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Introduction:Gradient vector flow (GVF) has been proven as an e�ective external

force for active contours. However, its smoothness constraint does not take the

image structure into account, such that the GVF di�usion is isotropic and cannot

preserve weak edges well.

Methods: In this article, an image structure adaptive gradient vector flow (ISAGVF)

external force is proposed for active contours. In the proposed ISAGVF model, the

smoothness constraint is first reformulated in matrix form, and then the image

structure tensor is incorporated. As the structure tensor characterizes the image

structurewell, the proposed ISAGVFmodel can be adaptive to image structure, and

the ISAGVF snake performs well on weak edge preservation and deep concavity

convergence while possessing some other desirable properties of the GVF snake,

such as enlarged capture range and insensitivity to initialization.

Results: Experiments on synthetic and real images manifest these properties of

the ISAGVF snake.

KEYWORDS

image segmentation, active contour, gradient vector flow, image structure tensor,

di�usion tensor

1. Introduction

Snakes or active contours are dynamic curves defined within an image domain that can

move under the influence of internal and external forces [1]. Usually, the internal force comes

from the geometrical properties of the contours and the external force is computed from the

image data so that the snake will conform to an object boundary or other desired features

within an image. The active contour model has been one of the most successful methods for

region of interest (ROI) segmentation, and it can be grouped into two categories: parametric

active contours [1] and geometric active contours [2–12]. Although deep learning-based

methods launch an upsurge of image segmentation at present [13–17], the active contours

are still an active topic (e.g., [18–29]), and we also focus on parametric active contours in

this study.

As the external force plays a leading role in the evolution of active contours, and that of

the traditional snake model is derived as the gradient vector of the edge map, the traditional

snakes suffer from initialization sensitivity and concavity convergence. To this end, several

useful external forces have been proposed, such as the balloon forces [30, 31]. However, both

issues were not solved satisfactorily until the emergence of the gradient vector flow (GVF)

[32]. TheGVF snake has an enlarged capture range and canmove into the concave boundary.

Since the effectiveness of the GVF model became apparent, it became the focus of many

studies and there have been many improved variants, e.g., the GGVF [33], CN-GGVF [34],

harmonic gradient vector flow (HGVF) [35], GVF based on the minimal surface [36] and
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adaptive diffusion flow (ADF) based on the harmonic surface [37],

motion gradient vector flow (MGVF) [38], ILGVF [39], NBGVF

[40], gradient vector convolution (GVC) [41], VEF [42], BVF [43],

normal gradient vector flow (NGVF) [44], dynamic directional

gradient vector flow (DDGVF) [45], EPGVF [46], GVFOM [47],

and GVF based on augmented Lagrangian [48]. Additionally, there

are some other interesting applications of the gradient vector

flow (e.g., [49–52]). Very recently, Makhanov, etc., proposed some

interesting studies on the initialization of the GVF snake [53–

56] and Jaouen et al. [57] proposed a vector field for image

enhancement, which resembles the GVF field.

Although the GVF model has been proven to be effective and

widely employed in image segmentation, the smoothness constraint

in GVF does not take into account the image structure and

suffers from weak edge leakage and a failure to converge to long

and thin indentations. In this study, a novel model called image

structure adaptive gradient vector flow (ISAGVF) is proposed. In

the ISAGVF model, the smoothness constraint in the GVF model

is first reformulated into matrix form, and then the image structure

tensor is incorporated into the matrix form energy so that the final

diffusion equations for the ISAGVF exhibit an anisotropic diffusion

behavior. As a result, the ISAGVF snake can preserve weak edges

very well and converge to long and thin indentations. The basic idea

of the ISAGVF model has been reported as an abstract in [58].

The remainder of this paper is organized as follows. In the

Section 2, the GVF snake is briefly reviewed, and then the proposed

ISAGVF algorithm is described in detail in the Section 3. In Section

4, a large number of examples and comparison results are reported

to confirm the effectiveness of our model, and the conclusion is

drawn in the final section.

