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Introduction: Mathematical modeling has emerged as a crucial component in

understanding the epidemiology of infectious diseases. In fact, contemporary

surveillance e�orts for epidemic or endemic infections heavily rely on

mathematical and computational methods. This study presents a novel agent-

based multi-level model that depicts the transmission dynamics of gonorrhea,

a sexually transmitted infection (STI) caused by the bacterium Neisseria

gonorrhoeae. This infection poses a significant public health challenge as it is

endemic in numerous countries, and each year sees millions of new cases,

including a concerning number of drug-resistant cases commonly referred to as

gonorrhea superbugs or super gonorrhea. These drug-resistant strains exhibit a

high level of resistance to recommended antibiotic treatments.

Methods: The proposed model incorporates a multi-layer network of agents’

interaction representing the dynamics of sexual partnerships. It also encompasses

a transmission model, which quantifies the probability of infection during sexual

intercourse, and a within-host model, which captures the immune activation

following gonorrhea infection in an individual. It is a combination of agent-based

modeling, which e�ectively captures interactions among various risk groups, and

probabilistic modeling, which enables a theoretical exploration of sexual network

characteristics and contagion dynamics.

Results: Numerical simulations of the dynamics of gonorrhea infection using the

complete agent-based model are carried out. In particular, some examples of

possible epidemic evolution are presented together with an application to a real

case study. The goal was to construct a virtual population that closely resembles

the target population of interest.

Discussion: The uniqueness of this research lies in its objective to accurately

depict the influence of distinct sexual risk groups and their interaction

on the prevalence of gonorrhea. The proposed model, having interpretable

and measurable parameters from epidemiological data, facilitates a more

comprehensive understanding of the disease evolution.

KEYWORDS

agent-based modeling, dynamic networks, multi-scale modeling, epidemic modeling,

scale-free networks

1. Introduction

Effective surveillance of endemic and epidemic infections, along with the
implementation of control measures, greatly benefits from the insights gained through
precise mathematical modeling. Mathematical modeling plays a pivotal role in accurately
characterizing the transmission and spread of diseases by providing a solid formal
framework to represent various factors contributing to epidemic dynamics. Additionally,
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the use of robust statistical methods for parameter estimation
enhances the reliability and accuracy of these models.

The present study is conducted as part of the JPIAMR-project
MAGIcIAN1, an international initiative focused on promoting the
sustainable introduction of novel class and last-resort antimicrobial
drugs while minimizing the emergence of antimicrobial resistance.
Within this project, one of the primary objectives, which is
the subject of this article, is to develop a computational model
that accurately captures the dynamics of gonorrhea transmission,
a sexually transmitted infection (STI) caused by the bacterium
Neisseria gonorrhoeae (N. gonorrhoeae). The aim is to provide
scenarios that assist in controlling the prevalence of this infection.

The selection of the N. gonorrhoeae bacterium for this study
is driven by its significant impact on public health. It remains
a major concern due to the alarming number of new cases
reported worldwide. According to the World Health Organization
(WHO), an estimated 82.4 million new cases were recorded
among adolescents and adults aged 15–49 years in 2020 alone2.
Furthermore, the emergence of extensively drug-resistant strains
of gonorrhea, commonly known as gonorrhea superbugs or super
gonorrhea, poses an additional threat. These strains exhibit high-
level resistance not only to the current recommended treatments
for gonorrhea (ceftriaxone and azithromycin) but also to other
commonly used antibiotics such as penicillin, sulphonamides,
tetracycline, fluoroquinolones, and macrolides. This combination
of a significant number of new cases and the presence of extensively
drug-resistant strains underscores the urgent need for a better
understanding of the spread and control of this infection.

