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Geometry of deviation measures
for triangular distributions

Yuhe Wang and Eugene Pinsky*

Computer Science Department, MET College, Boston University, Boston, MA, United States

Triangular distributions are widely used in many applications with limited sample

data, business simulations, and project management. As with other distributions,

a standard way to measure deviations is to compute the standard deviation.

However, the standard deviation is sensitive to outliers. In this paper, we consider

and compare other deviation metrics, namely the mean absolute deviation from

the mean, the median, and the quantile-based deviation. We show the simple

geometric interpretations for these deviation measures and how to construct

them using a compass and a straightedge. The explicit formula of mean absolute

deviation from the median for triangular distribution is derived in this paper for

the first time. It has a simple geometric interpretation. It is the least volatile and

is always better than the standard or mean absolute deviation from the mean.

Although greater than the quantile deviation, it is easier to compute with limited

sample data. We present a new procedure to estimate the parameters of this

distribution in terms of this deviation. This procedure is computationally simple

and may be superior to other methods when dealing with limited sample data, as

is often the case with triangle distributions.

KEYWORDS

triangular distribution, mean absolute deviation, quartile deviations, probability

distributions, geometry of deviations

1 Introduction

Triangular distributions Tr(a, b, c) are a three-parameter distribution with a minimum

value a, a maximum value b, and a most likely (mode) value c [1]. Unlike the uniform

distribution, triangle distributions include the most likely value c in addition to the

minimum and maximum values and allow for incorporating skewness and asymmetry.

These distributions are widely used in business simulations, risk and project management,

Monte-Carlo simulations, and other areas, especially when dealing with limited sample

data [2–4] (for a historical review, see [1]).

As noted in [5], several authors [1, 6] have suggested using this distribution instead of the

beta distribution since for beta distribution, there are difficulties in the maximum likelihood

estimation of parameters and their interpretation. Johnson [6] and Johnson and Kotz [7]

dealt with neglected applications of this distribution as an alternative to the beta distribution,

which suffers from difficulties in its maximum likelihood parameter estimation. Triangular

distributions are recommendedwhen the underlying distribution is unknown, but aminimal

value, some maximal value, and a most likely value are available [1].

This paper focuses on computing and comparing the deviation measures for such

distributions, both geometrically and algebraically. Historically, the most widely used

deviation measure has been the standard deviation [8]. In computing this metric, we square

the distances from the mean. This usage of the L2 norm is convenient in differentiation,

optimization, and estimation [9]. However, this metric has some disadvantages, such as

sensitivity to outliers. An alternative is to use the mean absolute deviation (the L1-norm)
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and measure deviations (MAD) from a central point such as

mean µ [denoted by H(µ)] or median M [denoted in this paper

by H(M)]. On the other hand, using L1 metric allows one to

introduce performancemetrics that do not require the computation

of higher-order moments (e.g. [10]).

One of the contributions of this paper is an explicit formula

for H(M), the mean absolute deviation about the median. The

formula has a simple, intuitive, and geometric interpretation. To

our knowledge, this is the first paper deriving an explicit formula

for H(M) for the triangular distribution. For this distribution,

deviation measures such as standard deviation, mean absolute

deviation (about median), and quartile deviation have simple

geometric interpretations and can all be constructed by a ruler and

compass. The mean absolute deviation about the median H(M) is

the least volatile and is always lower than the standard deviation

or the MAD deviation about the mean. Although it is higher

than the quartile deviation, it is more practical. We often have

very limited data for triangular distributions, and accurate quartile

estimates are problematic. Using H(M), we present a new non-

iterative procedure to estimate the parameters of this distribution.

This procedure is very simple computationally and is more robust

than direct estimation based on the sample mean.

This paper is organized as follows. In Section 2, we

introduce triangular distributions, compare mean and median,

and present geometric interpretations for mean, median, and

standard deviation. In Section 3 we derive a general expression for

computing mean absolute deviations for triangular distributions.

From this expression, we compute the mean absolute deviations

H(µ) and H(M) about mean and median and provide a simple

geometric interpretation for these measures. In Section 4, we

introduce a new estimation procedure based on mean absolute

deviation H(M) and illustrate it with a numerical example. In

Section 5, we compare the exact values of tail probabilities with

some estimates using deviations. In Section 6, we derive the formula

for the quartile deviation. Finally, in Section 7 we present a detailed

comparison of deviation measures.

2 Triangular distributions

We start with definitions and notations. Suppose X is

distributed according to triangular distribution on the range [a, b]

andmode parameter c ∈ [a, b]. We will write this as X ∼ Tr(a, b, c).

The density function f (x) and the cumulative distribution function

F(x) is given given by

f (x) =







2(x−a)
(b−a)(c−a)

2(b−x)
(b−a)(b−c)

F(x) =







(x−a)2

(b−a)(c−a)
for a ≤ x ≤ c,

1− (b−x)2

(b−a)(b−c)
for c < x ≤ b

(1)

The mean µ and standard deviation σ are:

µ = (a+ b+ c)/3 and σ =
√

a2 + b2 + c2 − ab− ac− bc/3
√
2

(2)

Let F−1(·) be the quantile function defined by F−1(t) =
inf{x : F(x) ≥ t} with t ∈ [0, 1]. From the definition of the

cumulative distribution function, we find

x = F−1(t) =







a+
√
t(b− a)(c− a) a ≤ x ≤ c

b−
√
(1− t)(b− a)(b− c) c < x ≤ b

(3)

Therefore, for the medianM = F−1(1/2) we have







(b−M) =
√
2
2

√
(b− a)(b− c) c ≤ (a+ b)/2

(M − a) =
√
2
2

√
(b− a)(c− a) c ≥ (a+ b)/2

(4)

We will find it convenient to consider a standard

(“normalized”) variable under min-max transformation

X 7→ (X − a)/(b − a). Then, X has a triangular distribution

with a = 0, b = 1 and a ≤ c ≤ b. For this standard X, the

mean µ = (1 + c)/3, standard deviation
√
1+ c2 − c/3

√
2

whereas the median M = 1 −
√
2(1− c)/2 for c ≤ 1/2 and

M =
√
c/2 for 1/2 ≤ c ≤ 1.

In Table 1, we compute mean, median and standard deviation

for standard triangle distribution (a = 0, b = 1) for c = 0, c = 1/4,

c = 1/2, c = 3/4, and c = 1.

The case c = 0 corresponds to the distributionX = |U1−U2| of
the absolute difference between two independent random variables

U1 and U2 with standard uniform distribution. By contrast, the

symmetric case c = 1/2 corresponds to the distribution X =
(U1 + U2)/2 of the mean of the sum of two standard uniform

variables U1 and U2.