2. Background: the snake model and
gradient vector flow

Kass et al. defined the active contour model [1] as an elastic

curve c(s) = [x(s), y(s)], s ∈ [0, 1], that moves through the spatial

domain of an image byminimizing the following energy functional:

ESnake =
∫ 1

0

[

1

2
(α
∣

∣c′ (s)
∣

∣

2 + β
∣

∣c′′ (s)
∣

∣

2
)+∇Eext(c)

]

ds, (1)

where c′(s) and c′′(s) denote the first and second derivative of

c(s) with respect to the arc s, respectively, α and β are weighting

parameters that control the continuity and smoothness of the

contour, respectively. The external energy Eext comes from the

image data, such as boundaries. The typical external force for an

image I is ∇Eext = −∇ |∇I|2. A snake that minimizes Esnake must

satisfy the following Euler-Lagrange equation:

αc′′ (s)− βc′′′′ (s)−∇Eext = 0. (2)

Xu and Prince suggested taking the above equation as a force

balance equation of internal force and external force, as follows,

Fint + Fext = 0, (3)

where Fint = αc′′ (s) − βc′′′′(s) and Fext = −∇Eext . As

Fext comes from the gradient of the edge map |∇I|2, it is non-zero

only near edges; as a result, the traditional snake is sensitive to

initialization and a failure to converge to concavity. To overcome

these shortcomings, Xu and Prince suggest replacing Fext with a

more general one by proposing the gradient vector flow (GVF) [32],

which is obtained by minimizing the following energy:

EGVF =
∫∫

µ(ux
2 + uy

2 + vx
2 + vy

2)

+
∣

∣∇f
∣

∣

2 ∣
∣v−∇f

∣

∣

2
dx dy, (4)

where v(x, y) = [u(x, y), v(x, y)] is the GVF vector, f is the

edge map of an image, i.e., f = ∇Gσ∗I, and µ is a regularization

parameter. It can be observed that when f is large at edge points,

the second term dominates the energy in (4) and the GVF vector

v(x, y) approximately equals ∇f , while f is small or even zero

far away from edges; the first term in (4) is dominant and the

GVF vector v(x,y) varies smoothly, and as a result, the GVF

snake has a large capture range and can converge to concavity.

To minimize the EGVF , it is converted to solve the following

Euler–Lagrange equations:

{

∂u
∂t = µ∇2u−

∣

∣∇f
∣

∣

2 (
u− fx

)

∂v
∂t = µ∇2v−

∣

∣∇f
∣

∣

2 (
v− fy

) , (5)

where ∇2 is the Laplacian operator. The generalized GVF (GGVF)

model is obtained by replacing the constant parameter µ with a

spatially varying weighting function g(∇f ) = exp(–
∣

∣∇f
∣

∣

2
/k2), and

∣

∣∇f
∣

∣

2
in (5) is replaced b y h(∇f )=1–g(∇f )[33]. The GGVF snake

possesses improved convergence to long and thin indentations.

3. ISAGVF: image structure adaptive
gradient vector flow

3.1. Proposed ISAGVF model

For the GVF model, we observe the following fact:

ux
2 + uy

2 =
(

ux uy
)

(

ux

uy

)

=
(

ux uy
)

(

1 0

0 1

)

(

ux

uy

)

= (∇u)T

(

1 0

0 1

)

∇u. (6)

Based on this observation, we reformulate the energy function

in (4) in the following matrix form:

EGVF =
∫∫

µ

[

(∇u)TW∇u+ (∇v)TW∇v
]

+
∣

∣∇f
∣

∣

2 ∣
∣v−∇f

∣

∣

2
dx dy, (7)

where W is the identity matrix

(

1 0

0 1

)

. It is obvious that

this identity matrix induces scalar L2-norm and the smoothness

constraint in (4) fails to consider the image structure, and finally

leads to isotropic diffusion equation (5). Based on this fact, we

consider replacingWwith a matrixD related to the image structure

so that the GVF vectors can diffuse according to the image structure
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adaptively. The new model is named as image structure adaptive

gradient vector flow (ISAGVF) and is formulated as follows:

EISGVF =
∫∫

µ

[

(∇u)TD∇u+ (∇v)TD∇v
]