In recent years, scientists have dedicated significant efforts to
studying the N. gonorrhoeae infection from various perspectives,
recognizing its threat to public health. These efforts have yielded
valuable insights. For instance, in the study by Spicknall et al.
[1], the authors explore the relative importance of different
anatomical sites in gonorrhea transmission among men who have
sex with men (MSM). They propose an anatomical site-specific
gonorrhea transmission model specific to this population. Another
study by Craig et al. [2] investigates the potential impact of a
vaccine on the spread of gonorrhea using an individual-based
epidemiological simulation model. Their work delves into the
effects of vaccination strategies in mitigating the transmission
dynamics of the infection. Heymans et al. [3] examine the role
of sexual habits in determining different transmission networks.
They construct a MSM sexual network using molecular data from
a clinic in Amsterdam and compare the resulting clusters with
epidemiological characteristics obtained from questionnaires. This
study sheds light on the relationship between sexual behavior and
the spread of gonorrhea. Additionally, Buyze et al. [4] investigate
the impact of screening activities on the prevalence of gonorrhea
within the homosexual community. Their research explores the
effectiveness of screening interventions in reducing the prevalence
of the infection.

These studies, among others, contribute to a comprehensive
understanding of gonorrhea transmission, its associated factors,
and potential control measures.

1 https://www.magician-amr.eu

2 https://www.who.int/news-room/fact-sheets/detail/multi-drug-

resistant-gonorrhoea

In the realm of mathematical treatment for the spread of
sexually transmitted infections (STIs), a crucial aspect to consider
is the sexual contact network. This network is represented by
a graph consisting of nodes that represent individuals in the
community and edges that represent sexual connections between
two individuals. Numerous contributions in literature have focused
on modeling sexual contact networks. For example, Buyze et al.
[4] utilized a separable temporal exponential-family random graph
model to characterize the sexual contact network of MSM in
Belgium. They calibrated their model using data from Belgian
participants in the European MSM Internet Survey [5], which has
been conducted since 2010 and provides a large and diverse sample
of MSM across Europe. Vajdi et al. [6] introduced a multilayer
sexual contact network that accounts for both steady and casual
partnerships. In their model, individuals can be in either an active
or inactive state, which is independent of their infection status and
solely pertains to their search for sexual partners. The transition
between these states is modeled as a stochastic process. The
authors investigated the spread of STIs using a susceptible-infected-
susceptible (SIS) model and developed a mean-field approximation
to describe the spreading process. These studies, among others,
havemade significant contributions to understanding the dynamics
of STI transmission by incorporating the complex structure of
sexual contact networks. The incorporation of these networks
provides a more realistic and comprehensive representation of the
spread of STIs within communities. In Mei et al. [7], the focus
is on explaining the HIV epidemic among MSM in Amsterdam.
The authors introduce a complex agent network that combines a
multi-agent system with a complex network to depict the network
of sexual partnerships. The model is calibrated using various data
sources, including questionnaires, clinical data, and information
from literature. This comprehensive approach allows for a more
accurate representation of the HIV epidemic dynamics. Zarrabi
et al. [8] reconstruct the HIV transmission network in central Italy
by integrating social and genetic data. Through their work, they
reveal the significant role of transmission between different risk
groups in HIV spread. This approach provides insights into the
interconnectedness of various risk groups and their contributions
to the overall transmission dynamics. In Whittles et al. [9],
a dynamic power-law sexual network is proposed to study a
gonorrhea outbreak. The authors introduce an affinity parameter
that describes the propensity to form and dissolve partnerships,
which are modeled using stochastic processes. The methodology
is applied to the MSM community, utilizing data from the Natsal-
3 survey [10], and calibrating the models based on data from the
Gonococcal Resistance to Antimicrobial Surveillance Programme
[11], conducted by the UKHealth Security Agency (formerly Public
Health England). Additionally, the study investigates the impact of
screening, condom use, and the introduction of vaccines on the
gonorrhea outbreak.

These studies highlight the importance of incorporating
complex sexual networks and diverse data sources to understand
and control the spread of STIs, such as HIV and gonorrhea, among
specific populations. The combination of agent-based modeling,
network analysis, and data calibration provides valuable insights
into the dynamics of STI transmission and the potential impact of
control measures.