Themeanµ, themedianM, the standard deviation σ , and other

deviation measures discussed in this paper have simple geometric

interpretations and can be constructed using a straightedge and

compass. For their constructions, we will assume that we know how

to do the following:

1. construct a segment of unit length

2. copy segments and angles

3. construct (l1 + l2) and (l1 − l2) from segments of lengths l1 and

l2
4. divide length l into 2 (bisection) equal or 3 equal parts

(trisection)

5. construct 30◦/60◦ and 45◦/45◦ right triangles with a side (e.g.,

hypotenuse) of length l. This allows computing l
√
2, l/

√
2, l

√
3,

and l/
√
3

6. construct a right triangle with sides l1 and l2
7. compute the geometric mean

√
l1l2 of two segments with

lengths l1 and l2. This construction is illustrated in Figure 1.

We can now discuss the geometric construction and

interpretation of some measures for this distribution.

2.1 Geometric construction and
interpretation of the mean

To construct µ, it will be sufficient to construct (µ − a). From

Equation (2) we have (µ − a) = (c − a)/3 + (b − a)/3. This gives

us the following construction for (µ − a):

1. trisect (b− a) to compute l1 = (b− a)/3
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TABLE 1 Mean, median, and standard deviation.

c 0 0.25 0.5 0.75 1

µ 1
3
≈ 0.33 5

12
≈ 0.42 0.5 7

12
≈ 0.58 2

3
≈ 0.66

M 2−
√
2

2
≈ 0.29 4−

√
6

4
≈ 0.39 0.5

√
6
4

≈ 0.61
√
2
2

≈ 0.71

σ
√
2
6

≈ 0.24
√
26
24

≈ 0.21
√
6

12
≈ 0.20

√
26
24

≈ 0.21
√
2
6

≈ 0.24

FIGURE 1

Geometric interpretation for geometric mean.

FIGURE 2

Mean and the triangle centroid.

2. trisect (c− a) to compute l2 = (c− a)/3

3. compute (µ − a) = l1 + l2

The mean µ has the following interesting interpretation:

Consider a triangle with vertices (x1, y1), (x2, y2), and (x3, y3).

Consider the centroid K of such a triangle: the point at which the

three medians of the triangle intersect as shown in Figure 2. This

centroid is the point with coordinates (x1 + x2 + x3)/3, (y1 + y2 +
y3)/3. To construct this point, we bisect the sides of the triangle

and draw lines from vertices to the midpoints of the opposite

sides. These three lines meet at the single point K. By the centroid

theorem, the point K is 2/3 of the distance from the vertex to the

midpoint of the sides. If we use the geometric interpretation of the

density as a triangle with vertices (a, 0), (b, 0), and (c, 2/(b − a)),

then the x-coordinate of its centroid is the mean µ.

Next, we establish the relationship between the mean µ and the

midpoint (a+b)/2. If c ≤ (a+b)/2, then 3c ≤ (a+b+ c) or c ≤ µ.

On the other hand, µ = (a+ b+ c)/3 ≤ ((a+ b)+ (a+ b)/2)/3 =

(a+ b)/2 and thus, c ≤ µ ≤ (a+ b)/2. Therefore,

0 ≤ c ≤ (a+b)/2 H⇒ µ ≥ c and (a+b)/2 ≤ c ≤ b H⇒ µ ≤ c

(5)

2.2 Geometric construction and
interpretation of the median

The median M has a different geometric interpretation. We

consider the case c ≤ (a+ b)/2. To constructM, it will be sufficient

to construct (M − a). We proceed as follows:

1. compute the geometric mean l1 =
√
(b− a)(b− c)

2. (any other) side of this triangle has the length (M−a) = l1
√
2/2

This is illustrated in Figure 3.

For the case c ≥ (a + b)/2, we construct (b − M) by similar

steps:

1. compute the geometric mean l1 =
√
(b− a)(c− a)

2. (any other) side of this triangle has a length (b−M) = l1
√
2/2

Next, we establish the relationship between the median M and

the midpoint (a+ b)/2. There are two cases to consider:

• Case 1: c ≤ (a+b)/2. In this case (b−a) ≤ 2(b− c) and from

Equation (4) and we have

M = b−
√

(b− a)(b− c)/
√
2 ≥ b− (b− c) = c

• Case 2: c ≥ (a+ b)/2. In this case, (b− a) ≤ 2(c− a) and we

have

M = a+
√

(b− a)(c− a)/
√
2 ≤ a+ (c− a) = c

Therefore, we obtain the following relationship:

a ≤ c ≤ (a+b)/2 H⇒ M ≥ c and (a+b)/2 ≤ c ≤ b H⇒ M ≤ c

(6)

The case c ≤ (a+ b)/2 is illustrated in Figure 4.

2.3 Relationship of mean and median

We show that for a ≤ c ≤ (a + b)/2 we have c ≤ M ≤ µ and

for (a + b)/2 ≤ c ≤ b we have µ ≤ M ≤ c. There are two cases to

consider:
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FIGURE 3

Geometric interpretation of median when c ≤ (a+b)/2.

FIGURE 4

Mean and median for c ≤ (a+b)/2.

• Case 1: a ≤ c ≤ (a + b)/2. In this case, (b − a)(b − c) ≥
(b− a)2/2 and from the Equation (4)

M = b2− 1
2 (b−a)(b−c)

b+
√
2
2

√
(b−a)(b−c)

≤ 1
2 ·

(b2+ab+bc−ac)

b+ 1
2 (b−a)

≤ (a+b+c)
3 = µ (7)

• Case 2: (a + b)/2 ≤ c ≤ b. If we consider the distribution

Y = (a+b)−X then by symmetry from the above Equation (7)

we have µ ≤ M ≤ c.

Combining these results with Equation (6) we obtain the

following relationship between the mean µ, the medianM and the

mode c:

a ≤ c ≤ (a+ b)/2 H⇒ a ≤ M ≤ µ ≤ c

(a+ b)/2 ≤ c ≤ b H⇒ c ≤ µ ≤ M ≤ b
(8)

2.4 Geometric construction and
interpretation of the standard deviation

To derive a geometric interpretation for σ , we can re-write the

expression for σ in Equation (2) as follows

σ =
1

3
·

1
√
2

√

(b− a)2 − (c− a)(b− c) (9)

From this equation, we immediately obtain σ ≤
√
2(b − a)/6.

For the case c = a or c = b, we have the equality σ =
√
2(b− a)/6.

The above Equation (9) suggests the following geometric

construction and interpretation for the standard deviation σ are

shown in Figure 5.

1. compute the geometric mean l2 =
√
(c− a)(b− c)

2. construct the right triangle T with hypotenuse (b− a) as side l1.

