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Introduction: Speaker recognition has been performed by considering individual

variations in the power spectrograms of speech, which reflect the resonance

phenomena in the speaker’s vocal tract filter. In recent years, phase-based features

have been used for speaker recognition. However, the phase-based features are

not in a raw form of the phase but are crafted by humans, suggesting that the

role of the raw phase is less interpretable. This study used phase spectrograms,

which are calculated by subtracting the phase in the time-frequency domain of the

electroglottograph signal from that of speech. The phase spectrograms represent

the non-modified phase characteristics of the vocal tract filter.

Methods: The phase spectrogramswere obtained fromfive Japanese participants.

Phase spectrograms corresponding to vowels, called phase spectra, were then

extracted and circular-averaged for each vowel. The speakers were determined

based on the degree of similarity of the averaged spectra.

Results: The accuracy of discriminating speakers using the averaged phase

spectra was observed to be high although speakers were discriminated using

only phase information without power. In particular, the averaged phase spectra

showed di�erent shapes for di�erent speakers, resulting in the similarity between

the di�erent speaker spectrum pairs being lower. Therefore, the speakers were

distinguished by using phase spectra.

Discussion: This predominance of phase spectra suggested that the phase

characteristics of the vocal tract filter reflect the individuality of speakers.

KEYWORDS

speaker recognition, phase characteristics of vocal tract filter, phase spectrogram,

averaged phase spectrum, raw phase

1 Introduction

Identifying individuals using speech is crucial for biometric authentication in terms of

security measures, transcription of the minutes of meetings, and identification of speakers in

phone fraud. Various techniques have been developed for identifying speakers using statistics

and machine learning with large amounts of data. For example, the i-vector, a de facto

standard feature representing speaker individuality, is calculated from large speech data

using factor analysis assuming a Gaussian mixture model. Another example is the x-vector,

which is extracted using a time-delay neural network with a statistical pooling layer [1–3]. In

these studies, the speech signals were not directly used but were transformed into acoustic

features before they were input into machines. Although acoustic signals contain both power

(squared magnitude) and phase in the time and frequency domains, most of these features

are derived from power alone. While phase is rarely used owing to the difficulties in its

interpretation [4, 5], power can be directly related to sound energy, which is interpretable

as the volume of sounds. Most acoustic phenomena are related to sound energy in the

form of resonance, where the sound energy is amplified at a certain frequency, such as in

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2023.1274846
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2023.1274846&domain=pdf&date_stamp=2023-12-08
mailto:m.okada@nrips.go.jp
https://doi.org/10.3389/fams.2023.1274846
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2023.1274846/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Okada and Ito 10.3389/fams.2023.1274846

musical instruments and room reverberations. Therefore, the

acoustical phenomena can be investigated by simply analyzing

the power, even if the phase is discarded. In other words,

we can conclude that acoustics represents a theoretical system

based on power without a phase. However, discarding the phase

would cause a lack of information obtained from acoustic signals.

Similarly, speaker recognition conducted based only on power-

based features would cause a lack of information, such as the

speaker’s individuality.

Recently, in addition to speaker recognition [6–8], research

on acoustics has focused on the phases of acoustic signals in

speech recognition [9], audio classification [5], and spoofing

detection [10]. These studies defined the phase by using

mathematical tools, such as the Fourier or Hilbert transform, and

proposed the following phase-based features: phase differences

between time frames, arg(Xm/Xm−1) [6], phase differences among

harmonics of speech, ϕ̃k − kϕ̃1 [7], time-differential phase,

dθ/dt [8], frequency-differential phase, −dϕ/dω [9], phase

transformed by complex trigonometric functions, exp (iϕ) [5],

and phase combined with log-magnitude,
√

(ln |X|)2 + φ2 [10].

Here, Xm is the short-time Fourier transform (STFT) of speech

signals with a frame index of time window m, ϕ̃k is the phase

of kth harmonics derived by fitting harmonic-structure-based

signals [11], θ is the phase of Hilbert transform, ϕ is the phase

of STFT, ω is the angular frequency, φ is the phase of Fourier

transform, and X = |X| exp (iφ) is the Fourier transform of

speech signals. Such features can improve the performance by

adapting the phase to tasks. The phase-based features have been

used for speaker recognition and spoofed speech discrimination

from genuine speech in recent past [12, 13].