+
∣

∣∇f
∣

∣

2 ∣
∣v−∇f

∣

∣

2
dx dy, (8)

where D =

(

a b

b c

)

is a symmetric and positive semidefinite

matrix. The Euler-Lagrange equations for the ISAGVF energy in

(8) are as follows:

{

µdiv (D∇u)−
∣

∣∇f
∣

∣

2 (
u− fx

)

= 0

µdiv (D∇v)−
∣

∣∇f
∣

∣

2 (
v− fy

)

= 0
, (9)

where div is the divergence operator. A good choice for D is the

image structure tensor. For image I, the image structure reads:

S (∇I) = ∇I(∇I)T =







Ix
2 IxIy

IxIy Iy
2






. (10)

S is a symmetric and positive semidefinite matrix. To note,

when the image structure S is chosen forD, Equation (9) happens to

be the structure tensor-based diffusion in [59], and we will borrow

the strategies there to construct the diffusion tensor D from image

structure tensor S. A previous study [21] adopted the Hessian

matrix, but the Hessian matrix is sensitive to noise due to the

second order derivatives.

3.2. Construction of the di�usion matrix d

In this subsection, we will build the matrix D from matrix S.

Suppose the eigenvectors of S are −→v1 and −→v2 , the corresponding

eigenvalues are λ1and λ2, U =
(−→v1 ,−→v2

)

, and 3 = diag(λ1, λ2),

the structure tensor S can be decomposed by the principal axis

transformation [59], as follows:

S (∇I) = UT3U. (11)

For convenience, the structure tensor S is rewritten as follows,

S =

(

s11 s12
s12 s22

)

. (12)

Assume that the matrix S in (12) has an eigenvalue λ and the

corresponding eigenvector−→v = (ψ1,ψ2)
T . According to the linear

algebra, we have the following equations:

(

s11 s12
s12 s22

)(

ψ1

ψ2

)

= λ

(

ψ1

ψ2

)

, (13)

which is equivalent to:

(

s11 − λ s12
s12 s22 − λ

)(

ψ1

ψ2

)

= 0. (14)

The eigenvalues of the matrix S in (12) can be determined by

the determinant of the left-hand 2× 2 matrix in (14), which is:

λ1,2 =
1

2
[s11 + s22 ±

√

(s11 − s22)
2 + 4s212 ], (15)

where λ1 corresponds to the “+” sign in (15). The corresponding

eigenvectors −→v1 = (ϕ1,ϕ2)
T and −→v2 = (ζ1 ζ2 )T take the

following forms:















ϕ1 = 2s12
√

(s22−s11+
√
(s11−s22)

2+4s122)
2
+4s122

ϕ2 = s22−s11+
√
(s11−s22)

2+4s122
√

(s22−s11+
√
(s11−s22)

2+4s122)
2
+4s122

, (16)















ζ1 = 2s12
√

(s22−s11−
√
(s11−s22)

2+4s122)
2
+4s122

ζ2 = s22−s11+
√
(s11−s22)

2+4s122
√

(s22−s11−
√
(s11−s22)

2+4s122)
2
+4s122

, (17)

Since S has the form in (10), following the discussion above, we

can get the following results:

{

λ1 = |∇I|2
−→v1 =

(

Ix/|∇I| , Iy|∇I|
)T , (18)

{

λ2 = 0
−→v2 =

(

−Iy/|∇I| , Ix/|∇I|
)T (19)

It is easy to verify that the eigenvector −→v1 is parallel

to the gradient vector, whereas −→v2 is orthogonal. The

eigenvalues λ1 and λ2 can be used as descriptors of

local structure [59]; for instance, constant areas are

characterized by λ1 = λ2 = 0 and straight edges give

λ1 ≫ λ2 = 0.

However, the image structure tensor S cannot be directly

employed for D as λ2 = 0 means that the vectors diffuse

always merely along the gradient directions, therefore destroying

the edges. To construct the reasonable diffusion tensor D,

we choose the orthonormal eigenvectors of S, i.e., −→v1 and
−→v2 , as the eigenvectors of D, while the eigenvalues of D

denoted by ω1and ω2 are different from those of S, which

depends on the goal of application [59]. Then, D can be

constructed as:

D=(−→v1 −→v2 )
T

(

ω1 0

0 ω2

)

(−→v1 −→v2 ). (20)

Using (16) and (17),D is finally represented as:

D=




1
2 (ω1 + ω2 + (ω2−ω1)(s22−s11)√

(s11−s22)
2+4s122

) (ω1−ω2)s12√
(s11−s22)

2+4s122

(ω1−ω2)s12√
(s11−s22)

2+4s122
1
2 (ω1 + ω2 − (ω2−ω1)(s22−s11)√

(s11−s22)
2+4s122

)



 .