3. compute the length l3 =
√

(b− a)2 − l21 of the other side of T

4. compute the length l4 = l3/
√
2

5. trisect l3 to compute σ = l4/3

3 Mean absolute deviation

We start with preliminary definitions. Consider a real-valued

random variable X with density f (x), finite mean and cumulative

distribution function F(x). We use M, µ = E(X) and σ to denote

median, mean and standard deviation of X respectively. For any p,

we define the mean absolute deviation of X from p as

H(p) = E(
∣

∣X − p
∣

∣) =
∫

X

∣

∣x− p
∣

∣f (x) dx (10)

It can be interpreted as the average distance of values of X to

the point p. If p = µ, then H(µ) is the mean absolute deviation

from the mean µ. If we take p = M, then H(M) is the mean

absolute deviation from the median. Both are denoted as MAD

(mean absolute deviation) in the statistical literature, leading to

some confusion [9].

It can be shown (details are presented in the Appendix) that

for any distribution σ ≥ H(µ) ≥ H(M). Of the three metrics
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FIGURE 5

Geometric interpretation for standard deviation.

to measure deviations, namely H(M), H(µ), and σ , the MAD

metric H(M) has the lowest value. In the computation of σ , we

square distances (from the mean), and this inflates the impact of

outliers. By contrast, we use these distances directly to compute

mean absolute deviations. In addition, it is often easier to interpret

mean absolute deviations than the standard deviation.

We illustrate this with a simple example. Suppose X is

distributed according to a uniform distribution in [a, b]. Its density

f (x) = 1/(b − a) and its cumulative distribution function F(x) =
(x − a)/(b − a). For this distribution, µ = M = (a + b)/2,

and σ =
√
3(b − a)/6. Since this distribution is symmetric, the

MAD deviations H(M) = H(µ) and are easily computed H(M) =
(b − a)/4 (e.g. [10]). The MAD value H(M) = (b − a)/4 is easy to

interpret: it represents the average distance of X from its median

M = (a + b)/2. However, it is more difficult to find an easy

interpretation for standard deviation σ =
√
3(b− a)/6.

In the Appendix, we provide computational details on

computing H(µ) and H(M). These are summarized below:

For triangular distribution, the mean absolute deviation from

the mean H(µ) is

H(µ) =







2(a+c−2b)3

81(a−b)(b−c)
a ≤ c ≤ (a+ b)/2

2(b+c−2a)3

81(a−b)(a−c)
(a+ b)/2 ≤ c ≤ b

(11)

For the standard triangular distribution with a = 0, b = 1 this

simplifies to:

H(µ) =







2
3(1−c)

(

2−c
3

)3
0 ≤ c ≤ 1/2

2
3c

(

1+c
3

)3
1/2 ≤ c ≤ 1

(12)

For the mean absolute deviation H(M) from the median we

obtain

H(M) =







(b−a)+(b−c)−
√
2(b−a)(b−c)

3 a ≤ c ≤ (a+ b)/2

(b−a)+(c−a)−
√
2(b−a)(c−a)

3 (a+ b)/2 ≤ c ≤ b
(13)

For the standard triangular distribution with a = 0, b = 1, this

simplifies to

H(M) =







1
3 (2− c−

√
2(1− c)) 0 ≤ c ≤ 1/2

1
3 (1+ c−

√
2c) 1/2 ≤ c ≤ 1

(14)

FIGURE 6

Geometric interpretation for H(M).

3.1 Geometric construction and
interpretation of MAD

The Equation (13) gives us the following procedure for the

geometric construction of H(M). We consider two cases:

• Case 1: a ≤ c ≤ (a+ b)/2. We construct H(M) as follows:

1. construct the geometric mean l1 =
√
(b− a)(b− c)

2. compute length l2 = l1
√
2.

3. compute l3 = (b− a)+ (b− c)+ l2
4. trisect l3 to compute H(M) = l3/3

• Case 2: c ≥ (a+ b)/2. We construct H(M) by similar steps:

1. construct the geometric mean l1 =
√
(b− a)(c− a)
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2. compute its hypotenuse l2 = l1
√
2.

3. compute l3 = (b− a)+ (c− a)+ l2
4. trisect l3 to compute H(M) = l3/3

The mean absolute deviation H(M) can be interpreted as

follows. For c ≤ (a + b)/2 from Case 1 above, we can write

H(M) = M − (a+ c+M)/3. The term (a+M + c)/3 is the mean

of the triangular distribution Y ∼ Tr(a,M, c) with parameters

a, M, and c. Therefore, H(M) can be interpreted as the distance

between the medianM and the mean of the triangular distribution

Tr(a,M, c).

Similarly, for c ≥ (a + b)/2 from Case 2 above, we

can write H(M) = (b + c + M)/3 − M. The term (a +
M + c)/3 is the mean of the triangular distribution Z ∼
Tr(M, c, b) with parameters M, c, and b. Therefore, H(M) can be

interpreted as the distance between the median M and the mean

of the triangular distribution Tr(M, c, b). This is illustrated in the

Figure 6.

In Table 2, we present additional results for

comparing standard and mean absolute deviations

for normalized triangular distributions for c =
{0, 0.25, 0.5, 0.75, 1}. These comparisons are further illustrated

in Figure 7.

As a specific example, consider the symmetric triangular

distribution with a = 0, b = 1 and c = 1/2. For this distribution,

µ = M = 1/2. The standard deviation σ =
√
2/6. The

mean absolute deviations H(µ) = H(M) = 1/6. The case c =
1/2 corresponds to the distribution X = (U1 + U2)/2 of the

mean of the sum of two independent standard uniform variables

U1 and U2. For these uniform variables, the mean is µ(U1) =
µ(U2) = 1/2, standard deviation σ (U1) = σ (U2) = 1/(2

√
3) and

MAD deviation H(U1, 1/2) = H(U2, 1/2) = 1/4. We note that

σ 2(X) = σ 2(U1/2) + σ 2(U2/2) but H(1/2) 6= H(U2/2, 1/2) +
H(U2/2). From this, we see that, unlike variances, the mean

absolute deviation is not additive for the sum of independent

random variables. We also note that for the triangular distribution,

its standard deviation σ (triangle) =
√
2/6 is much larger than

the standard deviation of a (normalized) uniform σ (uniform) =√
3/6.

4 Estimation of parameters with mean
absolute deviation

In this section, we address the issue of estimating

the parameters of this distribution. We could consider

several methods to estimate parameters a, b, and c such as

maximum likelihood estimation [5, 11], quantiles [4, 12],

method of moments or other widely used methods in

statistics.

However, we must remember that we assume limited

sample data for these distributions. Therefore, the computations

based on quantiles may not be very accurate or practical.