However, these phase-based features are still less interpretable

because they were crafted by humans. The phase should be used

in its raw form without modification to understand its meaning

and avoid the risk of unnecessary involvement of the human

perspective. A classical reason for not using the raw phase is

the phase ambiguity due to its 2π periodic nature. Therefore, in

phase calculations, we must wrap the phase values to a range of

2π . The wrapping operation generates a discontinuity at 2π . The

trigonometric functions in the phase-based features can remove the

discontinuity in exchange for the use of the raw phase. In this study,

circular averaging was applied to overcome the discontinuity [14].

Circular averaging helps calculate the raw phase despite the phase

ambiguity.

Furthermore, a rapid change in phase with time prevents

analyses of the raw phase. Because the typical frequency of speech

signals is approximately 100 Hz or higher, the phase rotates over

100 times per second. These rotations appear noisy if the phase is

visualized in the time-frequency domain [6 SX(t,ω) in Figure 1].

This problem has been resolved by differentiating phases with

respect to time and frequency, or by calculating phase differences

with respect to time frames and harmonics contained in the speech.

However, these procedures would not allow the phase to be used in

its raw form.

In a previous study, we proposed phase spectrograms [15],

which allow us to observe the phase characteristics of the vocal tract

filter in the time-frequency domain similar to power spectrograms

[ϕ(t,ω) in Figure 1]. The phase spectrograms are calculated

by subtracting the phase in the time-frequency domain of

electroglottograph (EGG) signal from that of speech. The benefit of

the phase spectrograms is the removal of the rapid phase rotations,

making differentiating phase or calculating phase differences

unnecessary. Therefore, we adopted the phase spectrograms to

analyze the raw phase in this study.

Furthermore, the usage of phase spectrograms contributes

to making the phase more interpretable in terms of speaker

recognition because the phase characteristics of the vocal tract

filter can detect fine differences in vocal tracts among speakers.

Specifically, the phase characteristics of the vocal tract filter can take

different values among different speakers despite having the same

power characteristics [16], i.e., the utterance of the same vowels

(Figure 2).

In this study, we aimed to perform speaker recognition using

phase spectrograms. However, this study analyzed data from a few

speakers unlike the previous studies of speaker recognition [1–

3], wherein extensive data were used. We analyzed homogeneous

data limited by controlling measurement conditions, i.e., gender,

age, and speaking style. Therefore, we investigated in the current

research whether the phase characteristics of the vocal tract

filter could discriminate the homogeneous speakers. Furthermore,

by discriminating speakers based only on the raw phase, we

considered the relationship between the raw phase and the speaker’s

individuality.

2 Materials and methods

2.1 Overview of speaker recognition
procedure

We attempted to perform speaker recognition based solely

on the phase characteristics of vocal tract filters. The procedure

comprised three steps, i.e., calculating the phase spectrograms,

deriving the averaged phase spectra, and evaluating the similarity

between the spectra of individuals. The overview of the speaker

recognition procedure is summarized in Figure 3.

First, we calculated the phase spectrograms expressing the

phase characteristics of the vocal tract filter, ϕ(t,ω), defined as:

ϕ(t,ω) = 6 SX(t,ω)− 6 SG(t,ω), (1)

where SX(t,ω) and SG(t,ω) denote the STFT of speech and EGG

signals measured from speakers, respectively. It should be noted

that speech is merely an output from the vocal tract filter and

that the EGG signal approximates a glottal source signal, generated

at the glottis, and is given as input to the vocal tract filter

(Figure 1). Therefore, both signals can be used to construct the

phase characteristics of a vocal tract filter. Here, EGG signals

were adopted owing to simplicity of measurement, which requires

the placement of electrodes outside the neck [17]. The signals

were obtained from five Japanese males as they uttered Japanese

sentences representing a proper balance of Japanese linguistic

sounds, and repeated them five times. The recorded signals were

then transformed using STFT. According to Equation (1), we

calculated the phase spectrograms considering an argument of

the STFT quotient of speech and EGG signals. Refer to our

previous publication regarding the details on the calculation of

phase spectrograms [15].
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FIGURE 1

Speech production process and corresponding phases in the time-frequency domain. The glottal source generates a source signal, which goes

through the vocal tract; the modified signal can be expressed as speech. Based on the phases of speech and glottal source signals, 6 SX (t,ω) and
6 SG(t,ω), respectively, we calculated phase spectrograms expressing the phase characteristics of vocal tract filter ϕ(t,ω), which reflect the motion of

the vocal tract in utterances.
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FIGURE 2

When di�erent speakers utter the same vowel, the phase characteristics of the vocal tract filter may di�er and reflect the speaker’s individuality

despite the similar power characteristics of the vocal tract filter.