(21)

The performances of the proposed ISAGVF model mostly

depend on the choice of the eigenvalues ω1 and ω2. ω1 represents

the diffusion coefficient parallel to the gradient vector, while ω2

is the diffusion coefficient along the edges. The choice of ω1 and
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ω2 conforms to the following criterion [59]: a higher value implies

that the diffusion in the direction of the corresponding eigenvector

will be encouraged. In the proposed model, ω1 and ω2 take the

following form for the application on hand:







ω1 = 1

1+
(

|∇I|
K

)2

ω2 = 1
, (22)

where K is the gradient threshold of a given image. The settings

of parameter K will be further elucidated in Section 4. It can be

observed that

(1) For|∇I| → ∞, i.e., the edges, ω1(|∇I|)/ω2 (|∇I|) =
1/(1+ (|∇I|/K)2) → 0, ISAGVF prefers diffusing along the

edge. As a result, the edge can be preserved, and the noise can

be removed;

(2) For|∇I| → 0, i.e., the homogeneous region, ω1 (|∇I|) =
ω2 (|∇I|) = 1 > 0, diffusing is isotropic, and the noise can

be reduced accordingly.

In this way, the proposed ISAGVF diffuses adaptively according

to the image structure, which would help the snake to preserve weak

edges and enter narrow and deep concavities and even complex

structures. The details of numerical implementation have been

described by [59].

4. Experimental results and discussion

In this section, we evaluate the performance of the ISAGVF

snake in terms of capture range, weak edge preservation, and

narrow and deep concavity convergence, as well as complex

structure convergence, andmake comparisons with several popular

GVF-like models, including the GVF [32], GGVF [33], NGVF [44],

ILGVF [39], VEF [42], and BVF [43]. The parameters for all snakes

in our experiments are α = 0.1, β = 0.1, and time step τ = 0.5, and

the image intensity is normalized to range [0, 1]. For an image of

sizeM ·N, the iteration for the calculation of all GVF-like models is√
M · N, and the time step is 1 [<1/(4µ)]. To obtain a large capture

range andmore regular force field, the parameterµ for GVF, NGVF,

ILGVF is 0.2, and 0.1 for the ISAGVF, and K = 0.5 for GGVF,

ω = 1.0 for BVF, and the convolution kernel size for the VEF

model is a quarter of the image size. Parameter K for the ISAGVF is

a constant that determines the contrast of the edges to be preserved

and it is 0.1, unless otherwise stated [59]. As different models adopt

different mechanisms, the same parameter may not be optimal for

different models; as a result, we adopted different values for some

parameters in different models so that the performances of different

models are optimal.

4.1. Common properties: enlarged capture
range and initialization insensitivity

To confirm that the proposed model has a sufficient capture

range, the usually employed room andU-shape images are enlarged

to a size of 128 × 128 pixels, while the size of both objects is fixed.

The enlarged images are shown in Figure 1A, the corresponding

ISAGVF fields are shown in Figure 1B, and the initial contours

and the evolution results of the proposed ISAGVF snake model

for three different objects are shown in Figures 1C–E, respectively.

Although the initializations are placed far away, across or inside

the objects, the ISAGVF snakes converge to the true boundaries

regularly; this fact manifests that the proposed ISAGVF snake is

insensitive to initialization and has a large capture range.