There are difficulties in using maximum likelihood estimation

for triangular distributions as well [13, 14]. One difficulty

is that the original density function f (x) in Equation (1)

has a “sharp” corner at point c where it does not have a

derivative.

4.1 Mean-based and midrange-based
estimation of parameters

The simple relationship µ = (a + b + c)/3 in Equation (2) for

the meanµ suggests the following simple procedure to estimate the

parameters. If we have a set of n data points x1, . . . , xn then we have

the following:

1. compute a∗ = min{xi} and b∗ = max{xi}
2. compute the sample mean µ∗ = (x1 + · · · + xn)/n

3. compute the mode c∗ = 3µ∗ − (a∗ + b∗)

An even simpler procedure would be to use the mid-range

estimator forµ (i.e., assume a symmetric triangle distribution), and

proceed as follows:

1. compute a∗ = min{xi} and b∗ = max{xi}
2. estimate the sample mean by mid-range µ∗ = (a∗ + b∗)/2

3. compute the mode c∗ = 3µ∗ − (a∗ + b∗)

However, the mean µ∗ is sensitive to outlier values. However,

the mean is more sensitive to outlier values than the median.

We, therefore, suggest an alternative method based on the sample

medianM∗ and H(M∗).

4.2 MAD (around median)-based
estimation of parameters

Recall that for the median M, we have shown c ≤ (a +
b)/2 ⇐⇒ M ≤ c. Combining this with expressions for H(M) in

Equation (13), we obtain

H(M) =

{

(2M − a− c)/3 M ≤ (a+ b)/2

(b+ c− 2M)/3 M ≥ (a+ b)/2
(15)

The above results suggest the following estimation procedure:

1. compute a∗ = max{xi} and b∗ = max{xi}
2. compute the sample medianM∗

3. compute the mean absolute deviation H(M∗) from the

(estimated sample) medianM∗

H(M∗) =
1

n

n
∑

i=1

∣

∣xi −M∗∣
∣ (16)

4. from Equation (15) compute the mode c∗ as follows

c∗ =

{

2M∗ − 3H(M∗)− a∗ M∗ ≤ (a∗ + b∗)/2

2M∗ + 3H(M∗)− b∗ M∗ ≥ (a∗ + b∗)/2
(17)

This procedure is more stable and less sensitive to outliers than

the simple procedure based on the means. This is illustrated by a

numerical example below.
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TABLE 2 A comparison of standard and mean absolute deviations.

c 0 0.25 0.5 0.75 1

µ 1
3
≈ 0.33 5

12
≈ 0.42 0.5 7

12
≈ 0.58 2

3
≈ 0.66

M 2−
√
2

2
≈ 0.29 4−

√
6

4
≈ 0.39 0.5

√
6
4

≈ 0.61
√
2
2

≈ 0.71

σ
√
2
6

≈ 0.24
√
26
24

≈ 0.21
√
6

12
≈ 0.20

√
26
24

≈ 0.21
√
2
6

≈ 0.24

H(µ)
(

2
3

)4 ≈ 0.20 1
9

(

7
6

)3 ≈ 0.18 1
6
≈ 0.17 1

9

(

7
6

)3 ≈ 0.18
(

2
3

)4 ≈ 0.20

H(M) 2−
√
2

3
≈ 0.20 5−2

√
2

12
≈ 0.18 1

6
≈ 0.17 7−2

√
6

12
/12 ≈ 0.18 2−

√
2

3
≈ 0.20

FIGURE 7

Comparison of performance measures.

4.3 A numerical example for parameter
estimation

We present a numerical example of civil engineering data of 85
hauling times presented in [11]. The data is as follows:

X = {4.79, 4.75, 5.40, 4.70, 6.50, 5.30, 6.00, 5.90, 4.80, 6.70, 6.00, 4.95, 7.90,
5.40, 3.50, 4.54, 6.90, 5.80, 5.40, 5.70, 8.00, 5.40, 5.60, 7.50, 7.00, 4.60,

3.20, 3.90, 5.90, 3.40, 5.20, 5.90, 4.40, 5.20, 7.40, 5.70, 6.00, 3.60, 6.20,

5.70, 5.80, 5.90, 6.00, 5.15, 6.00, 4.82, 5.90, 6.00, 7.30, 7.10, 4.73, 5.90,

3.60, 6.30, 7.00, 5.10, 6.00, 6.60, 4.40, 6.80, 5.60, 5.90, 5.90, 8.60,

6.00, 5.80, 5.40, 6.50, 4.80, 6.40, 4.15, 4.90, 6.50, 8.20, 7.00, 8.50,

5.90, 4.40, 5.80, 4.30, 5.10, 5.90, 4.70, 3.50, 6.80}

The mean of this data is µ∗ = 5.69, and the standard deviation

is σ ∗ = 1.16. The Gaussian estimation is then c∗ = 5.69.

The maximum likelihood estimation of parameters presented

in Dorp and Kotz [5] gives the following results:

a∗ = 2.87, b∗ = 8.80, c∗ = 5.80 (18)

Let us estimate the parameters using the mean-based and

MAD-based algorithm.

We start with the mean-based algorithm.

1. compute a∗ = min{xi} = 3.2 and b∗ = max{xi} = 8.60

2. compute the sample mean µ∗ = 5.69

3. compute the mode c∗ = 3µ∗ − (a∗ + b∗) = 5.27

Therefore, the mean-based algorithm gives the following:

a∗ = 3.2, b∗ = 8.6, c∗ = 5.27 (19)

If we consider using the mid-range estimation, then we proceed

as follows:

1. compute a∗ = min{xi} = 3.2 and b∗ = max{xi} = 8.60

2. estimate the mean by mid-range µ∗ = (a+ b)/2 = 5.9

3. compute the mode c∗ = 3µ∗ − (a∗ + b∗) = 5.9

Therefore, the mid-range estimation gives the following:

a∗ = 3.2, b∗ = 8.6, c∗ = 5.9 (20)

Next, we consider the MAD-based approach

1. compute a∗ = max{xi} = 3.2 and b∗ = max{xi} = 8.60

2. compute the sample medianM∗ = 5.80

3. compute the mean absolute deviation H(M∗) = 0.88 (from the

median)

4. the midpoint (a∗ + b∗)/2 = 5.9 is greater than M∗. Therefore,

from Equation (17) we compute the mode c∗ = (2M∗ −
3H(M∗))− a∗ = 5.75
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TABLE 3 Comparison of estimation for the numerical example.