Next, considering that the phase spectrograms were robustly

calculated for the vowels, we extracted the spectrograms

corresponding to the time instances at which the vowels

/e/, /a/, and /o/ existed from all Japanese sentences. The

spectrograms lost time information, transforming into spectra

and defining the phase spectra as ϕv(ω) = ϕ(τv,ω), where τv

is the time instance of vowels. The spectra of a specific vowel

were then circular-averaged within one of the five measurement

repetitions to remove the effect of consonants before and after

the vowel; this was achieved owing to phonetic balance in the

sentences. The number of vowels used for averaging is listed

in Table 1.

Furthermore, we calculated the correlation coefficients using

circular statistics to evaluate the similarity between pairs of

averaged phase spectra. The calculation of spectra yielded 46

spectral pairs for the same speaker and 230 spectral pairs for

different speakers. For the 276 pairs, correlation coefficient ρP,

which is analogous to Pearson’s correlation, was introduced
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as [14, 18]:

ρP =
∑

k<l sin [ϕ̄
1(ωk)− ϕ̄1(ωl)] sin [ϕ̄

2(ωk)− ϕ̄2(ωl)]
√

∑

k<l sin
2 [ϕ̄1(ωk)− ϕ̄1(ωl)]

√

∑

k<l sin
2 [ϕ̄2(ωk)− ϕ̄2(ωl)]

,

(2)

where ϕ̄1(ωk) and ϕ̄2(ωk) are the averaged phase spectra and ωk

and ωl are the frequencies discretized by STFT. After scoring, we

determined whether the spectrum pair was produced by the same

speaker based on whether the correlation value of the pair exceeded

a threshold.

2.2 Principle of phase spectrogram
calculation

We explain the principle of calculating phase spectrograms and

why phase rotations disappear in the phase spectrograms using

EGG signals [15].

The phase of the STFT of a speech signal, whose spectrum has

a harmonic structure, can be expressed as

6 SX(t,ω) ≈ ωnt + 6 X(ωn) (3)

for ω ≈ ωn, where ωn is the frequency of the nth Fourier

component of the speech signal and X(ωn) is the Fourier transform

of the speech signal. The term ωnt causes phase rotations with the

passage of time. According to the source-filter theory [19], human

speech in the frequency domain, X(ωn), is expressed as

X(ωn) = H(ωn)G(ωn), (4)

where H(ωn) and G(ωn) are the resonance characteristics of the

vocal tract and the glottal source characteristics expressed in the

frequency domain, respectively. Here, we approximate a glottal

source signal as EGG one, which is measured more easily than

the glottal source signal. Therefore, by obtaining speech and EGG

signals through a measurement, the phase characteristics of the

vocal tract, i.e., 6 H(ωn), can be calculated based on Equations (3)

and (4) as

6 H(ωn) ≈ 6 SX(t,ω)− 6 SG(t,ω). (5)
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FIGURE 3

Speaker recognition procedure; the case of vowel /e/ is described for instance.

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2023.1274846
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Okada and Ito 10.3389/fams.2023.1274846

TABLE 1 Number of vowels used for calculating the average phase

spectra after data exclusion.

Repetition /e/ /a/ /o/

Participant 1 No. 2 123 227 184

No. 3 140 239 237

No. 4 139 252 218

No. 5 98 172 163

Participant 2 No. 1 132 257 212

No. 2 143 232 204

No. 3 100 182 153

No. 4 136 260 224

No. 5 148 262 218

Participant 3 No. 1 155 277 236

No. 2 143 259 224

No. 3 164 301 260

No. 4 148 269 243

No. 5 173 308 273

Participant 4 No. 1 148 271 234

No. 2 161 295 242

No. 3 155 288 243

No. 4 147 261 219

No. 5 161 292 246

Participant 5 No. 1 173 275 247

No. 2 169 300 265

No. 3 175 282 265

No. 4 99 158 157

No. 5 180 301 273

max. 180 308 273

mean 146.25 259.17 226.67

min. 98 158 153

Data acquired in the first repetition from the first participant have been excluded owing to

noise contamination.

