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This article aimed to present a new continuous probability density function for

a non-negative random variable that serves as an alternative to some bounded

domain distributions. The new distribution, termed the log-Kumaraswamy

distribution, could faithfully be employed to compete with bounded and

unbounded random processes. Some essential features of this distribution were

studied, and the parameters of its estimates were obtained based on themaximum

product of spacing, least squares, andweighted least squares procedures. The new

distribution was proven to be better than traditional models in terms of flexibility

and applicability to real-life data sets.

KEYWORDS

Kumaraswamy distribution, least squares, maximum product of spacing, mortality,
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1. Introduction

Modeling and analyzing natural phenomena are essential parts of statistical research

in a broad variety of practical domains, including science and engineering. Over the past

3 decades, extensive studies have been conducted to introduce statistical models that can

better capture the characteristics of natural phenomena [1]. Kumaraswamy established the

two-parameter Kumaraswamy distribution for modeling data concerning hydrology [2].

This distribution has been used in many real-world scenarios with outcomes that have

considerable limits, such as hydrological data, weights of persons, exam marks, the growth

rate of species, wind speed, atmospheric temperature, medicine, physics, and financial

data [3–5]. Despite its significance, the distribution did not attract much more attention

in the statistical literature. However, Jones studied various features of the Kumaraswamy

distribution, including the quantile function, L-moments, and order statistics [6]. The study

found that this distribution has some properties in common with the beta distribution [7].

Recent developments in the Kumaraswamy distribution have [8] determined the

generalized-order statistics from the Kumaraswamymodel, [9] developed Bayesian and non-

Bayesian estimators based on type II censored data, which described the shape parameters,

reliability, and failure rate functions of this model, [10] obtained modified point estimators

for Kumaraswamy model, [3] compared and evaluated the performance of 10 various

approaches of estimation the parameters of a two-parameter Kumaraswamy model using
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Monte Carlo simulations, and [11] studied and derived the

classical and Bayes estimation for the Kumaraswamy inverse

exponential distribution.

Moreover, several new families of probability distributions have

been introduced for modeling data in hydrology, medical science,

engineering, insurance, and finance based on the Kumaraswamy

distribution method, for instance, Kumaraswamy Weibull [12],

Kumaraswamy generalized gamma [13], Kumaraswamy inverse

Weibull [14], Kumaraswamy modified inverse Weibull [14],

F-Weibull [15], Kumaraswamy Gumbel [16], Kumaraswamy

log-logistic [17], Kumaraswamy exponentiated Pareto [18],

Kumaraswamy modified Weibull [19], Kumaraswamy generalized

Lomax [20], Kumaraswamy [21], Kumaraswamy half-Cauchy

[22], Kumaraswamy generalized Rayleigh [23], Kumaraswamy

skew-normal [24], Kumaraswamy inverse Weibull Poisson [25],

odd beta prime-logistic distribution [26], Kumaraswamy Marshall-

Olkin Fréchet [27], Kumaraswamy inverse flexible Weibull

[28], Maxwell-exponential distribution [29], Kumaraswamy

Laplace [30], extensions of the Gompertz and inverse Gaussian,

Kumaraswamy Gompertz and Kumaraswamy inverse Gaussian

distributions under the Kumaraswamy family of distributions

[31], Kumaraswamy skew-t distribution [32], Kumaraswamy

transmuted Pareto distribution [33], Kumaraswamy Marshall-

Olkin log-logistic distribution [34], Kumaraswamy exponentiated

Fréchet distribution [35], Kumaraswamy log-logistic Weibull

distribution [36], Kumaraswamy alpha power inverted exponential

distribution [37], Kumaraswamy Marshall-Olkin exponential

distribution [38], odd beta prime Fréchet distribution [39],

Kumaraswamy Inverted Topp–Leone distribution [40],

log-Topp-Leone distribution [41], Kumaraswamy Harris

generalized Kumaraswamy distribution [42], and generalized

transmuted-Kumaraswamy distribution [43]. As studied in [44],

Kumaraswamy’s cumulative distribution function (cdf) with shape

parameters α,β > 0 is given as

F
(

y;α,β
)

= 1−
(

1− yα
)β
, 0 < y < 1 (1)

The corresponding probability density function (pdf) is

f
(

y;α,β
)

= αβyα−1
(

1− yα
)β−1

, 0 < y < 1 (2)

This study extends the applicability and flexibility of the

classical Kumaraswamy model so that it can be used to model

bounded and unbounded real-life data sets. This can be achieved

based on the following motivations:

i. To introduce a new flexible statistical distribution that

serves as an alternative to bounded Kumaraswamy and some

other distributions.

ii. To obtain a distribution with different densities and

hazard shapes.

iii. To derive some important properties such as moments,

information-generating function, and order statistics.

iv. To obtain its parameters using the maximum likelihood, least

squares, maximum product of spacings, and weighted least

squares methods of estimations.

v. To identify the performances and potentiality of the proposed

distribution against other comparative ones by means of

application to a real data set.

