWGVF snake yields satisfactory result; see Figure 8E. Let us scrutinize 
the GVF, GGVF, and DWGVF fields at the bottom of Figures 8C–E one 
by one to further understand their behaviors. It is clear that the GVF is 
in disorder within the blood pool although weak edge leakage occurs. 
The GGVF succeeds in preserving weak edges by employing an 
appropriate k, but it is distracted by inhomogeneity within the blood 
pool. The DWGVF is smooth enough within the blood pool, and the 
weak edges are well preserved. We use k = 0.03 for GGVF and DWGVF 
in this example.

Another example in Figure 9A is an ultrasound heart image, and 
the purpose is also to extract the endocardium of the left ventricle. 
There remains a dilemma for the GVF and GGVF snakes to 
simultaneously preserve the weak edge and suppress the noise; 
therefore, the GVF snake leaks out at the weak edges (see Figure 9B) 
and the GGVF snake is blocked by the noise (see Figure 9C). However, 
the DWGVF snake yields a satisfactory compromise between noise 
suppression and weak edge preservation and locates the endocardium 
correctly with fairly far-off initialization (see Figure 9D). Parameter k 
is 0.06 for GGVF and DWGVF in this example.

FIGURE 4

Performances of (A) GVF snake, (B) GGVF snake, and (C) DWGVF snake. In each panel, the upper is the evolution and convergence of the snake 
contour and the bottom is the corresponding force field.
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5 Conclusion

In this study, a novel external force called directionally weakened 
gradient vector flow (DWGVF) for active contours has been proposed. 
The DWGVF method makes use of the image structure information 
of the original image by weakening the diffusion along the normal 
direction of the original image. The DWGVF also employs two 
spatiotemporally varying weights so that DWGVF is robust to noise. 
The DWGVF snake possesses some desirable properties of the GVF 

snake, such as large capture range and insensitivity to initialization. 
The DWGVF snake also shows high performance on noise resistance, 
concavity convergence, and weak edge preserving. The advantages of 
the DWGVF snake have been evaluated on both synthetic and real 
images, and comparisons with the GVF and GGVF snakes manifest 
that the DWGVF snake can serve as a superior alternative to the GVF 
and GGVF snakes.

In addition, the DWD diffusion can also be  used for image 
restoration; this is a topic for future research.

FIGURE 5

Evolutions and convergences of DWGVF snake to (A) S-shape, (B) e-shape, and (C) spiral shape concavities.

FIGURE 6

Performances of (A) GVF snake, (B) GGVF snake, and (C) DWGVF snake. In each panel, the upper is the evolution and convergence of the snake 
contour and the bottom is the corresponding force field.
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FIGURE 7

Performances of (A) GVF snake, (B) GGVF snake, and (C) DWGVF snake. In each panel, the upper is the evolution and convergence of the snake 
contour and the bottom is the close-up of the corresponding force field.

FIGURE 8

(A) Cardiac CT image. (B) Edge map. Performances of (C) GVF snake, (D) GGVF snake, and (E) DWGVF snake. In panels (C–E), the upper is the evolution 
and convergence of the snake contour and the bottom is the corresponding force field.
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FIGURE 9

(A) Ultrasound heart image, evolutions, and convergences of (B) GVF snake, (C) GGVF snake, and (D) DWGVF snake.
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