The phase spectrogram is defined as the right-hand side

of Equation (5), that is, the difference between the phases in

the time-frequency domain of speech and EGG signals, which

are simultaneously but separately measured in utterance. This

definition does not contain the term ωnt because of subtraction

on the right-hand side of the equation; therefore, the rotation

disappears in the phase spectrogram.

2.3 Acquisition of speech and
electroglottograph signals

We recorded the speech and EGG signals of participants (five

males aged 25–27 years) isolated in an anechoic room. Males were

chosen as the participants because we previously reported that

the global pattern in the phase spectrogram of males’ speech was

TABLE 2 Four additional sentences in the measurement.

Added sentences
(expressed in the International
Phonetic Alphabet)

Meanings

/aoiiee oio oW/ Null-subject follow a nephew to

the blue house.

/jo:iwa o:i/ There are many preparations.

/kiţWţWkiwa kio ţWţWkW/ Woodpeckers peck at trees.

/papamomamamo minnade

mamemakio Cita/

Dad and mom all had a

bean-throwing party.

Participants uttered these sentences after 50 ATR sentences in the above order.

TABLE 3 Numbers and ratios of vowels contained in subset A of ATR

phonetically balanced sentences.

Vowels Total

/i/ /e/ /a/ /o/ /W/

Number 249 184 328 285 235 1,281

Ratio (%) 19.44 14.36 25.60 22.25 18.35 100

more evident than that of females [15]. The participants uttered

54 Japanese sentences comprising 50 sentences in subset A of ATR

phonetically balanced sentences [20] and four additional sentences

(Table 2) that are often used in Japanese phonetic studies. These

sentences were repeated five times. Only the ATR sentences were

analyzed to avoid phoneme bias in this study. The numbers and

ratios of vowels contained in the ATR sentences are listed in Table 3.

The script of these 54 sentences was presented to the participants

using a monitor (27fw, HP). The speech and EGG signals were

recorded at a sampling rate of 48 kHz at 16-bit resolution via

an omnidirectional headset microphone (model 4066, DPA), EGG

measurement equipment (EG2-PCX2, Glottal Enterprise), and

audio interface (SERIES 208i, TASCAM). Figure 4 illustrates the

measurement setup.

It should be noted that our studies involving human

participants were reviewed and approved by the ethics committee

of the National Research Institute of Police Science. All participants

provided written informed consent to participate in this study.

2.4 Adjustment of time between speech
and EGG signals

Recordings of a speech signal are typically delayed compared

with those of an EGG one considering the transmission of speech

signals through the vocal tract is time-consuming. Therefore, we

corrected the time delay caused by this transmission via time

shifting using a cross-correlation between the envelopes of two

signals before calculating the phase spectrograms. Note that the

cross-correlation was calculated with respect to each sentence.

Additionally, unlike the computation of phase spectrograms,

the cross-correlation was computed without downsampling

the signals. The envelopes were calculated using the Hilbert

transform. However, before the Hilbert transform, EGG signals

were low-cut by a zero-phase finite impulse response filter

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2023.1274846
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Okada and Ito 10.3389/fams.2023.1274846

Audio
Interface

EGG 
Measurement 
Equipment

Participant

Computer

Computer

Monitor

Anecohic Room

Microphone
EGG
Electrode

FIGURE 4

Measurement setting at which speech and EGG signals were recorded from participants.

TABLE 4 Estimated time delay for the transmission of speech signals through the vocal tract.

Repetition in measurement

No. 1 No. 2 No. 3 No. 4 No. 5

Participant 1 – 0.50± 0.026 0.50± 0.025 0.48± 0.038 0.47± 0.028

(17.08± 0.90) (16.94± 0.84) (16.46± 1.30) (15.99± 0.94)

Participant 2 0.60± 0.028 0.60± 0.032 0.59± 0.027 0.60± 0.030 0.59± 0.032

(20.53± 0.94) (20.49± 1.08) (20.13± 0.92) (20.32± 1.04) (20.20± 1.08)

Participant 3 0.64± 0.044 0.65± 0.039 0.65± 0.045 0.64± 0.047 0.63± 0.048

(21.62± 1.48) (21.97± 1.31) (22.00± 1.54) (21.62± 1.59) (21.32± 1.65)