This study can be constituted as follows: Section 2 provides

the pdf, cdf, survival, hazard, mixture representations, and

quantile function of the log-Kumaraswamy distribution. Some

statistical features of the proposed distribution including moments,

information-generating function, and order statistics are studied

in Section 3. Its parameters can be derived using the maximum

likelihood given in Section 4. The maximum product of spacings,

least squares, and weighted least squares methods of estimation

can be obtained from the simulation study, and a real-life data set

can be used to ascertain the performances and flexibility of the

new distribution presented in Section 5. The study concluded in

Section 6.

2. Log-Kumaraswamy distribution

The log-Kumaraswamy distribution is introduced in this

section by transforming x = − log
(

1− y
)

from the Kumaraswamy

model given in (2) as

f (x;α,β) = αβe−x
(

1− e−x
)α−1

(

1−
(

1− e−x
)α)β−1

α,β > 0; x > 0 (3)

In this regard, the parameters α,β denote shape as well. The

corresponding cdf is acquired from (3) as

F (x;α,β) = 1−
(

1−
(

1− e−x
)α)β

, α,β > 0; x > 0 (4)

Hence, (3) and (4) are the cdf and pdf of the proposed log-

Kumaraswamy distribution. For different parameter values, we can

display the plots of the proposed distribution provided in Figure 1.

It can be noticed from Figures 1A–C that for various parameter

values of α and β , the log-Kumaraswamy’s density shape provides

a positive-skewed nature.

The survival and hazard functions are obtained by considering

(3) and (4) as

S (x;α,β) =
(

1−
(

1− e−x
)α)β

, α,β > 0; x > 0 (5)

and

h (x;α,β) =
αβe−x

(

1− e−x
)α−1

1−
(

1− e−x
)α , α,β > 0; x > 0 (6)

It can be observed from (6) that for α = β = 1, ∀ x, then

h (x; 1, 1) = 1. When β > 1 (say 2), then h (x; 1, 2) = 2, 3, 4, and

so on. Similarly, keeping β = 1 and α > 1, then, h (x;α > 1, 1) =

+ve.

The shapes of the hazard function can be determined

numerically by applying Thomas’s differential procedure [8] as

τ (x) = −
f
′
(x)

f (x)
. (7)

where f
′
(x) is the first derivative of (3). For a differentiable

probability density f (x) and hazard function h (x), one can obtain

the first derivative of h (x) as

h
′
(x) = h (x)

{

h (x) − τ (x)
}

(8)
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FIGURE 1

Pdf plots of the log-Kumaraswamy distribution using various set of values. Right-skewed function (A), right-skewed function (B), and right-skewed

function (C).

Suppose h (x) > τ (x) , ∀ x ∈ [L, U], where L and U are the

lower and upper support of the pdf, then the hazard function of

the probability distribution proves to bemonotonic increasing (MI)

and monotonic decreasing (MD) if h (x) < τ (x) , ∀x ∈ [L,U].

Similarly, for h (x) = τ (x), ∀ x ∈ [L, U], then the probability

distribution has a constant (C) failure rate which states clearly that

h
′
(x) = 0. In this aspect, it proven that f

′
(x) obtained as

f
′
(x) = f (x)

{

(α − 1) e−x

1− e−x
−

(β − 1) e−x
(

1− e−x
)α−1

1−
(

1− e−x
)α − 1

}

(9)

This implies that

τ (x) = 1+
(β − 1) e−x

(

1− e−x
)α−1

1−
(

1− e−x
)α −

(α − 1) e−x

1− e−x
(10)

Heading from (10) for α = β = 1, and for all value of x, then

τ (x; 1, 1) = 1. Similarly, when β > 1 (say 2), the τ (x; 1, 2) = 2,

3, 4, and so on. Keeping β = 1 and α > 1, then τ (x;α >

1, 1) > 1. The numerical illustrations to determine the shapes of the

hazard function of the log-Kumaraswamy distribution are provided

in Table 1.

Tables 1–3 present the results and the conditions that warrant

the behavior of the shapes of the hazard function of the proposed

distribution as studied by [45]. Based on the conditions suggested

by [45], the hazard shape could either be constant, monotonically

increasing or decreasing functions.