The model here presented offers a comprehensive depiction of
the spread of gonorrhea by incorporating both population-level
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(between-host) and individual-level (within-host) dynamics. This
multi-level approach allows for a more accurate representation
of infection dynamics among different risk groups and enables
the inclusion of targeted intervention strategies to control the
prevalence of the infection. At the between-host level, the
model incorporates a dynamic multilayer network that captures
the dynamics of sexual partnerships among individuals. This
network takes into account the existence of different sexual
orientations, represented as different layers, and the interactions
between them, including bisexual individuals. This approach
goes beyond the common focus on the MSM community and
acknowledges the diversity of sexual orientations and their
potential impact on gonorrhea transmission. The transmission
model within the between-host component accounts for the
probability of gonorrhea infection during sexual intercourse.
By considering the dynamics of sexual partnerships and the
varying risks associated with different types of sexual interactions,
the model provides a more realistic representation of the
transmission process. The within-host component of the model
comprises a set of ordinary differential equations that describe the
evolution of the pathogen and the immune response within an
individual. This component also considers the use of antibiotic
treatments, which play a crucial role in controlling the infection
at the individual level. By integrating these between-host and
within-host components, the model offers a comprehensive
framework for studying the spread of gonorrhea, considering
both the population-level dynamics of sexual partnerships and the
individual-level dynamics of the pathogen and immune response.
This holistic approach provides a more accurate representation
of the infection dynamics and enables the exploration of
targeted intervention strategies to control the prevalence of
gonorrhea.

The principal novelty of this work is in combining the
flexibility of Agent-Based Modeling (ABM) [12] with a formal
probabilistic model, enabling the study of complex interactions
and the identification of interpretable parameters from available
data. In this approach, each agent in the model represents an
individual with specific features that influence the dynamics of
infection and disease progression. Two important characteristics
considered for each agent are their sexual orientation and level of
promiscuity, which significantly impact the likelihood of acquiring
and transmitting gonorrhea infection. The sexual contact network
is represented as a dynamic power-law interacting multilayer
network. Each layer corresponds to a different risk group, such
as Heterosexuals (HMW or HM and HW to differentiate gender),
Men Having Sex with Men (MSM), and Women Having Sex
with Women (WSW). Each risk group exhibits distinct sexual
behavior, leading to different degree distributions within each
layer. Additionally, the model incorporates individuals who are
bisexual, allowing for interactions between different layers and
communities. The ABM approach offers the potential to enrich
agent characteristics as the model evolves and new epidemiological
data becomes available. It also enables the modeling of interactions
between different communities, which is crucial for capturing the
overall dynamics of infection. Moreover, the model allows for
customization of the infection dynamics within an individual based
on their specific features, assigning a risk of infection to each
individual.

To the best of our knowledge, this is the first attempt to model
gonorrhea infection at multiple levels while considering different
risk groups. By integrating ABM with a probabilistic framework,
this approach provides a novel and comprehensive tool for studying
the dynamics of gonorrhea infection and understanding the impact
of different risk groups on its spread.

2. Results

In this section, we present some numerical simulations of
the dynamics of gonorrhea infection using the complete agent-
based model. In Section 2.1 we present some example of possible
epidemic evolution while in Section 2.2 we apply our model to
a real case study. The goal is to construct a virtual population
that closely resembles the target population of interest. To achieve
this, we define the distribution of agent features within the
virtual population, including gender, sexual orientation, presence
of infections, and symptoms among individuals. Moreover, also the
parameters associated with the dynamics of sexual partnerships, i.e.,
how partnerships form, evolve, and dissolve over time, need to be
determined in order to capture the complexity of real-world sexual
interactions. Finally, some parameters related to the transmission
of infection and to the within-host dynamics are needed. The goal
is to determine parameters to ensure that the model behavior aligns
with observed data and known epidemiological characteristics.
For a more comprehensive understanding of each level and
its mathematical and implementation details, please refer to
the Section “Materials and methods”. That section provides in-
depth explanations of the model’s components, algorithms, and
numerical techniques employed in the study. Themulti-level model
is implemented in R programming language.