Participant 4 0.54± 0.026 0.52± 0.023 0.52± 0.026 0.53± 0.021 0.52± 0.025

(18.28± 0.90) (17.72± 0.79) (17.60± 0.89) (18.06± 0.73) (17.68± 0.85)

Participant 5 0.68± 0.066 0.68± 0.060 0.64± 0.054 0.63± 0.041 0.62± 0.068

(23.26± 2.25) (23.16± 2.04) (21.60± 1.85) (21.30± 1.38) (21.24± 2.30)

The estimation was calculated using a cross-correlation between the envelopes of speech and EGG signals. The time delay was then converted to the length of the vocal tract by multiplying it

with the sound speed, which was assumed as 340 m/s (listed in parentheses). The values in the table are represented in the form of means ±standard deviations based on utterances of 50 ATR

sentences, and their units are ms (and cm). Data acquired in the first repetition from the first participant have been excluded owing to noise contamination.

of 200 orders, whose cut-off frequency was set to 200 Hz,

to stabilize the cross-correlation computation. Despite this, the

speech and EGG signals, whose calculated time delay widely

strayed from that of other sentences owing to unstable cross-

correlation calculation, were excluded from the analysis in

increments of sentences. The exclusion threshold was set to one

standard deviation.

The means and standard deviations of the calculated time delay

are summarized in Table 4. The standard deviation values were in

the range of 0.02–0.07 ms. These values are comparable to 0.08 ms

reported as an error of the time delay in a previous paper, wherein

similar measurement apparatuses were used [21]. Additionally, the

mean and standard deviation values were converted to those of the

length of the vocal tract via multiplication with the sound speed

(which was assumed to be 340 m/s) to verify the mean value. The

vocal tract length of adult males is known to be approximately equal

to 17 cm [22]. The obtained mean length could be regarded to be

valid because its value did not deviate considerably from the value

of 17 cm. Therefore, we considered that the time correction for the

transmission of speech signals through the vocal tract succeeded.

2.5 Calculation of phase spectrograms and
phase spectra

We calculated the phase spectrograms and phase spectra using

a Blackman window with a length of 25 ms. The calculation was
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performed after downsampling the speech and EGG signals to

8,000 Hz because the value of the power spectra of vowels in speech

signals decreased over approximately 4,000 Hz, thereby indicating

that the phase values were meaningless over this frequency. The

data at 0 Hz, which showed meaningless phase information, were

removed.

The phase spectra were extracted from the phase spectrograms

using the speech segmentation kit Julius [23, 24], which can

automatically detect vowels in speech signals and determine their

time ranges. In the marked range, the 25 ms length showing the

maximum power was used to express the phase spectra. A 25 ms

long rectangular window was used to determine the maximum

power. Vowels incorrectly marked by Julius and those with time

intervals shorter than 25 ms were excluded from the analysis.

Additionally, the same sequential vowels, such as /aa/ and /o:oo/,

which were not separated in a waveform, were regarded as one

vowel to avoid double counting.

2.6 Definition of circular averaging

The circular average can be defined as [14]

cos ϕ̄(ω) =
C

√
C2 + S2

and sin ϕ̄(ω) =
S

√
C2 + S2

, (6)

where ϕ̄(ω) is the averaged phase spectrum, C =
∑V

v=1 cosϕv(ω),

S =
∑V

v=1 sinϕv(ω), ϕv(ω) is the phase spectrum for a specific

vowel, and V is the number of vowels for averaging.

2.7 Averaging and scoring of power
spectra

For comparison, we introduced the averaged power spectra of

speech, P̄1X(ω) and P̄2X(ω), and their correlation, ρ, as

P̄
j
X(ω) = 10 log10

1

V

V
∑

v=1

|SX(τv,ω)|2 (7)

for j = 1, 2 and

ρ =
Cov[P̄1X(ωk), P̄

2
X(ωk)]

√

Var[P̄1X(ωk)]
√

Var[P̄2X(ωk)]
, (8)

respectively, where SX(τv,ω) is the STFT of speech at the time

instance in which the vowel of interest exists and ωk is the

frequency discretized by STFT. Var[xk] and Cov[xk, yk] represent

the variance of xk and covariance between xk and yk with respect to

k, respectively.