It can be notable from Tables 1–3 that for α, β < 1, then

h (x) > τ (x), this implies that the shape of the proposed

distribution could be a monotonic increasing function. Keeping
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FIGURE 2

Plots of the hazard function of the log-Kumaraswamy distribution for various parameter values. Constant failure rate (A), monotonic increasing

function (B), monotonic increasing function (C), and monotonic decreasing function (D).

α = 1 and β ≥ 1, then h (x) = τ (x) and the hazard function

is said to be a constant failure rate, and if α > 1, β = 1, or α > 1

and β > 1, then h (x) > τ (x) and the hazard function could also

be a monotonically increasing function.

Plots of the hazard function by considering various parameter

values that have been used in Tables 1–3 are provided in

Figures 2A–D.

Keeping α = 1 and β ≥ 1, the log-Kumaraswamy

distribution has a constant failure rate, which is provided in

Figure 2A. For α > 1 and β = 1 or α, β > 1, then

the hazard function of the proposed distribution could be a

monotonic increasing function presented in Figures 2B, C. It

was observed from Figure 2D that for α, β < 1, the shape

of the hazard function is a strictly monotonically decreasing

function, which contradicts Tomas’s theorem. Clearly, it is

proven from these figures that the log-Kumaraswamy could be

a constant, with monotonically increasing as well as decreasing

failure rates.
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TABLE 1 Results of the hazard function of log-Kumaraswamy distribution for various parameter values.

x = 1 α β h (x) τ (x) - Hazard function

0.5 0.2 0.22578 −0.51522 h (x) > τ (x) MI

0.5 0.5 0.56444 0.16211 h (x) > τ (x) MI

0.5 0.75 0.84666 0.72655 h (x) > τ (x) MI

1 1 1.00000 1.00000 h (x) = τ (x) C

1 2 2.00000 2.00000 h (x) = τ (x) C

1 3 3.00000 3.00000 h (x) = τ (x) C

1 4 4.00000 4.00000 h (x) = τ (x) C

2 1 0.77460 0.41802 h (x) > τ (x) MI

3 1 0.59001 −0.16395 h (x) > τ (x) MI

4 1 0.44229 −0.74593 h (x) > τ (x) MI

2 3 2.32380 1.19262 h (x) > τ (x) MI

3 4 2.36006 0.42606 h (x) > τ (x) MI

TABLE 2 Results of the hazard function of log-Kumaraswamy distribution for various parameter values.

x = 5 α β h (x) τ (x) - Hazard function

0.5 0.2 0.20034 −0.59932 h (x) > τ (x) MI

0.5 0.5 0.50085 0.00170 h (x) > τ (x) MI

0.5 0.75 0.75127 0.50255 h (x) > τ (x) MI

1 1 1.00000 1.00000 h (x) = τ (x) C

1 2 2.00000 2.00000 h (x) = τ (x) C

1 3 3.00000 3.00000 h (x) = τ (x) C

1 4 4.00000 4.00000 h (x) = τ (x) C

2 1 0.99662 0.99322 h (x) > τ (x) MI

3 1 0.99325 0.98643 h (x) > τ (x) MI

4 1 0.98988 0.97965 h (x) > τ (x) MI

2 3 2.98986 1.98984 h (x) > τ (x) MI

3 4 3.97299 1.97968 h (x) > τ (x) MI

2.1. Mixture representations

Consider the series expansion for |x| < 1 and τ > 0, then the

expansion of this holds

(1− x)τ =

∞
∑

j=0

(−1)jŴ(τ + 1)

j!Ŵ(τ − j+ 1)
xj (11)

Applying (11) into (3), it will become

f (x) = αβe−x
∞
∑

j=0

(−1)jŴ(β)

j!Ŵ(β − j)

(

1− e−x
)α(1+j)−1

(12)

We can express (12) by considering (11) as

f (x) =

∞
∑

j,k=0

̟j,ke
−x(1+k) (13)

which is the pdf of log-Kumaraswamy distribution expressed as

mixture representations, where

̟j,k =
αβ(−1)j+kŴ(β)Ŵ(α

(

1+ j
)

)

j!k!Ŵ(β − j)Ŵ(α
(

1+ j
)

− k)
.