2.1. Simulation study

In this section we construct several simulation examples aimed
at showing the behavior of the sexual contact network and of the
complete multi-level model. Specifically, these simulations involve
a population ofN = 20, 000 individuals, distributed across different
sexual orientations. Within this simulated population, 60% of
individuals are heterosexual, 35% are homosexual males, and 5%
are homosexual females. This distribution of sexual orientations
within the simulated population reflects the proportions observed
in the SOAP data (see Section 2.2).

As specified in Section 2.2, the degree distribution of each
community or risk group, follows a power law distribution with
different exponent γ , see Section 4 for details. We consider three
sets of parameters for these exponents which are reported in
Table 1. Specifically, Par 2 and Par 3 are obtained by estimating
the degree distribution of the three considered communities in
Amsterdam and Rotterdam respectively, while Par 1 is set to
test our model with higher values of the γ parameter for the
heterosexual and the homosexual communities.

For each of these sets we consider four different mixing
scenarios which means that among homosexual men and women,
some of them are bisexual, therefore they have the potential to
form sexual partnerships with individuals from both homosexual
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TABLE 1 Power law distribution parameters used in the simulation

examples.

HMW MSM WSW

Par 1 2.9 2.2 3.5

Par 2 2.1 1.5 3.3

Par 3 2.5 1.7 3.7

and heterosexual communities. The four mixing scenarios are: no
mixing, 1% of mixing, 10% of mixing and 25% of mixing.

For each scenario we provide information regarding the Largest
Connected Component (LCC), the diameter of the LCC, the degree
distribution and the dynamic of the epidemics.

In the study of networks, and most importantly in the case
of dynamical networks, the concepts of LCC and diameter play a
crucial role in understanding the overall structure of the network
and provide valuable insights into the evolution of dynamical
processes over the nextwork [13]. Moreover, in our case, the study
of these quantities is mandatory in order to have a good topological
description of the structure of a multi-layer dynamic network with
different mixing levels between the layers that nontrivially affect the
infection spreading. The LCC is the largest subset of nodes within
a network that are mutually connected, i.e., there is always a path
between any two nodes in the component [14]. Obviously the LCC
in a dynamical network can change over time and, a fortiori, has
important implications in the epidemic spreading. The diameter of
a network refers to the longest among all the shortest path between
any pair of nodes within the network. It measures the distance in
steps, via the shortest path, of the two farthest nodes in the network.
The diameter provides a measure of the network’s efficiency in
terms of communication and information transfer [14]. A smaller
diameter implies that nodes in the network can be easily connected
and it gives a measure on how fast a contagion process can spread
over the network.

Figure 1 shows LCC and diameter for three different set
of parameters (see Table 1) and four different level of mixing,
respectively. As expected, at rising themixing level the LCC growth,
while it decreases when using steepest scale-free parameters. In
the latter case, also the behavior of the diameter behaves has
expected, i.e., a steepest degree distribution corresponds to larger
diameters, but what is quite unexpected is the small rising occurring
when changing the level of mixing. This surprising behavior could
depend on the relationship between two factors: (i) the topological
structure of each layer, i.e., a scale-free network with different
scaling exponent, and (ii) the mixing involving agents with a high
degree which could have a limited impact on the overall diameter.

Figure 2 shows the degree distribution of heterosexual
community in the network obtained by considering the second
set of parameters in Table 1 and the different mixing scenarios. It
turned out that the scale-free structure of the community remains
unchanged at varying the mixing scenario. For a matter of space
here we report only heterosexuals, but the same happens for all
the risk groups, meaning that proposed methodology is able to
keep the characteristic structure of each risk group regardless the
mixing, which is the main novelty of this model.

The different sets of scale-free parameters reported in Table 1
impact the dynamic of epidemic. In Figure 3 we report the
simulated dynamics obtained from the first and the third set

of scale-free parameters. We observe that, when the scale-free
parameters are in the range (2, 3), as is for Par 1 in Table 1,
the behavior of the epidemic is comparable between HMW and
MSM, even if the latter, having an higher scaling parameter, has
a steepest growth, as shown in Figure 3A. On the contrary, when
the scale-free parameters between the communities differ, as is for
Par 3 in Table 1, the epidemic growth affecting MSM and HMW in
not comparable, as in Figure 3B. Regarding WSW community, the
scaling parameters in the two examples are similar and higher than
those of MSM and HMW, and, since there are a small numbers of
agents in this community, just 5%, the number of infected is very
low.