4.2. Narrow and deep concavity
convergence

It is well-known that the GVF snake can converge to U-shape

concavity, but when the concavity becomes narrower and deeper,

it is very difficult for the GVF snake to converge. However, the

proposed ISAGVF snake possesses great power for this issue as the

ISAGVF model takes into account the image structure. Figure 2

shows three testing concavity images. The first one is an “E”-shaped

image with an upper concavity width of 3 pixels and a depth of

35 pixels and the bottom one has a width of 3 pixels and a depth

of 40 pixels. One can see that the BVF snake and the proposed

ISAGVF snake dived into both concavities successfully, but the

others failed. Another interesting observation is that the GGVF

snake succeeded in a concavity with a depth of 35 pixels but failed

in the concavity with a depth of 40 pixels; the reason behind this

fact is that the GGVF model is just a weighted version of the GVF

model (both are isotropic). The second one is a “T”-shaped image

with a horizontal concavity with a width of 5 pixels and length

of 40 pixels, and a vertical concavity with a width of 3 pixels and

depth of 40 pixels. It was observed that the GGVF, NGVF, BVF,

and ISAGVF snakes converged to the horizontal concavity, whereas

just the ISAGVF snake succeeded in the vertical one, although the

vertical concavity is narrower. For the cross image in the third

row, the four concavities each have a width of 3 pixels and depth

of 50 pixels. It was observed that just the NGVF and ISAGVF

snakes dived into the concavities successfully; the GVF, GGVF, and

VEF snakes were halfway from converging in the concavities, while

the ILGVF and BVF snakes were merely on the ready line. From

these results, the performance of the ISAGVF snake with respect to

concavity convergence is verified.

4.3. Weak edge preserving

A weak edge often appears in images and it is nuisance for

image segmentation, especially for snake-based methods when

there are some strong edges nearby. Figure 3A shows two examples.

The first one is an image of two disks (see the upper panel). The

upper-left edge of the outer disk is blurred and weak and the

neighboring edge of the inner one is strong. The second example

is an image composed of three gray values (0, 255, and 245, see

the bottom panel). The edge between the region of gray value 0

and that of gray value 255 is strong, whereas the edge between

the region of gray value 255 and that of gray value 245 is weak.

Both edge maps are shown in Figure 3B, from which one can

see that the weak edges in both examples are almost invisible,

and the snake contours are used to being attracted by the strong
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FIGURE 1

Capture range enlargement and initialization insensitivity of the ISAGVF snake. (A) Test images. (B) ISAGVF fields. (C–E) Di�erent initializations and

evolutions of the ISAGVF snakes.

edges nearby. The convergence results of (C) GVF, (D) GGVF, (E)

NGVF, (F) ILGVF, (G) BVF, (H) VEF, and (I) ISAGVF snakes are

shown in Figures 3C–I, respectively. As expected, all the models

employed for comparison failed to capture the weak edge, while

the proposed ISAGVF snake resisted the lure from the strong edge

and caught the weak edge successfully. To note, the ILGVF snake

expanded the initial contour slightly as the initialization was not in

the territory of the force filed, although the initial contour touched

the weak edge. By contrast, the proposed ISAGVF snake dealt

with this issue gracefully thanks to taking into account the image

structure. In these experiments, the parameters were K = 0.01 for

the ISAGVF model.

4.4. Complex structure convergence

It is well-known that the GVF snake can converge to the

U-shape concavity; however, when the concavity is complex, it

remains a challenge for the GVF-like methods. The reason behind

this is that complex structures may make forces computed from

their gradient have different directions, thus making the snake

contour stop at an unexpected position. In this subsection, we

present six examples with various characteristics to illustrate that

the proposed ISAGVF snake has a great advantage in this respect as

the ISAGVFmodel takes the image structure into account. Figure 4

shows the results. The first example is the 3-shape, which has two

concavities. The GVF, GGVF, and NGVF stopped at the gate of

the concavities, and the ILGVF snake tried to enter the concavities

but failed, although the initial contour was very close to the object.

After a period of wandering, the BVF snake entered the lower

concavity but could not do anything for the upper concavity. By

contrast, the VEF and ISAGVF snakes successfully dived into the

two concavities. For the other five examples in Figure 4, only the

ISAGVF snake succeeded in converging to each concavity; all the

other models failed at all concavities. The great superiority of the

ISAGVF snake in taking the image structure into account can be

observed from these examples.