2.2. Quantile function

The quantile function of the log-Kumaraswamy distribution

can be derived by inverting cdf in (4) as

(1− u)1/β = 1−
(

1− e−x
)α

(14)

This can be expressed as

(

1− (1− u)1/β
)1/α

= 1− e−x (15)
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TABLE 3 Results of the hazard function of log-Kumaraswamy distribution for various parameter values.

x = 10 α β h (x) τ (x) - Hazard function

0.5 0.2 0.20000 −0.59999 h (x) > τ (x) MI

0.5 0.5 0.50001 0.00001 h (x) > τ (x) MI

0.5 0.75 0.75001 0.50002 h (x) > τ (x) MI

1 1 1.00000 1.00000 h (x) = τ (x) C

1 2 2.00000 2.00000 h (x) = τ (x) C

1 3 3.00000 3.00000 h (x) = τ (x) C

1 4 4.00000 4.00000 h (x) = τ (x) C

2 1 0.99998 0.99995 h (x) > τ (x) MI

3 1 0.99995 0.99991 h (x) > τ (x) MI

4 1 0.99993 0.99986 h (x) > τ (x) MI

2 3 2.99993 1.99993 h (x) > τ (x) MI

3 4 3.99982 1.99986 h (x) > τ (x) MI

which on simplification, gives the quantile function of the log-

Kumaraswamy distribution as

x = − ln
{

1−
(

1− (1− u)1/β
)1/α

}

: xq (16)

where u follows a uniform random variable on the interval (0, 1).

The median of the log-Kumaraswamy distribution is obtained

by setting

u = 0.5 as xm = − ln{1− (1− 0.51/β)1/α} (17)

3. Statistical features of the
log-Kumaraswamy distribution

Some statistical features of log-Kumaraswamy distribution

are provided in this section and include moments, information-

generating function, and order statistics.

3.1. Moments

Suppose X is a random variable that follows log-Kumaraswamy

distribution with pdf given in (13), then the moments of X are

obtained as

E(xr) =

∞
∑

j,k=0

ω̄j,k

∫ ∞

0
xre

−x(1+k)dx (18)

Let

A = x
(

1+ k
)

, ⇒ dx =
dA

1+ k
(19)

Inserting (19) into (18) gives

E
(

xr
)

=
1

(

1+ k
)1+r

∞
∑

j,k=0

̟j,k

∫ ∞

0
A(1+r)−1e−AdA

=

∞
∑

j,k=0

̟j,k
Ŵ(1+ r)

(1+ k)1+r
(20)

which is the moments of log-Kumaraswamy distribution. Now,

given r = 1, 2 , then the mean and variance of the proposed

distribution are, respectively, given as

E (x) =
1

(

1+ k
)2

∞
∑

j,k=0

̟j,k (21)

and

V (x) =
2

(

1+ k
)3

∞
∑

j,k=0

̟j,k −





1
(

1+ k
)2

∞
∑

j,k=0

̟j,k





2

(22)

3.2. Information generating function

Let X follows log-Kumaraswamy distribution with pdf defined

in (3). Then, the information generating function is defined as

Iφ (x) =

∫ ∞

−∞

f φ(x)dx (23)

The integrand of (23) can be determined as

f φ(x) = (αβ)φe−φx
(

1− e−x
)φ(α−1)(

1−
(

1− e−x
)α)φ(β−1)

(24)

Applying (11) into (24) gives

f φ(x) = (αβ)φe−phix
∞
∑

l=0

(−1)lŴ(φ(β − 1)+ 1)

l!Ŵ(φ(β − 1)− l+ 1)

(1− e−x)φ(α+1)+αl

=

∞
∑

l,m=0

8l,me
−x(φ+m) (25)

where 8l,m = (αβ)φ (−1)l+mŴ(φ(β−1)+1)Ŵ(φ(α−1)+αl+1)
l!m!Ŵ(φ(β−1)−l+1)Ŵ(φ(α−1)+αl−m+1)

.

Substituting (35) into (23), it becomes

Iφ(x) =

∞
∑

l,m=0

8l,m

∫ ∞

0
e−x(φ+m)dx (26)
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TABLE 4 Performance rating of the log-Kumaraswamy distribution using di�erent methods of estimation.