2.2. A real case study

The agent-based multi-level model has undergone calibration
using data sourced from the SOAP (STI surveillance database
[15]) provided by the National Institute of Public Health of The
Netherlands. In the following we briefly describe the dataset and
how the information are used to calibrate the parameters of the
model.

The dataset covers the period from 2010 to 2018 and comprises
1,439,186 records, representing unique visits to healthcare
providers. The dataset encompasses various information essential
for defining the sexual behaviors of each agent within the
model. This includes personal details, which provide insights
into individuals’ sexual habits. Additionally, the dataset contains
information on past sexually transmitted diseases, previous
antibiotic treatments, and current gonorrhea infection status. It
is important to note that the dataset includes records for all
individuals who underwent gonorrhea testing, regardless of the
test result. Consequently, the sample is representative of high-risk
groups within the considered regions. Given the non-homogeneous
nature of the reported information across regions, the data is not
aggregated. Instead, the analysis focuses on two regional health
services with the highest number of records, namely Amsterdam
and Rotterdam. These regions serve as focal points for the
subsequent analysis and evaluation of the model’s performance. For
a matter of space, here we only show the results obtained for the
region of Rotterdam, while those related to the city of Amsterdam
can be found in the conference paper containing a preliminary
version of this work, Stolfi et al. [16].

The personal information available in the dataset, specifically
gender and sexual orientation, is utilized to create a realistic
virtual population within the model. This ensures that the
simulated population aligns with real-world demographics and
characteristics. Specifically, we simulated a population of N =
20, 000 individuals where 60% of individuals are heterosexual,
35% are homosexual males, and 5% are homosexual females.
It is assumed that among homosexual men and women, 10%
of them are bisexual, meaning they have the potential to form
sexual partnerships with individuals from both homosexual and
heterosexual communities. To calibrate the rate of antibiotic
usage, information on symptoms is employed. The probability
of developing symptoms differs based on sexual orientation and
gender. For heterosexual males, the probability is set at p = 0.7,
while for heterosexual/homosexual females and homosexual males,
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FIGURE 1

This figure shows the LCC and the diameter for each configuration of the parameters of the network and for each mixing scenarios.

FIGURE 2

The figures illustrate the degree distribution of heterosexuals community within the simulated sexual contact networks for each level of mixing. The

plots are presented in a log-log scale to better visualize the power-law distribution. In each panel, a orange line is the true scaling reported in Table 2

while the blue dots are the simulated values. This orange line serves as a reference to assess the accuracy of the proposed method in capturing the

observed degree distribution.

the probability is set at p = 0.3, these parameters are consistent
with existing literature [17]. The duration of asymptomatic
infections is ∼6 months, while symptomatic infections last for
2 weeks from the start of antibiotic treatment. Individuals with
symptomatic infections receive treatment during the simulation.
Information on the number of sexual partners in the past
6 months is used to estimate the parameters of the sexual
contact network.

According to the data presented in Figure 4A, illustrating
the number of sexual partners in the last 6 months for the

three communities under consideration, it is evident that each
community adheres to a power-law degree distribution as outlined
in our model. The scale-free parameters of each community are
estimated using the maximum likelihood estimation method [18].
The resulting values are γ = 2.5 for HMW, γ = 1.7 for MSM
and γ = 3.7 for WSW, which correspond to Par3 in Table 1. As
in the simulation study, we are able to exactly replicate the degree
distribution of the real network also in the presence of mixing
between risk groups (see Figure 4B). The estimated parameters play
a crucial role in determining the structure and characteristics of the
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TABLE 2 Description and value of the within-host model parameters.