The spectra corresponding to the averaged power

characteristics of the vocal tract filter are presented below.

P̄
j
H(ω) = 10 log10

∑V
v=1 |SX(τv,ω)|2

∑V
v=1 |SG(τv,ω)|2

. (9)

The correlation between P̄1H(ω) and P̄
2
H(ω) was similarly defined by

Equation (8), where SG(τv,ω) is the STFT of EGG signals. Further,

SX(τv,ω) and SG(τv,ω) were calculated using the Hamming

window.

2.8 Canonical correlation for averaged
phase spectra

Canonical correlation embeds phase data, which are cyclical

and have values lying on a circle, into a two-dimensional

Euclidean space. Therefore, phase data are treated as two-

dimensional vectors, such as 81
k

= (cos ϕ̄1(ωk), sin ϕ̄1(ωk))
T

and 82
k

= (cos ϕ̄2(ωk), sin ϕ̄2(ωk))
T; these vectors are

converted into linearly combined forms η1
k

= a
T81

k
and

η2
k

= b
T82

k
, respectively. Canonical correlation is defined as

the correlation between η1
k
and η2

k
maximized with respect to

a and b. In other words, the calculation of phase correlation

is replaced by the problem of determining coefficients a and

b that maximize the correlation. Therefore, the canonical

correlation coefficient ρc can mathematically be given

as [25]:

ρc = max
a,b

Cov[η1
k
, η2

k
]

√

Var[η1
k
]
√

Var[η2
k
]

(10)

subject to Var[η1
k
] = Var[η2

k
] = 1.

Using Lagrange’s method for undetermined multipliers,

Equation (10) can be transformed into the following biquadratic

equation [18]:

det
(

6−1
11 6126

−1
22 6T

12 − ρ2
c I

)

= 0, (11)

where

611 =
[

Var[cos ϕ̄1(ωk)] Cov[cos ϕ̄1(ωk), sin ϕ̄1(ωk)]

Cov[sin ϕ̄1(ωk), cos ϕ̄
1(ωk)] Var[sin ϕ̄1(ωk)]

]

,

(12)

622 =
[

Var[cos ϕ̄2(ωk)] Cov[cos ϕ̄2(ωk), sin ϕ̄2(ωk)]

Cov[sin ϕ̄2(ωk), cos ϕ̄
2(ωk)] Var[sin ϕ̄2(ωk)]

]

,

(13)

612 =
[

Cov[cos ϕ̄1(ωk), cos ϕ̄
2(ωk)] Cov[cos ϕ̄1(ωk), sin ϕ̄2(ωk)]

Cov[sin ϕ̄1(ωk), cos ϕ̄
2(ωk)] Cov[sin ϕ̄1(ωk), sin ϕ̄2(ωk)]

]

,

(14)

and I denotes an identity matrix.

2.9 Canonical correlation for averaged
power spectra

For comparison, we calculated the canonical correlations

for the averaged power spectra by redefining the averaged

power spectra in the vector form as (P̄1X(ωk), P̄
1
G(ωk))

T and

(P̄2X(ωk), P̄
2
G(ωk))

T. Consequently, the matrices in Equation (11)
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can be replaced with:

611 =
[

Var[P̄1X(ωk)] Cov[P̄1X(ωk), P̄
1
G(ωk)]

Cov[P̄1G(ωk), P̄
1
X(ωk)] Var[P̄1G(ωk)]

]

, (15)

622 =
[

Var[P̄2X(ωk)] Cov[P̄2X(ωk), P̄
2
G(ωk)]

Cov[P̄2G(ωk), P̄
2
X(ωk)] Var[P̄2G(ωk)]

]

, (16)

and 612 =
[

Cov[P̄1X(ωk), P̄
2
X(ωk)] Cov[P̄1X(ωk), P̄

2
G(ωk)]

Cov[P̄1G(ωk), P̄
2
X(ωk)] Cov[P̄1G(ωk), P̄

2
G(ωk)]

]

.