Estimate n WLS LS MPS MLE

Mean MSE Mean MSE Mean MSE Mean MSE

α = 2 10 2.0089 1.1050 2.3320 1.5049 1.7867 0.7486 2.4856 1.4414

20 2.0251 0.4854 2.0775 0.5144 1.8361 0.3152 2.2451 0.4624

30 2.0112 0.2663 2.0180 0.2891 1.8556 0.2101 2.1532 0.2641

50 2.0101 0.1544 1.9977 0.1700 1.8878 0.1258 2.0885 0.1412

250 2.0075 0.0290 2.0000 0.0347 1.9610 0.0256 2.0173 0.0254

500 2.0044 0.0137 2.0012 0.0166 1.9773 0.0120 2.0092 0.0119

1,000 2.0049 0.0066 2.0040 0.0081 1.9878 0.0057 2.0057 0.0057

β = 1.5 10 2.0089 2.4197 2.1312 3.9941 1.4395 1.8347 2.3338 10.7549

20 1.6159 0.6689 1.6810 0.8295 1.3971 0.2726 1.8140 0.6288

30 1.5689 0.2888 1.5838 0.3444 1.4055 0.1641 1.6978 0.2940

50 1.5459 0.1481 1.5395 0.1744 1.4208 0.0968 1.6122 0.1382

250 1.5134 0.0230 1.5073 0.0282 1.4696 0.0188 1.5218 0.0200

500 1.5058 0.0109 1.5029 0.0137 1.4806 0.0092 1.5100 0.0094

1,000 1.5038 0.0055 1.5030 0.0070 1.4884 0.0046 1.5049 0.0046

TABLE 5 Performance rating of the log-Kumaraswamy distribution using di�erent methods of estimation.

Estimate n WLS LS MPS MLE

Mean MSE Mean MSE Mean MSE Mean MSE

α = 3 10 3.0210 2.5797 3.5085 3.4227 2.6789 1.6824 3.7284 3.2432

20 3.0327 1.0812 3.1163 1.1480 2.7537 0.7095 3.3676 1.0404

30 3.0190 0.6059 3.0243 0.6380 2.7844 0.4709 3.2298 0.5943

50 3.0154 0.3464 2.9994 0.3894 2.8332 0.2813 3.1327 0.3177

250 3.0121 0.0654 3.0013 0.0770 2.9416 0.0574 3.0260 0.0572

500 3.0062 0.0310 3.0016 0.0373 2.9663 0.0268 3.0138 0.0267

1,000 3.0075 0.0148 3.0063 0.0184 2.9819 0.0128 3.0085 0.0128

β = 1.5 10 1.7505 2.7064 2.1822 5.3718 1.4357 1.5365 2.3337 10.7491

20 1.6140 0.6848 1.6799 0.8298 1.3970 0.2726 1.8140 0.6288

30 1.5710 0.2977 1.5799 0.3311 1.4059 0.1638 1.6978 0.2940

50 1.5463 0.1496 1.5420 0.1774 1.4215 0.0964 1.6122 0.1382

250 1.5139 0.0231 1.5081 0.0280 1.4696 0.0188 1.5218 0.0200

500 1.5057 0.0110 1.5029 0.0137 1.4807 0.0092 1.5100 0.0094

1,000 1.5039 0.0054 1.5032 0.0070 1.4885 0.0046 1.5049 0.0046

Let

y = x (φ +m) , ⇒ dx =
dy

φ +m
(27)

Putting (27) into (26) gives the information generating function

of the log-Kumaraswamy distribution as

Iφ (x) =

∞
∑

l,m=0

(

8l,m

φ +m

)

(28)

3.3. Renyi entropy

The Renyi entropy of log-Kumaraswamy distribution is

defined as

Rφ(x) =
1

1− φ

[∫ ∞

−∞

f (x)φdx

]

, φ > 0,φ 6= 1; x ∈ ℜ (29)

The integral in (29) has been obtained in (28). By substituting

(28) into (29) gives the Renyi entropy of the proposed

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org

https://doi.org/10.3389/fams.2023.1258961
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Ishaq et al. 10.3389/fams.2023.1258961

TABLE 6 Descriptive statistics for the data sets.

Statistics Data 1 Data 2 Data 3

Sample size n 30 210 36

Minimum 0.0050 0.1600 1.5160

Maximum 0.4950 0.7500 6.869

Mean 0.0962 0.3662 3.2820

Standard deviation 0.1143 0.1310 0.9985

Skewness 2.1100 1.0674 1.2139

Kurtosis 7.1582 3.0250 6.1516

distribution as

Rφ(x) =
1

1− φ





∞
∑

l,m=0

(

8l,m

φ +m

)



 , φ > 0,φ 6= 1 (30)

3.4. Q-entropy

The q-entropy of the log-Kumaraswamy distribution is

obtained from (28) as

Qφ(x) =
1

φ − 1



1−

∞
∑

l,m=0

(

8l,m

φ +m

)



 , φ 6= 1 (31)

3.5. Order statistics

Suppose X1, X2,..., Xn denote the random variables which are

independently and identically drawn from the sample sizes n with

the pdf and cdf defined, respectively, in (3) and (4). The σ th order

statistics of those variables fσ , n(x) is defined as

fσ ,κ (x) =
κ!f (x)

(σ − 1)!(κ − σ )!
F(x)σ−1[1− F(x)

]κ−σ
(32)

Substituting (3) and (4) into (32), one can obtain

fσ ,κ (x) =

κ−σ
∑

l=0

∞
∑

t=0

1l,te
−x
(

1− e−x
)α−1(

1−
(

1− e−x
)α)β(1+t)−1

(33)

where 1l,t =
αβκ!(−1)l+tŴ(σ+l)Ŵ(κ−σ+1)

(σ−1)!(κ−σ )!t!l!Ŵ(σ+l−t)Ŵ(κ−σ−l+1)
.