Parameter Value Description

P N.A. Bacterial load

I N.A. General immune response

Pmax 5,000 Bacterial carrying capacity

b 0.01 Bacterial death rate due to immune response

s 50 Immune kill rate saturation constant

c 2 Rate of pathogen induced immune responder
activation

v 1,000 Pathogen-induced immune activation
saturation constant

d 1 Rate at which immune responder activation
is induced by autocatalysis

m 400 Saturation constant of the immune activation
autocatalysis

q 0.0022 Immune responder decay rate

a 0.0073 Bacterial growth rate

z 0.0055 Bacterial death rate due to antibiotic
treatment

The value N.A. stands for Not Applicable and are referred to P and I which are the variables
of the ODEs.

FIGURE 3

The simulations depict the dynamic evolution of infected individuals over a span of 4 years (208 weeks on the x-axis) for two sets of power law

parameters reported in Table 1, namely the first and the third. We conducted 10 simulations and computed the median value across all simulations,

which is represented by the solid lines. The shaded areas correspond to the interquartile ranges, providing a visual representation of the variability

observed within the simulations. (A) First set of power law parameters. (B) Third set of power law parameters.

sexual contact network within the model. By incorporating real-
world data, we ensure that the simulated network closely resembles
the actual patterns of sexual partnerships in the target region and in
the target risk groups.

The information on current gonorrhea infection, specifically
the number of infected individuals, is utilized to calibrate two
important free parameters in the model: the probability of
transmission at peak load and the average number of sexual
intercourses per day in the population. These parameters are
crucial in determining the transmission dynamics of gonorrhea
within the model (details are provided in model Section 4). Due
to the complexity of the multi-level model, maximum likelihood
estimation is not feasible for parameter calibration. Therefore, a
simulation-based estimation method [19] is employed to calibrate
these free parameters. This approach involves running simulations
of the model with different parameter values and comparing the
simulated outcomes with the observed data on the percentage of
infected individuals. Figure 5 displays the percentage of infected
individuals in Rotterdam from 2010 to 2018. It is observed that the
proportion of infected individuals remains consistently between 2
and 10% of the total individuals visiting the clinics during these
years. This suggests that gonorrhea is endemic in that region.
Furthermore, the impact of the two communities, HMWandMSM,
is comparable. This differ for what we observed in Amsterdam, see
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FIGURE 4

Contact degree distribution of each community, namely heterosexuals men and women (left), homosexual men (middle), and homosexual women

(right). The first row refers to the SOAP data of Rotterdam [15] while the second row refers to simulation data for Rotterdam. (A) Rotterdam

data-HMW, MSM, WSW, respectively. (B) Simulated data-HMW, MSM, WSW, respectively.

Stolfi et al. [16], whereMSMhave a higher impact on the prevalence
of infection compared to HMW. These observations highlight the
importance of considering different risk groups and their respective
contributions to the overall prevalence of gonorrhea infection in
different regions.

In Figure 6, we present the dynamics of the simulations over a
period of 208 weeks, corresponding to 4 years. Figure 6A display
the total percentage of infected individuals while Figure 6B display
the percentage of infected individuals within each community.
The solid lines in both plots represent the median percentage of
infected individuals averaged over 50 simulations, while the shaded
areas indicate the interquartile ranges. It is evident that the model
successfully reproduces the endemic nature of gonorrhea infection
observed in Rotterdam, exhibiting a narrow range of variability.
This demonstrates the robustness of our model in capturing
the observed patterns. Additionally, the model accurately reflects
the differential impact of each community on the prevalence
of gonorrhea, which is a crucial factor in formulating effective
intervention strategies.

3. Discussion

The strength of the presented model lies in its ability to
accurately represent various risk groups within a population.
Unlike many previous studies that focused solely on MSM in

a dynamic framework or included different risk groups in a
static framework, our model considers different risk groups based
on sexual orientation in a dynamic scheme. Additionally, we
investigate groups that are interconnected through individuals who
have diverse sexual preferences, such as bisexual men and women.
This capability to model interacting communities with distinct
sexual behaviors in a dynamic framework is particularly significant
as it greatly influences the overall dynamics of STI transmission
and prevalence. As far as our knowledge extends, this represents
the initial undertaking in modeling interacting risk groups within
a dynamic framework. Consequently, it is important to highlight
that, although desirable for scientific scrutiny, a direct comparison
with existing models is not achievable. However, if we restrict
our model only to one community than we get the same model
introduce in Whittles et al. [9].