4.5. Real images

The proposed ISAGVF snake was also applied to some real

images to verify its superiority. In these cases, we had to cope

with intensity inhomogeneity, noise, and weak edges neighbored

by strong ones. Hence, K was chosen as 0.01 for the proposed

ISAGVF. The image in the Figure 5 is an echocardiographic image

of the left ventricle, where the snake contour could be harassed

by intensity inhomogeneity, noise, and weak edges. The image is

smoothed with a Gaussian filter of a standard deviation of 3 before

the edge map was derived. One can see that the GVF and VEF

snakes leaked out in both upper and lower areas and the other two

also converged to an incorrect position. By contrast, the proposed

ISAGVF model stuck to the desired edges. Figure 6 presents the

results of a vessel with many branches. To derive the edge map,

the image is preprocessed with a Gaussian filter with a standard

deviation of 1. With the same initialization, only the ISAGVF snake

extracted the boundary successfully, while others blocked the way

to some branches.

The image in Figure 7 is a person holding up a stick on a

horse. The difficulties of this example reside in the concave region

between the person and the stick and the neck and the chin, as

well as the tail and the leg of the horse, as pointed out by the

three red arrows in Figure 7A. The person with the stick is cropped

to show the close-up of the converged result of each method. It

can be observed that just the GGVF and ISAGVF snakes can cope

with the concavity between the tail and the leg of the horse; the

GGVFmodel takes the image structure into account to some degree

as it adopts the edge map as weight, while the ISAGVF model

takes the image structure into account in the diffusion process. Just
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FIGURE 2

Concavity convergence of the snakes. The first testing image is an “E”-shaped image with an upper concavity width of 3 pixels and depth of 35 pixels

and the bottom concavity has a width of 3 pixels and length of 40 pixels. The second image is a “T”-shaped image with a horizontal concavity with a

width of 5 pixels and depth of 40 pixels, and a vertical concavity with a width of 3 pixels and depth of 40 pixels. The third one is a cross-shaped image

with four concavities each with a width of 3 pixels and depth of 50 pixels. The convergence results of (A) GVF, (B) GGVF, (C) NGVF, (D) ILGVF, (E) BVF,

(F) VEF, and (G) ISAGVF snakes are shown as solid red lines.
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FIGURE 3

Weak edge preserving demonstrations. There are two weak edge examples. (A) The test images. (B) Edge maps. The convergence results of (C) GVF,

(D) GGVF, (E) NGVF, (F) ILGVF, (G) BVF, (H) VEF, and (I) ISAGVF snakes are shown as solid red lines, and the dash-point circles in red are the initial

contours.

for this reason, only the proposed ISAGVF snake can successfully

converge to the other two concave regions. When the close-ups

of the converged results of each method are inspected, the GVF

snake cannot preserve the head of the person and the thin stick

(see Figure 7C), while the GGVF snake can correctly capture the

head and the thin stick; however, it failed to converge to the concave

region (see Figure 7D). In the case of NGVF, the diffusion continues

in the normal direction and the convergence result is irregular

(Figure 7E). The result of the BVF snake in Figure 7F shows that it

can capture the head of the person correctly but cannot capture the

thin stick and cannot enter the concavity. Although the VEF snake

can extract the head of the person, it fails to catch the stick (see

Figure 7G). In addition, the proposed ISAGVF snake can catch the

thin stick and enter the concave region successfully (see Figure 7H).

The superiority of the ISAGVF snake by taking the image structure

into account is demonstrated thoroughly.

Figure 8 shows an image of a USB flash disk on the back of a

hand. The disk yields a strong edge near the sleeve opening thatmay

probably attract the snake contour. The results show that only the

proposed ISAGVF snake can resist the lure of the strong edge and

correctly capture the shape of the hand. Figure 9 showsmore results

of the ISAGVF snake on real images, and the results are satisfactory.