Therefore, equation (33) can also be written by applying (11) as

fσ ,κ (x) =

κ−σ
∑

l=0

∞
∑

t,w,c=0

3l,t,w,ce
−x(1+c) (34)

which is the σ th order statistics of the log-

Kumaraswamy distribution

where 3l,t,w,c =
1l,t(−1)w+cŴ(β(1+t))Ŵ(α(1+w))

w!c!Ŵ(β(1+t)−w)Ŵ(α(1+w)−c)
.

4. Parameter estimation

The parameters of the log-Kumaraswamy distribution will be

obtained using maximum likelihood estimation (MLE) technique.

Let X1,X2, ...,Xn denote the random sample drawn from the log-

Kumaraswamy model with vector parameter 8 = α,β . The

parameters of its estimates are derived by taking the likelihood

function of (3) as

ℓ (xi/8) = (αβ)ne−xi
(

1− e−xi
)α−1(

1−
(

1− e−xi
)α)β−1

, (35)

The log-likelihood function of (35) denoted as L is given as

L = n log (α) + n log (β) −

n
∑

i=1

xi + (α − 1)

n
∑

i=1

log
(

1− e−xi
)

+ (β − 1)

n
∑

i=1

log
(

1−
(

1− e−xi
)α)

(36)

We can now obtain the partial derivatives of (36) with respect

to the parameters α and β as

∂L

∂α
=

n

α
+

n
∑

i=1

log
(

1− e−xi
)

− (β − 1)

n
∑

i=1

(

(

1− e−xi
)α

log
(

1− e−xi
)

1−
(

1− e−xi
)α

)

(37)

∂L

∂β
=

n

β
+

n
∑

i=1

log
(

1−
(

1− e−xi
)α)

(38)

Equating (37) and (38) to zero and simplifying for α and β

gives the estimates of the parameters of the log-Kumaraswamy

distribution. As observed, these estimates are non-linear and

cannot be solved analytically, but with the aid of Matlab, R, Python,

and more, we can obtain the estimators of α̂ and β̂ .

5. Simulation study and data
application

This section presents the simulation and real-life application of

data sets.

5.1. Simulation study

In this section, we carried out a simulation study to assess

the flexibility and performance of the estimators of parameters of

the proposed distribution using different methods of estimation,

including MLE, weighted least squares (WLS), least squares (LS),

and maximum products of spacing (MPS). The simulation study

was accomplished on the basis of the quantile function given in

(16), and the data were generated from different sample sizes

of n = 10, 20, 30, 50, 250, 500, and 1,000. The estimates of

the vector parameter 8̂ =
(

α̂, β̂

)

were obtained from the

generated sample by maximizing the log-likelihood function given
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FIGURE 3

TTT curves for data 1 (A), 2 (B), and 3 (C).

in (44). The simulation was repeated 1,000 times in which the

mean estimates (mean) and mean square errors (MSE) were

determined by setting 8 = (α, β) = (2, 1.5) and (3, 1.5),

respectively, and the results of its estimates are well provided

in Tables 4, 5.

Table 4 presents the estimates of the parameters using WLS,

LS, MPS, and MLE methods with α = 2 and β = 1.5. As seen

from Table 4, for the increasing sample sizes of n = 10, 20, 30,

50, 250, 500, and 1,000, the mean of each estimate using different

methods of estimation approaches true parameter values. Similarly,

the MSE of each estimate using different methods of estimation

decreases, and hence, approaching zero. The table reveals that with

increasing sample sizes, both MLE and MPS methods yield similar

and superior results, producing lower MSE compared to WLS and

LS methods, in that order. Table 5 provides the estimates of the

parameters in which α = 3 and β = 1.5.

It can be revealed from Table 5 that the mean estimates of

each parameter using the method of estimation approach fixed

parameter values α = 3 and β = 1.5, respectively, as the sample

size increases. The MSE of the parameters using the method of

estimation decreases and converges to zero. It also proves that the

MSE using MLE and MPS still approaches similar results as the

sample size increases and hence provides the least MSE compared

to other competing methods, followed by WLS and LS methods.

This indicates from Tables 4, 5 that with the increase in sample

sizes, the MSEs of MLE and MPS approached similar results and

hence provided better estimates in comparison with WLS and LS

as well.

5.2. Data application

An application to real-life data sets is presented in this

section to ascertain the performance and potentiality of the log-

Kumaraswamy model against its other competing distributions.