Method a∗ b∗ c∗ σ∗

Gauss · · · · · · 5.69 1.16

Maximum

likelihood (MLE)

2.87 8.80 5.80 1.21

Mean-based 3.20 8.60 5.27 1.11

Mid-range based

(symmetric PDF)

3.20 8.60 5.90 1.10

MAD-based 3.20 8.60 5.75 1.10

Therefore, the MAD-based algorithm gives the following:

a∗ = 3.2, b∗ = 8.6, c∗ = 5.75 (21)

We summarize our results from Equations (18–21) in Table 3

where we also added the estimated standard deviation σ ∗

[computed from Equation (2)]

Examining Table 3, we see that both mean-based, symmetric

PDF and MAD-based procedures give the same estimates for a∗

and b∗. These are within about 10% relative errors when compared

to the values computed by maximum likelihood in Equation (18).

However, the estimate for mode c∗ using mean-absolute deviation

is much closer to the estimate obtained by maximum likelihood

estimation (5.75 vs. 5.80 or about 1% relative error) than the

other methods. The estimated standard deviation by MAD-based

method is much lower than the the one obtained by the maximum

likelihood estimation (1.10 vs. 1.21). At the same time, the MAD-

based procedure is computationally much simpler than fitting

parameters using the maximum likelihood estimation.

We may consider other methods, based on quantiles. One such

method presented in [12] assumes that the most likely value is

given and solves for parameters a∗ and b∗ by numerically solving

two quadratic equations corresponding to 5 and 95% quantiles. We

could consider another approach: if we have the empirical quartiles

Q∗
1 ,Q

∗
3 , we can compute the interquartile range I = (Q∗

3−Q∗
1). One

can then use the Friedman-Diaconis rule [15] to compute the bin

width as 2I/n3/2, construct the empirical histogram and estimate c∗

by the midpoint of the most frequent bin. From this, we can solve

for a∗ and b∗ using Q∗
1 , Q

∗
3 , and c∗.

However, these methods are pretty complex and require good

estimates of the quantiles. In practice, the triangle distributions

are often used when there is limited sample data available. For

these reasons, the triangle distribution has been called a “lack

of knowledge” distribution. Therefore, with small sample sizes, it

is not feasible to consider many such methods. By contrast, the

suggested MAD-based method for parameter estimation is much

simpler computationally.

Let us now illustrate outlier detection using the above example.

The simple classical approach is to use mean µ∗ and standard

deviation σ ∗ and look for outliers as values below the low bound

L = (µ∗ − 2σ ∗) and above the upper bound U = (µ∗ + 2σ ∗).

The MAD approach would be to use the estimated medianM∗ and

MAD (around median) H∗ and look for outlier values outside the

low bound L = (M∗−2H∗) and above the upper boundU = (M∗+
2H∗). We can also consider the simple non-parametric method

of Tukey using quartiles [16]. In Tukey’s method we compute the

quartilesQ1 andQ3, compute the interquartile range I = (Q3−Q1)

and look for outlier values outside the low bound L = Q1−1.5I and

above the upper bound U = Q3 + 1.5I. We present a comparison

of outlier detection for the above numerical example in Table 4.

We note that the lower and upper bounds for the above

outlier detection methods can be constructed using a compass and

straightedge. Onemay consider other methods for outlier detection

such as Grubbs tests of Gauss pdfs [17] for one-sided and two-

sided detection of outliers. This work is only the first step to using

the described estimators of triangle distributions. In the future, we

aim to address other issues such as the description of errors and

uncertainties in measurements, estimation with small numbers of

samples, and other rules for detecting and rejecting the outliers.

We conclude this section with a small Monte Carlo simulation

study. We considered n = 10, 20, 30, 40, 50. For each n, we ran 100

simulations where we chose c at random in (0, 1) and generated

n numbers according to standard triangular distribution (using

the Scientific Python library). We then estimated c by maximum

likelihood and by the suggested method using H(µ) and H(M).

We computed the mean of the relative error for each n and

summarized the results in the Table 5. As we can see, for large n

the accuracy of the median-based method is always better than

using the maximum Likelihood estimation. The proposed method

is much simpler computationally.

5 Estimation of tail probabilities with
deviations

We now turn to compute some tail probabilities. The quadratic

form of the CDF F(x) for the triangular distribution (Equation 1)

results in a simple quadratic form of tail probabilities. For example,

for any ǫ < min{c− a, b− c} we have

P(|X − c| ≥ ǫ) = P(X ≤ c− ǫ)+ P(X ≥ c+ ǫ) = F(c− ǫ)

+
(

1− F(c+ ǫ)
)

= ((c−a)−ǫ)
2

(b−a)(c−a)
+ ((b−c)−ǫ)

2

(b−a)(b−c)
(22)

The above probability can be constructed geometrically. Recall

that one of our assumptions is having a segment of unit length. This

allows us to compute both the products and ratios of segments.

Let us examine how the MAD deviations can be used to

estimate tail probabilities. The most general bound for any

distribution (with finite variance) is the Chebyshev’s inequality

[18]:

P(|X − µ| ≥ kσ ) ≤
1

k2
(23)

This inequality is useful for k ≥ 1. This inequality follows from

the so-called Pearson inequality [19] with r = 2

P
(

|X − µ| ≥ kV1/r
r

)

≤
1

k2
, where Vr = E(|X − µ|r)

(24)

For r = 1, a much less-known inequality exists for bounds in

terms of mean absolute deviation H(µ) from the mean, namely

P
(

|X − µ| ≥ kH(µ)
)

≤
1

k
(25)
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TABLE 4 Comparison of outlier detection methods.

Method Parameters L xi ≤ L U xi ≥ U

Gauss µ∗ = 5.69 3.37 3.2 8.01 8.2, 8.5, 8.6

σ ∗ = 1.16

MLE µ∗ = 5.82 3.40 3.2, 3.4 8.24 8.5, 8.6

σ ∗ = 1.21

Mean-based µ∗ = 5.27 3.05 3.2, 3.4 7.49 8.5, 8.6

σ ∗ = 1.11

Mid-range µ∗ = 5.90 3.70 3.2, 3.4, 3.5, 3.5 8.10 8.2, 8.5, 8.6

σ ∗ = 1.10 3.6, 3.6

MAD-based M∗ = 5.80 4.04 3.2, 3.4, 3.5, 3.5 7.56 7.9, 8.2, 8.5, 8.6

H∗ = 0.88 3.6, 3.6, 3.9

Tukey’s method Q1 = 5.80 2.60 None 8.52 8.6

(non-parametric) Q3 = 6.30

TABLE 5 Relative errors in estimating mode c by Monte Carlo.