We have provided the mathematical details of the agent-based
multi-level model and demonstrated its capability to reproduce the
infection dynamics in various regions and assess the contribution
of different communities to the spread of gonorrhea. The strength
of this model lies in the fact that each agent represents an individual
with specific characteristics that influence the infection dynamics.
By expanding and incorporating additional characteristics, we can
generalize the model to describe a broader range of infectious
phenomena, such as considering different infection sites and
varying antibiotic resistance. Importantly, this model can also
incorporate intervention strategies aimed at controlling the spread
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FIGURE 5

Percentage of infected individuals visiting the clinics in Rotterdam from 2010 to 2018. Panel (A) reports the total percentage of infected individuals

while panel (B) report the percentage of infected individuals per sexual orientation, namely heterosexuals (HMW) and homosexuals (MSM and WSW).

of gonorrhea, making it versatile and adaptable formanaging public
health interventions.

The ultimate goal of the multi-level model is to contribute
to antimicrobial resistance (AMR) surveillance and facilitate
the introduction of new antimicrobial drugs while minimizing
the emergence of resistance. To achieve this, the model will
be extended to include different bacterial strains with varying
antibiotic resistance profiles, allowing for the representation of the
emergence of resistant strains. This can be implemented through a
probabilistic model that takes into account individual features such
as STI history and frequency of antibiotic treatments, providing
a more accurate replication of resistance dynamics within the
population of interest. Additionally, the model will be utilized
to generate scenarios that incorporate screening activities for
detecting asymptomatic infections, the use of different first and
second-line antibiotic treatments, and the tailoring of treatment
based on individual characteristics such as past antibiotic usage
or previous STIs. By simulating these scenarios, the model can
quantitatively assess and monitor the emergence of antimicrobial
resistance. Furthermore, the model can serve as a strategy for
guiding the introduction of novel antibiotics. The key output of the

model will be the evolution of resistant strains at the population
level. By comparing these dynamics across different scenarios, the
model provides a quantitative tool for monitoring AMR and offers
insights into strategies for the introduction of new antibiotics.

4. Materials and methods

The agent-based multi-level model is composed of two main
components: the between-host component and the within-host
component. The between-host component encompasses the sexual
contact network and the transmission model. The sexual contact
network is constructed with multiple layers that represent different
risk groups based on sexual orientation. Each risk group has its
own dynamics of sexual partnerships, which are modeled using
stochastic processes. This allows for the representation of diverse
sexual behaviors and interactions within and between risk groups.
The transmission model quantifies the probability of infection
during sexual intercourse using a probabilistic approach. On the
other hand, the within-host component focuses on the individual-
level dynamics of the infection. It incorporates a set of ordinary
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FIGURE 6

The simulations for Rotterdam depict the dynamic evolution of infected individuals over a span of 4 years (208 weeks on the x-axis). We conducted

50 simulations and computed the median value across all simulations, which is represented by the solid lines. The shaded areas correspond to the

interquartile ranges, providing a visual representation of the variability observed within the simulations. (A) Simulations for Rotterdam: Total

percentage of infected individuals in Rotterdam. (B) Simulations for Rotterdam: Percentage of infected individuals per sexual orientation in Rotterdam.

differential equations (ODEs) that describe the evolution of the
pathogen within an infected individual. These equations capture
the interactions between the pathogen and the host’s immune
response, taking into account factors such as pathogen replication,
immune response activation, and the use of antibiotic treatment. By
considering the within-host dynamics, the model can simulate the
progression of the infection and the effectiveness of interventions
at an individual level. By combining the between-host and within-
host components, the agent-based multi-level model provides a
comprehensive framework for studying the spread of infections
within a population. It allows for the exploration of complex
interactions between individuals, the impact of different risk
groups, and the effects of interventions on both the individual
and population levels. In Algorithm 1 we provide an algorithmic
description of the implementation of the agent based multi-level
model.