The competing distributions used in this study are those with

bounded and unbounded distributions such as Kumaraswamy,

extended Kumaraswamy, Weibull, Gamma, Topp-Leone, log-

normal, normal, and exponential distributions. We considered

information criteria such as the Bayesian information criterion

(BIC), Hannan–Quinn information criterion (HQIC), and

consistent Akaike’s information criterion (CAIC) as the statistical

measure to check the best distribution among its competing ones,

so the distribution with the least value of this measure will be

selected as the one that best fits the data sets.

5.2.1. Data 1
The data set relates to the daily snowfall amounts of 30

observations measured in inches of water taken from non-seeded

experimental units, which was conducted in the vicinity of Climax,

Colorado [46]. The data are presented as follows:

0.030 0.020 0.015 0.045 0.100 0.100 0.125 0.190 0.390 0.110

0.070 0.010 0.055 0.220 0.080 0.005 0.125 0.035 0.085 0.060

0.010 0.065 0.020 0.260 0.030 0.015 0.025 0.010 0.495 0.085

5.2.2. Data 2
An exchange rate data set related to amonthly Nigerian naira to

CFA Francs consisting of 210 observations recorded from January

2004 to June 2021 was used and can be found in [47]. These data

are presented as follows:

0.16 0.2 0.25 0.24 0.24 0.24 0.25 0.25 0.25 0.25 0.26 0.27 0.27

0.26 0.27 0.26 0.26 0.25 0.24 0.25 0.24 0.24 0.23 0.23 0.24 0.23

0.23 0.24 0.25 0.24 0.24 0.25 0.25 0.25 0.25 0.24 0.25 0.24 0.25

0.26 0.25 0.26 0.26 0.26 0.26 0.27 0.26 0.26 0.26 0.26 0.27 0.28

0.28 0.27 0.28 0.27 0.26 0.24 0.23 0.26 0.29 0.28 0.29 0.29 0.3

0.31 0.32 0.36 0.33 0.33 0.34 0.33 0.32 0.31 0.31 0.28 0.28 0.28

0.29 0.29 0.3 0.32 0.31 0.3 0.3 0.31 0.32 0.33 0.33 0.34 0.33

0.33 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.3 0.3 0.29 0.29

0.3 0.31 0.3 0.31 0.31 0.32 0.31 0.31 0.31 0.31 0.3 0.31 0.32

0.32 0.32 0.32 0.32 0.32 0.33 0.33 0.33 0.32 0.32 0.32 0.31 0.3

0.3 0.32 0.3 0.31 0.32 0.32 0.34 0.34 0.33 0.33 0.34 0.34 0.32

0.32 0.33 0.33 0.33 0.34 0.34 0.38 0.49 0.53 0.52 0.51 0.5 0.47

0.49 0.5 0.5 0.5 0.51 0.52 0.54 0.55 0.56 0.55 0.54 0.55 0.57

0.58 0.57 0.57 0.55 0.54 0.54 0.54 0.54 0.54 0.53 0.53 0.53 0.53

0.53 0.53 0.52 0.53 0.53 0.52 0.51 0.52 0.52 0.52 0.52 0.5 0.52

0.51 0.51 0.53 0.53 0.66 0.68 0.68 0.68 0.7 0.71 0.7 0.69 0.69

0.72 0.75
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FIGURE 4

Fitted densities for the log-Kumaraswamy distribution and other competing models for data 1 (A), 2 (B), and 3 (C).

5.2.3. Data 3
The mortality rate data belonging to Canada of approximately

36 days reported from 10th April 2020 to 15th May 2020 were used

to analyze the potentiality of the new distribution, see [48]. The data

are presented as follows:

3.1091 3.3825 3.1444 3.2135 2.4946 3.5146 4.9274 3.3769 6.8686 3.0914

4.9378 3.1091 3.2823 3.8594 4.0480 4.1685 3.6426 3.2110 2.8636 3.2218

2.9078 3.6346 2.7957 4.2781 4.2202 1.5157 2.6029 3.3592 2.8349 3.1348

2.5261 1.5806 2.7704 2.1901 2.4141 1.9048

The summary of the data set, including mean,

standard deviation, skewness, and kurtosis, is provided

in Table 6. It can be observed from this table

that the skewness of the data sets is positive and

leptokurtic in nature since the computed kurtosis values

are >3.

It is well known that the shape of the hazard function can

be identified by appropriate total time on test (TTT) curves, as

described in [49], and that if the curve is diagonally straight,

the TTT has a constant failure function. For monotonically

decreasing or increasing failure functions, then the TTT curves

will be either concave or convex. Assume the failure rate is first

convex and later concave; the TTT curve provides the bathtub;

similarly, the curve is an appropriate unimodal failure rate.