(17)

3 Results

3.1 E�ectiveness of averaged phase
spectra for speaker recognition

We attempted to discriminate between the five Japanese male

participants by using the averaged phase spectra. Based on the

procedures mentioned in Section 2.1, we calculated the accuracy

as (NTP + NTN)/NALL, where NTP is the number of spectrum pairs

obtained and correctly judged to be from the same speaker, NTN

is the number of spectrum pairs obtained and correctly judged to

be from different speakers, and NALL = 276 is the number of all

evaluated spectrum pairs. Because the ratio between the number of

spectrum pairs obtained from the same and different speakers was

unbalanced, we undersampled the number of the different speaker

spectrum pairs to 46, which is equal to the number of the same

speaker spectrum pairs; consequently, the chance level of accuracy

became 0.5. Speaker recognition was conducted based on whether

the correlation value of the spectrum pair exceeded a threshold (see

Section 2.1). We investigated the dependency of the accuracy on

the threshold. Note that the undersampling process was repeated

five times in unused pairs, thereby comparing all possible speaker

spectrum pairs.

Consequently, the accuracy was found to be approximately 1.0

when the threshold was set appropriately (Figure 5A). Moreover,

speaker recognition was performed over a wide range of thresholds.

Then, we compared the accuracy derived according to the averaged

phase spectra with that derived by the same procedure while using

the averaged power spectra of speech-only signals or averaged

power characteristics of the vocal tract filter. The averaged phase

spectra yielded a wider range of effective thresholds than the two

power spectra.

A wider range of effective thresholds indicates that the

spectrum pairs obtained from different speakers had lower

correlation values in the phase spectra than those in the power

spectra (Figure 5B, phase: /e/; median = 0.75, /a/; median = 0.54,

/o/; median = 0.74, speech-only signal power: /e/; median = 0.91,

/a/; median = 0.94, /o/; median = 0.95, vocal tract filter power:

/e/; median = 0.89, /a/; median = 0.83, /o/; median = 0.81). In

fact, the averaged phase spectra of the five participants exhibited

different shapes for the same vowel, while the two types of averaged

power spectra were apparently similar among speakers and less

discriminative (Figure 6). Thus, the results demonstrate that the

averaged phase spectra discriminate speakers more clearly than do

the averaged power spectra.

Herein, we compared the obtained results with those obtained

in previous studies [6–8] to investigate the validity of the obtained

results. Previously published studies demonstrated that the

performance of speaker recognition using phase-based features was

comparable to that using magnitude-based features. Meanwhile,

our study demonstrated that both phase and power spectra of the

vocal tract filter achieved an accuracy approximately equal to 1.0

when the threshold was set appropriately, that is, the outcomes

obtained based on the phase and power spectra were comparable.

Moreover, the listening experiment in [8] showed that the speech

of different speakers with distorted phases caused listeners to

believe that the speech belonged to the same speaker. The averaged

power spectra obtained in our study exhibited more similar shapes

than the averaged phase spectra, meaning that discarding phase

could blur a difference among speakers. Therefore, the obtained

results are consistent with those of previous studies. It is worth

noting that we could not directly compare our study findings and

those of the previous studies because previous studies adopted

different approaches.

3.2 Measure of individuality based on
canonical correlation

In Section 3.1, we adopted Pearson’s correlation to measure

the similarity between the averaged phase spectra. Pearson’s

correlation can capture the global structure of spectra; however, this

property may be detrimental to measuring a speaker’s individuality.

Therefore, better performance can be obtained by performing

evaluations based on the fine structure of the spectra.

Speaker recognition studies often define a speaker’s

individuality as deviations from the ideal average speaker by

removing common trends in a large number of speakers [1, 26].

For the average phase spectrum, the fine structure after subtracting

the global common trend from the whole was considered to

correspond to individuality. Accordingly, we introduced canonical

correlation, which is another definition of the correlation

between two angular or phase data instances [18, 25]. The

canonical correlation of phase data provides two coefficients,

and the larger of the two coefficients reflects common trends

in the compared spectra while the smaller coefficient expresses

the component that is not fully represented by the larger

one. Therefore, the smaller canonical correlation coefficient

can be considered the deviation from common trends, i.e.,

individuality.