4.6. Discussion

As we know, it is contradictory to preserve weak edges and

smooth noise simultaneously for the external force of the snake

model. Parameter K in the proposed ISAGVF model serves as the

gradient threshold, the value of which depends on the preservation

of the magnitude of the gradient of the weak edge. Through a
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FIGURE 4

Demonstration and comparison of complex concavity convergence. The convergence results of (A) GVF, (B) GGVF, (C) NGVF, (D) ILGVF, (E) BVF, (F)

VEF, and (G) ISAGVF snakes are shown by the solid red lines, and the dash-point circles in red are the initial contours.
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FIGURE 5

Segmentation of an echocardiographic image. (A) Original image. (B) The edge map. (C–G) The convergence results of the (C) GVF, (D) GGVF, (E)

NGVF, (F) VEF, and (G) ISAGVF snakes are shown by the solid red lines, and the dash-point circles in red are the initial contours.

FIGURE 6

Demonstration of a vessel image. (A) Original image. (B) The edge map. (C–H) The convergence results of the (C) GVF, (D) GGVF, (E) NGVF, (F) BVF,

(G) VEF, and (H) ISAGVF snakes are shown by the solid red lines, and the dash-point circles in red are the initial contours.

lot of tests, we found that, for the vast majority of the images,

K ranges from 0.01 to 0.5. At the same time, a large K can also

suppress noise to some degree; if the image has a lot of noise, we

can choose a relatively larger K to suppress it without disturbing

the edge. As shown in the top row of Figure 10, the snake model

stuck in the concavity due to noise with the smallest K. However,

as K increases, it resists noise more and becomes better at entering

concavities. Additionally, when there are some weak edges in the
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FIGURE 7

Demonstration of a horse image. (A) Original image. (B) The edge map. (C–H) The convergence results of the (C) GVF, (D) GGVF, (E) NGVF, (F) BVF,

(G) VEF, and (H) ISAGVF snakes are shown by the solid red lines, and the dash-point circles in red are the initial contours. The results in the second

row in (C–H) are the close-ups of the corresponding results in the first row in the red rectangle in (B).

FIGURE 8

Demonstration on an image of a hand. (A) Original image, (B) The edge map. (C–G) The convergence results of the (C) GVF, (D) GGVF, (E) NGVF, (F)

VEF, and (G) ISAGVF snakes are shown by the solid red lines, and the dash-point circles in red are the initial contours. The image in (A) was smoothed

using a Gaussian filter with a standard deviation of 1.

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2023.1271296
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Wang et al. 10.3389/fams.2023.1271296

FIGURE 9

More results of the proposed ISAGVF snake on real images. The dash-point lines in yellow are the initial contours and the solid green lines are the

convergence results.

FIGURE 10

Test of the parameters K and µ. Top row: the segmentation results of images with noise. Second row: the segmentation results of images where

there are strong edges nearby weak edges. The µ is 0.2 and K-values from left to right are 0.01, 0.05, 0.1, and 0.5, respectively. For the third row, K is

0.1 and µ values from left to right are 0.001, 0.02, 0.1, and 0.2, respectively.

image, we should make it smaller to preserve the edge of the

object. The results in the bottom row of Figure 10 demonstrate

our analysis, i.e., a K that is too large will lead to weak boundary

leakage. Parameter µ mainly controls the diffusion degree of the

external force field in homogeneous region. The larger µ is, the

larger the diffusion degree of the external force field. In other words,
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a large µ helps to smooth noise and results in a large capture range.

Therefore, K and µ are closely linked. As we can see from the

third row in Figure 10, when µ takes a smaller value, the capture

range of the vector field is not enough, and thus the initialization

needs to be close to the boundary of the object, but at the same

time the weak edge can be protected. As µ increases, the capture

range becomes increasingly larger, and finally, the strong edge may

attract the weak edge. In short, the parameters K and µ can change

interactively to smooth noise, preserve weak edges, and extend the

capture range.

5. Conclusion

A novel external force called image structure adaptive gradient

vector flow (ISAGVF) is proposed for active contours. Given

that the smoothness constraint of the GVF model does not

take the image structure into account, the smoothness constraint

was rewritten in a matrix form and the image structure tensor

was introduced into the smoothness constraint, such that the

proposed ISAGVF model behaves in an anisotropic manner. A

simple and effective method was also adopted to construct the

diffusion tensor from the image structure tensor. Experimental

results on both synthetic and real images showed that the ISAGVF

snake is superior to other popular models in terms of weak

edge preservation, deep concavity entering, and some complex

image convergence.
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