Sample
size n

n = 10 n = 20 n = 30 n = 40 n = 50

MLE 1.77 1.74 4.28 1.51 3.70

Mean-

based

1.51 1.23 2.47 0.63 1.05

MAD-

based

0.85 1.17 1.75 0.58 0.81

Similarly, there is an inequality in terms of the mean absolute

deviation from the median H(M) given by [9]

P(|X −M| ≥ kH(M)) ≤
1

k
(26)

Let us compute bounds based on the MAD deviation. First,

define δ = H(µ)/σ . Note that for all distributions we have H(µ) ≤
σ and therefore δ ≤ 1. We can re-write the MAD-based inequality

for H(µ) in Equation (25) in terms of σ as follows

P(|X − µ| ≥ kσ ) = P

(

|X − µ| ≥
kσ

H(µ)
·H(µ)

)

≤
δ

k
(27)

Also, we can consider the Peek inequality [20]

P(|X − µ| ≥ kσ ) ≤
1− δ2

k2 − 2kδ + 1
(28)

Comparing Equations (23) and (27) we find that MAD-based

upper bound for H(µ) is lower than Chebyshev’s upper bound for

1 ≤ k ≤ 1/δ. Comparing Equations (27) and (28) we find that Peek

inequality is lower than both MAD and Chebyshev for k > 1/δ.

We can now apply these bounds to triangular distribution.

Since σ , H(M), and H(µ) are shift-invariant and multiplicative, we

can consider only the standard triangular distribution with a = 0

and b = 1. Consider again the symmetric case c = 1/2. From

Table 2, we have µ = 1/2, σ =
√
6/12, H(µ) = 1/6, and

δ =
√
6/3. The tail probability from Equation (1) is

P(|X − µ| ≥ kσ ) = 1+
k2

6
−

k
√
6

3
(29)

Let us now consider bounds using deviations. Therefore, from

Equation (27), the MAD-based bound for the tail probability in

standard symmetric triangular distribution is

P(|X − µ| ≥ kσ ) ≤
√
6

3k
(30)

Comparing this with Chebyshev’s inequality (23) we find that

the MAD-based bound is sharper for k ≤ 1/δ =
√
6/2 ≈ 1.22.

The Peek inequality in Equation (28) (with δ =
√
6/3) gives the

following:

P(|X − µ| ≥ kσ ) ≤=
1

3k2 − 2k
√
6+ 3

(31)

This gives us a sharper bound than MAD for the same value

k =
√
6/2.

In Figure 8 we compare the exact value of tail probabilities

(Equation 29), the Chebyshev bound (Equation 23), the MAD

bound (Equation 27), and the Peek bound (Equation 28). For

k <
√
6/2 the MAD bound in Equation (27) gives a lower bound

than either Chebyshev or Peek inequalitiy. For k >
√
6/2, both

Chebyshev and Peek give lower values with the Peek inequality

being the sharper bound. We note that none of these bounds give

good approximations, especially for larger k. For example, at point

k =
√
6/2 the Chebyshev, MAD, and Peek bounds are 2/3 whereas

the exact value from Equation (29) is 0.25. We will consider other

Chebyshev’s type inequalities [21] and the inequalities based on the

median in future work.

6 Geometry of quartile deviations

In quantile statistics, one often uses half of the interquartile

range (IQR) as a measure of deviation [1]. If the first and third
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FIGURE 8

Comparison of tail probabilities for the standard symmetric case.

quartiles are given by Q1 = F−1(1/4) and Q3 = F−1(3/4)

respectively then the interquartile range I = (Q3−Q1). The quartile

deviation G is then G = (Q3 − Q1)/2. This has a very simple

interpretation. Since G = ((Q3 − M) + (M − Q1))/2, we can

interpret G as the average distance from the median to the other

two quartiles.

To compute the quartiles and to derive the expression for G

for triangular distribution, it will be enough to consider the case

a ≤ c ≤ (b − a)/2. If X ∼ Tr(a, b, c) consider the random variable

Y = (a+b)−X. This random variable has a triangular distribution

Y ∼ Tr(a, b, (b+ a)− c). Its quartiles and median are related to the

quartiles and median of X by simple relationships

Q1(X)− a = b− Q3(Y), M(X)− a = b−M(Y), Q3(X)− a

= b− Q1(Y) (32)

For a geometric interpretation of the quartiles, we will find it

convenient to find their distances from a or b. We compute the

general expression for these distances by considering the following

cases:

• Case 1 (c = a): For this case, the cumulative distribution

function F(x) = 1 − (b − x)2/(b − a)2. The first quartile Q1,

the median M and the third quartile are found from solving

F(x) = q for q = 1/4, q = 1/2 and q = 3/4 respectively. Since

x > c we use the second equation in Equation (3) and obtain:

(b− Q1) =
√
3

2
(b− a), (b−M) =

√
2

2
(b− a), (b− Q3)

=
(b− a)

2

This suggests the following geometric construction for

quartiles:

1. construct 60◦/30◦ right triangle T with hypotenuse (b− a)

2. compute the other two sides of T: l1 = (b − a)
√
3/2 and

l2 = (b− a)/2

3. l1 = (Q1 − b) and l2 = (b − Q3) are distances of quartiles

from b

4. the difference (l1 − l2) is the interquartile range I = (Q3 −
Q1)

• Case 2 (0 < c ≤ (a + b)/2): from Equation (2.2) in Section 2

we have M ≥ c. And since Q3 > M we obtain the following

for the medianM and the third quartile Q3:

(b−M) =
√
2

2

√

(b− a)(b− c), (b−Q3) =
1

2

√

(b− a)(b− c)

What about the first quartile Q1? If Q1 ≤ c then from

Equation (3) we have

a+
1

2

√

(b− a)(c− a) ≤ c H⇒ c ≥ a+
(b− a)

4

Similarly, for c < a + (b − a)/4 we have Q1 > c. Therefore,

from Equation (3) we obtain for Q1:

{

(b− Q1) =
√
3
2

√
(b− a)(b− c) a < c < a+ (b−a)

4

(Q1 − a) = 1
2

√
(b− a)(c− a) a+ (b−a)

4 ≤ c <
(a+b)
2

This suggests the following geometrical construction for

quartiles.