After calculating the smaller coefficients of canonical

correlation between all 276 spectrum pairs, the accuracy as a

function of threshold was computed and compared with that

derived using canonical correlation coefficients based on the

averaged power spectra of speech and EGG signals. Consequently,

the range of high accuracy in the averaged phase spectra was greater

than that in the averaged power spectra (Figure 7A) considering

the distributions of canonical correlation coefficients of different

speaker spectrum pairs shifted toward lower values in the averaged

phase spectra than those in the averaged power spectra (Figure 7B,

phase: /e/; median = 0.54, /a/; median = 0.30, /o/; median = 0.56,

power: /e/; median = 0.87, /a/; median = 0.83, /o/; median =
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characteristics of vocal tract filter, are calculated for three Japanese vowels /e/, /a/, and /o/. Because the number of same and di�erent speaker

spectrum pairs was 46 and 230, respectively, which indicates an imbalance, spectrum pairs of di�erent speakers were undersampled to 46. Accuracy

as a function of threshold was then investigated by varying the threshold in increments of 0.001. To compare all di�erent speaker spectrum pairs,

undersampling is performed on unused pairs four more times for five evaluations. Note that the horizontal axes are restricted to positive values for

viewability, although the threshold can take negative values. (B) Pearson’s correlation among spectrum pairs of di�erent and same speakers. Outliers

are defined as greater or less than 1.5 times the interquartile range.
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speech-only signals. (C) Averaged power characteristics of vocal tract filter. During the measurements, participants uttered Japanese sentences and

repeated them five times. The spectra were calculated with respect to each repetition and overlaid. The spectra acquired in the first repetition by the

first participant are not plotted since noisy data is obtained.

0.82). Moreover, the range of high accuracy in the averaged phase

spectra was broader than that derived using Pearson’s correlation,

indicating that deviations from common trends in the averaged

phase spectra can help distinguish speakers. Although Pearson’s

correlation is simple and comprehensible, the canonical correlation

yielded better performance in speaker recognition.
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4 Discussion

This study demonstrated that the averaged phase spectra

of different speakers have a lower correlation, which allowed

us to discriminate different speakers more clearly than the

averaged power spectra do. Furthermore, deviations from common

trends in the averaged phase spectra helped distinguish the

speakers. Therefore, the speaker’s individuality appeared in phase

spectrograms, i.e., the phase characteristics of the vocal tract filter.

In this study, the data were obtained by controlling the

measurement conditions, e.g., gender and age. This study was

associated with several limitations. First, we used data from five

speakers only; these data were not enough for a speaker recognition

study. In addition, this study limited the age and gender of

participants. Additionally, we used Japanese, which contains fewer

types of vowels than other languages. Moreover, this study focused

only on the speech data obtained from participants when they read

sentences.

The speaker’s individuality is associated with nonlinguistic

information, which is one type of information speech contains.

Speech contains three types of information, i.e., linguistic,

paralinguistic, and nonlinguistic information [27], whereas

speech signals are physically composed of power and phase.

Linguistic information refers to what is spoken; that is, vowels

and consonants. Because vowels and consonants have apparent

differences in the power spectra, linguistic information can

be understood easily using the power spectra. For instance,

the frequencies of prominent peaks in the power spectra

are significantly different for each vowel [19]. Meanwhile,

paralinguistic information corresponds to intonations and

accentuations in sentences, which are not inferable from the

written text but are deliberately added by the speaker to modify or

supplement the linguistic information. Nonlinguistic information

corresponds to aspects such as the age, gender, idiosyncrasy, and

physical and emotional states of the speaker, which are not directly

related to the linguistic and paralinguistic contents of speech. It is

difficult to explain paralinguistic and nonlinguistic information by

only using the power spectra, e.g., the contour of the fundamental

frequency of speech is often used for an intonation analysis [27].

For efficient speech communication, linguistic information

(i.e., contents we would like to transmit by speech) must precede

other information, and thus be easily transferred to conversation

partners. Meanwhile, human hearing is known to be insensitive

to phase, compared with power [28]. Therefore, it is reasonable

that linguistic information is assigned to power and not to

phase. This idea is consistent with the fact mentioned above

that linguistic information can be understood easily using the

power spectra. However, our experiment demonstrated that the

speaker’s individuality can be associated with the phase. The

superiority of phase over power obtained in our experimental

setting suggested that the power and phase play different roles, i.e.,

power and phase are mainly related to linguistic and nonlinguistic

information, respectively. We hope to clarify the additional

information contained in the phase in future studies. In this way,

the phase will become useful in acoustics.

5 Conclusion

The present study clarified that the non-modified phase

characteristics of the vocal tract filter can distinguish speakers

better than the power-based approach, suggesting that phase

can carry the speaker’s individuality more than power in some

conditions.
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