Figures 3A–C provides the TTT curves for the sets of data 1, 2,

and 3, respectively.
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TABLE 7 Performance of the log-Kumaraswamy distribution against competing models using data 1.

Model Estimates L BIC HQIC CAIC

Log-Kumaraswamy α = 0.9430 (0.1425) 40.3208 −73.8392 −75.7451 −76.1971

β =9.2230 (3.2264)

Kumaraswamy a = 0.8615 (0.1380) 39.7976 −72.7929 −74.6987 −75.1508

b = 6.8358 (2.3346)

Extended Kumaraswamy e = 3130.000 (16.7800) 29.8636 −52.9248 −54.8307 −55.2828

f =0.0550 (0.0108)

Topp-Leone g = 0.4352 (0.0795) 31.4451 −56.0877 −57.99367 −58.4457

TABLE 8 Performances of the log-Kumaraswamy distribution against competing models using data 2.

Model Estimate L BIC HQIC CAIC

Log-Kumaraswamy α = 3.6368 (0.0993) 138.4582 −266.2222 −270.2102 −272.8584

β = 53.3999 (4.4554)

Kumaraswamy a = 2.7937 (0.1551) 129.7720 −248.8498 −252.8378 −255.4860

b = 11.0442 (1.5157)

Extended Kumaraswamy e = 6136.9486 (8.3886) 60.8958 −111.0975 −115.0855 −117.7337

f = 0.2026 (0.0149)

Topp-Leone g = 1.7458 (0.1205) 71.4977 −137.6484 −139.6424 −140.9762

TABLE 9 Performance of the log-Kumaraswamy distribution against competing models using data 3.

Model Estimates L BIC HQIC CAIC

Log-Kumaraswamy α =21.9514 (5.0419) −48.13424 103.4355 101.3739 100.6321

β = 1.4627 (0.3734)

Weibull c = 0.0139 (0.0080) −51.47427 110.1156 108.0539 107.3122

d = 3.3136 (0.3790)

Gamma γ = 3.6181 (0.7612) −48.28663 103.7403 101.6786 100.9369

θ = 11.8732 (2.4297)

Log-Normal υ = 0.2938 (0.0346) −48.22444 103.6159 101.5543 100.8125

ς =1.1456 (0.0490)

Exponential ρ = 0.3047 (0.0508) −78.77977 164.7266 162.6649 161.9232

Normal µ = 3.2816 (0.1641) −50.52181 108.2107 106.149 105.4073

σ = 0.9846 (0.1160)

It is shown from Figure 3A that the TTT curve for data 1

utilizes bathtub failure rate, while Figures 3B, C are indications of a

monotonically increasing failure rate.

The density plots for the proposed log-Kumaraswamy

distribution against its comparative distributions using data sets 1,

2, and 3 are provided in Figures 4A–C. It is shown from the figures

that the log-Kumaraswamy distribution provides a reasonable fit

irrespective of the other competing distributions.

The performances for the log-Kumaraswamy distribution and

other competing distributions with applications to real data sets 1,

2, and 3 are given in Tables 7–9, respectively, showing the estimates

with their corresponding standard errors in parentheses, L, BIC,

HQIC, and CAIC statistics.

The log-Kumaraswamy distribution gives the highest value of L

and the least values of BIC, HQIC, and CAIC statistics compared

to other comparative distributions, as presented in Tables 7, 8. This

shows that the new distribution provided the best fit for the data

sets relating to a daily snowfall and a monthly Nigerian naira to

CFA Franc exchange rate. Table 9 presents the results of the log-

Kumaraswamy distribution against unbounded models using data

set 3.

It can be noticed from Table 9 that the new distribution

provided the highest value of L and the least values of BIC, HQIC,

and CAIC statistics compared other competing distributions. In

this regard, the log-Kumaraswamy distribution could be a better

choice for dealing with the bounded and unbounded distributions.
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This proved that the proposed distribution could accommodate

positive real-life data sets.

6. Conclusion

This study developed a new extension of the classical

Kumaraswamy distribution referred to as the log-Kumaraswamy

distribution, which serves as a better alternative to some statistical

distributions by means of applications to real-life data sets.

It proves graphically and numerically that the density shapes

could be skewed to the right and the hazard shape could

either be a constant, monotonically decreasing, or increasing

failure function. Some important features of this distribution

are well identified, and the parameters of its estimates are

obtained using MPS, MLE, LS, and WSL methods. We hope

that the new distribution can be regarded as the best candidate

for modeling data sets in a variety of practical fields, such

as engineering, medical science, finance, hydrology, reliability,

and insurance.
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