For the case a < c < a+ (b− a)/4 we do the following:

1. compute the geometric mean l1 =
√
(b− a)(b− c)

2. construct a 60◦/30◦ right triangle T with hypotenuse l1
3. compute the other two sides of this triangle: l2 = l1

√
3/2

and l3 = l1/2

4. l2 = (b−Q1) and l3 = (b−Q3) are distances from quartiles

from b

5. the difference of sides (l1 − l2) is the interquartile range

I = (Q3 − Q1)

For the case a + (b − a)/4 ≤ c < (a + b)/2 the construction

is similar except that we use an additional 45◦/45◦ triangle as

follows:

1. compute the geometric mean
√
(b− a)(c− a)

2. bisect this geometric mean to obtain l1
3. compute the geometric mean

√
(b− a)(b− c)

4. bisect this geometric mean to obtain l2
5. l1 = (Q1−a) and l2 = (b−Q3) are distances from quartiles

from a and b respectively

6. the difference (b − a) − (l1 + l2) is the interquartile range

I = (Q3 − Q1)

• Case 3 ((a + b)/2 ≤ c < b): In this case, from Equation (32)

we obtain

(Q1−a) =
1

2

√

(b− a)(c− a), (M−a) =
√
2

2

√

(b− a)(c− a)

And for Q3, we can show (similar to the previous case)

{

(b− Q3) = 1
2

√
(b− a)(b− c) (a+b)

2 < c < a+ 3(b−a)
4

(Q3 − a) =
√
3
2

√
(b− a)(c− a) a+ 3(b−a)

4 ≤ c < b

The geometric construction for this case is similar to

Case 2.
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FIGURE 9

Geometric interpretation for quartile deviation.

• Case 4 (c = b): From Case c = a and Equation (32) we obtain

(Q1−a) =
1

2
(b−a), (M−a) =

√
2

2
(b−a), (Q3−a) =

√
3

2
(b−a)

The geometric construction for this case is similar to Case 1.

Combining the expressions for the quartiles from the above

cases, we can write a general expression for the quartile deviation:

G =



















































(
√
3−1)(b−a)

4 c = a or c = b
(
√
3−1)

√
(b−a)(c−a)
4 a < c < a+ (b−a)

4

or a

+ 3(b−a)
4 ≤ c < b

(b−a)
2 −

√
b−a
4

(√
b− c+

√
c− a

)

a+ (b−a)
4

≤ c < a+ 3(b−a)
4

(33)

From the above, we have the following geometrical

interpretation: the distances of the quartiles Q1 and Q3 can

be computed as sides of right triangles. The difference in these

distances is the interquartile range I. The quartile deviation G is

one-half of this difference. The geometric interpretation of G can

be demonstrated in Figure 9.

For the standard triangular distribution with a = 0 and b = 1,

we can re-write the above as

G =















(
√
3− 1)/4 c = 0 or c = 1

(
√
3− 1)

√
c/4 0 < c < 1/4 or 3/4 ≤ c < 1

1/2−
(√

1− c+
√
c
)

/4 1/4 ≤ c < 3/4

(34)

In Table 6 we compute the quartiles and the quartile deviation

for the normalized triangular distribution with a = 0 and b = 1 for

c = 0, c = 1/4, c = 1/2, c = 3/4 and c = 1.

7 Comparison of deviation measures

In this section, we present some results in comparison of the

four deviation measures

1. standard deviation σ

2. mean absolute deviation (about mean) H(µ)

3. mean absolute deviation (about median) H(M)

4. quartile deviation G

All these measures are shift-invariant. it is easy to show

that scaling the data by any constant k, changes these deviation

measures by |k|. Therefore, without loss of generality, it would be

sufficient to compare these measures for the standard triangular

distribution with a = 0 and b = 1.

In Table 7, we present a comparison for different values of c.

From our discussion in Section 7 we know that H(M) ≤
H(µ) ≤ σ . We will first prove that G < H(M). By symmetry, we

will only need to prove G < H(M) for 0 ≤ c ≤ 1/2. We need to

consider the following cases:

• Case 1: c = 0 or c = 1: From Equations (14) and (34) we have

H(M)− G =
(2−

√
2)

3
−

(
√
3− 1)

4
> 0

• Case 2: 0 < c ≤ 1/4: For this case, (2− c) ≥ 7/4,
√
c ≤ 1/2,

and
√
2(1− c) ≤

√
2. Therefore, fromEquations (14) and (34)

we have

H(M)− G >
(7/4−

√
2)

3
−

(
√
3− 1)

8
> 0

• Case 3: 1/4 ≤ c ≤ 1/2: In this case, (2− c) ≥ 3/2,
√
c ≥ 1/2,√

1− c ≥
√
3/2, and

√
2(1− c) ≤

√
2/2. Therefore, from

Equations (14) and (34) we have

H(M)− G ≥
(3/2−

√
2/2)

3
−

1

2

+
(
√
3/2+ 1/2)

4
=

(1+
√
3)

8
−

√
2

6
> 0

Therefore, we have the following relationship between these

deviation measures:

G < H(M) ≤ H(µ) ≤ σ (35)

In Figure 10, we show the comparison between these four

deviation measures for the standard triangular distribution. We

note that across this range, both H(µ) and H(M) are practically

identical. At midpoint c = 1/2 they achieve their minimum value

and are equal: H(M) = H(µ) = 1/6, whereas at c = 0 or c = 1,

they are within 2% of each other by relative value:H(µ) = (2/3)4 ≈
0.198 vs. H(M) = (2 −

√
2)/3 ≈ 0.195. The standard deviation

varies from σ =
√
2/6 ≈ 0.236 for c = 0 or c = 1. It achieves

its minimum value σ =
√
6/12 ≈ 0.204 at midpoint c = 1/2.

Therefore, compared to mean absolute deviationsH(µ) andH(M),

the standard deviation is σ is about 20% higher than the mean

absolute deviation H(M). If we consider the quantile deviation G,

it has the maximum value G = (
√
3 − 1)/4 ≈ 0.183 for c = 0

and c = 1. For these values of c, H(M) ≈ 0.195, and therefore, the

quartile deviation is about 6% lower than H(M) It decreases as c

increases from c = 0 to c = 1/2 and achieves its minimum value at

the midpoint: G = (2−
√
2)/4 ≈ 0.146. Compared with the mean

absolute deviation H(M) ≈ 0.167 at the midpoint, the quartile
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TABLE 6 Quartiles, quartile deviations and comparison of deviation measures for normalized triangular distributions.

c 0 0.25 0.5 0.75 1

Q1
2−

√
3

2
≈ 0.13 0.25

√
2
4

≈ 0.35
√
3
4

≈ 0.43 0.5

M 2−
√
2

2
≈ 0.29 4−

√
6

4
≈ 0.39 0.5

√
6
4

≈ 0.61
√
2
2

≈ 0.71

Q3 0.5 4−
√
3

4
≈ 0.57 4−

√
2

4
≈ 0.65 0.75

√
3
2

≈ 0.87

G
√
3−1
4

≈ 0.18 3−
√
3

8
≈ 0.16 2−

√
2

4
≈ 0.15 3−

√
3

8
≈ 0.16

√
3−1
4

≈ 0.18

TABLE 7 A comparison of deviation measures.

c 0 0.25 0.5 0.75 1

σ
√
2
6

≈ 0.24
√
26
24

≈ 0.21
√
6

12
≈ 0.20

√
26
24

≈ 0.21
√
2
6

≈ 0.24

H(µ)
(

2
3

)4 ≈ 0.20 1
9

(

7
6

)3 ≈ 0.18 1
6
≈ 0.17 1

9

(

7
6

)3 ≈ 0.18
(

2
3

)4 ≈ 0.20

H(M) 2−
√
2

3
≈ 0.20 5−2

√
2

12
≈ 0.18 1

6
≈ 0.17 7−2

√
6

12
≈ 0.18 2−

√
2

3
≈ 0.20

G
√
3−1
4

≈ 0.18 3−
√
3

8
≈ 0.16 2−

√
2

4
≈ 0.15 3−

√
3

8
≈ 0.16

√
3−1
4

≈ 0.18

FIGURE 10

A comparison of deviations for standard triangular distribution (a =
0, b = 1).

deviation is about 13% lower. We can conclude that, on average,

the quartile deviation is about 10% lower than the mean absolute

deviation (aboutmedian)H(M). In contrast, the standard deviation

is about 20% higher than H(M). At the same time, the quartile

deviation has higher volatility. We can compare these measures’

volatilitiesV(·) by examining their range relative to their minimum

value (at point c = 1/2). In percentage terms for the four deviation

measures, we obtain:

V(σ ) = 15.5%,V(H(µ)) = 18.5%,V(H) = 17.2%,V(G) = 25.0%

The volatilities of standard and mean absolute deviations are

close to each other by value and are around 15–18%. In contrast,

the volatility of the quartile deviation is much higher at about 25%.

We should emphasize that, in practice, we have a limited

number of points. As a result, it may be difficult to get accurate

estimates for the quartiles to compute the quartile deviation.

Therefore, from a practical standpoint, it is better to compute the

mean absolute deviation and use it to compute the parameters of

the distributions, as we have suggested.

8 Conclusion

In this paper, we presented a detailed comparison of deviation

metrics for the the triangular distribution. We derived a novel

formula for the mean absolute deviation from the median H(M)

and suggested a new estimation procedure of parameters. Most

performance measures have simple geometric interpretation and

can be constructed by compass and straightedge. Future work

will consider applying these ideas to extensions of triangular

distributions such as PERT and two-sided power distributions

widely used in risk analysis.
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Appendix

Appendix A: Details on computation of
mean absolute deviations

We start by establishing a lower and upper bound for mean

absolute deviations. Since f (x) ≥ 0, is integrable and E(X) < ∞
we have −|x − p|f (x) ≤ (x − p)f (x) ≤ |x − p|f (x) and, therefore,
we obtain

H(p) =
∫

X

∣

∣x− p
∣

∣f (x) dx ≥
∣

∣

∣

∣

∫

X
(x− p)f (x) dx

∣

∣

∣

∣

= |p− µ| (36)

To establish an upper bound, we use the well-known fact that

H(M) ≤ H(p) for any value of p [22–24]. In particular, if p = µ

then H(M) ≤ H(µ).

If we apply Jensen’s inequality E(g(X)) ≥ g(µ) to the convex

function g(t) = t2 (corresponding to σ 2) we obtain an upper bound

for H(M):

σ 2 = E
(

g(|X − µ|)
)

≥ g
(

E(|X − µ|)
)

=
[

E(|X − µ|)
]2 ≥ H2(M)

(37)

It follows from Equation (37) that σ ≥ H(µ) ≥ H(M).

We now deriving a formula forH(p). We will find it convenient

to define and evaluate the following auxiliary integrals I1(t) and

I2(t). For a ≤ t ≤ c define

I1(t) =
∫ c

t
xf (x) dx =

∫ c

t

2x(x− a)

(b− a)(c− a)
dx (38)

=
2c3 − 2t3 − 3ac2 + 3at2

3(b− a)(c− a)

and for c ≤ t ≤ b define

I2(t) =
∫ t

c
xf (x) dx =

∫ t

c

2x(b− x)

(b− a)(b− c)
dx (39)

=
3bt2 − 3bc2 − 2t3 + 2c3

3(b− a)(b− c)

To derive a general expression for H(p), we need to consider

two cases: p ≥ c and p ≤ c

Case 1: p ≥ c. For this case, we have

H(p) =
∫ c

a
(p− x)f (x) dx+

∫ p

c
(p− x)f (x) dx+

∫ b

p
(x− p)f (x) dx

= p

[∫ c

a
f (x) dx− I1(a)

]

+

p

[∫ p

c
f (x) dx− I2(p)

]

+

[

I2(b)− I2(p)− p

∫ b

p
f (x) dx

]

= I2(b)− I1(a)− 2I2(p)+ p
(

2F(p)− 1
)

Case 2: p ≤ c. For this case, we have

H(p) =
∫ p

a
(p− x)f (x) dx+

∫ c

p
(x− p)f (x) dx+

∫ b

c
(x− p)f (x) dx

=
[

p

∫ p

a
f (x) dx− (I1(a)− I1(p))

]

+

[

I1(p)− p

∫ c

p
f (x) dx

]

+

[

I2(b)− p

∫ b

c
f (x) dx

]

= I2(b)− I1(a)+ 2I1(p)+ p
(

2F(p)− 1
)

From these cases and noting that I1(a) +
I2(b) = µ, we obtain the following general formula

for H(p):

H(p) =

{

2I2(b)− µ − 2I2(p)+ p
(

2F(p)− 1
)

p ≥ c

µ − 2I1(a)+ 2I1(p)+ p
(

2F(p)− 1
)

p ≤ c
(40)

We can now compute the median absolute deviations H(µ)

and H(M)

1. Computation ofH(µ):

There are two cases to consider:

• Case 1: a ≤ c ≤ (a+ b)/2 H⇒ µ ≥ c

• Case 2: (a+ b)/2 ≤ c ≤ b H⇒ µ ≤ c

From this and Equation (40), we obtain the

following general expression for the mean absolute

deviation H(µ):

H(µ) =







2(a+c−2b)3

81(a−b)(b−c)
a ≤ c ≤ (a+ b)/2

2(b+c−2a)3

81(a−b)(a−c)
(a+ b)/2 ≤ c ≤ b

(41)

2. Computation of H(M): There are two cases

to consider:

• Case 1: a ≤ c ≤ (a+ b)/2 H⇒ M > c

• Case 2: (a+ b)/2 ≤ c ≤ b H⇒ M ≤ c

From this and Equations (4) and (40) we obtain the following

general expression for H(M):

H(M) =







(b−a)+(b−c)−
√
2(b−a)(b−c)

3 a ≤ c ≤ (a+ b)/2

(b−a)+(c−a)−
√
2(b−a)(c−a)

3 (a+ b)/2 ≤ c ≤ b

(42)
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