4.1. Dynamic sexual contact network

The sexual contact network in the agent-based multi-level
model is represented as a dynamic network, where each node
represents an individual or agent characterized by various features,
for instance gender and sexual orientation. The edges or links
between nodes represent sexual partnerships between individuals.
The network is structured into communities or layers that
correspond to different sexual orientations, including heterosexuals
and homosexuals. These communities capture the clustering
of individuals with similar sexual preferences. However, in
addition to within-community interactions, the model also allows
for interactions between communities through the presence of
bisexual individuals who can form partnerships with individuals
from different communities. In Figure 7 we provide a graphical
representation of the resulting network structure, namely obtained

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org

https://doi.org/10.3389/fams.2023.1241538
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Stolfi et al. 10.3389/fams.2023.1241538

FIGURE 7

Graphical representation of the multi-layer network with the formation and breakup of partnerships processes between two agents i and j, that are

modeled by Poisson processes whose rate are a
(

hi,hj

)

and d
(

hi,hj

)

, respectively as detailed in Section 4.1.1. Solid lines represent ongoing

partnerships, dashed lines represent potential new partnerships while crossed lines represent potential break of partnerships. It is worth noting that

the net on the left hand side is a network generated by our multi-layer dynamic network model with 300 nodes.

through our multi-layer dynamic network model with 300 nodes,
with the details of the process of formation and breakup.

The degree distribution of sexual contact networks typically
follows a power-law distribution, indicating that there are a
few highly connected individuals (hubs) and a large number of
individuals with few connections [20]. However, it is important
to note that different communities within the network may
exhibit different scale exponents, reflecting the diversity in
sexual behavior and partnership patterns among different sexual
orientations. To capture this diversity and enable interactions
between communities, a novel approach has been developed in
this model. This approach builds upon previous work on epidemic
dynamics in a single community, specifically the work by Whittles
et al. [9]. By extending and adapting this approach to the multi-
community case, the model can capture the complex mixing
patterns and dynamics of sexual partnerships within and between
communities.

4.1.1. Multi-layer dynamic network
Let N be the number of individuals in the network, hi =

(si, λi) be the feature vector of individual i, where si ∈ S =

{HM,HW,MSM,WSW} stands for the sexual orientation and
λi refers to the propensity to form new partnerships, whose
probability distribution is different among communities (or layers).
Sexual contacts naturally change over time, therefore formation
and breakup of partnerships between two agents i and j aremodeled
by Poisson processes whose rate are a

(

hi, hj
)

and d
(

hi, hj
)

,
respectively. Following Whittles et al. [9] let us assume d

(

hi, hj
)

=

φ a
(

hi, hj
)

, with φ > 1. This assumption reflects empirical findings
that a high number of concurrent sexual partnerships implies
a short duration of relationships. Since a Poisson process with
parameter τ can also be defined by stating that the time differences
between events of the process are exponential variables with mean
τ−1, the probability that agents i and j are in a partnership at time t

is given by

q0
(

hi; hj
)

=
d
(

hi; hj
)−1

a
(

hi; hj
)−1
+ d

(

hi; hj
)−1 .

Using this formula, we calculate the probability of agents i and
j being in a partnership in the upcoming year

q
(

hi; hj
)

= q0
(

hi; hj
)

+
(

1− q0
(

hi; hj
)) (

1− exp
(

−a
(

hi; hj
)))

= 1−

(

1+
a
(

hi; hj
)

d
(

hi; hj
)

)−1

exp
(

−a
(

hi; hj
))

. (1)

4.1.2. Degree distribution of partnership
The probability distribution of partnership of agent i in the past

years can be formally expressed as

P (hi) =

∫

�

q (hi; h) f (h) dh. (2)

where � is the event space of all agents and f (h) = f (λ|s) is the
probability density of the propensity λ given the sexual orientation
si. Since the sexual orientation is a discrete variable, the above
expression can be explicitly written as

P (si, λi) =
∑

s∈S

ψs

∫ ∞

0
q (λi, si; λ, s) f (λ|s) dλ, (3)

where ψs = Ns/(N − 1) and Ns is the number of individuals
having sexual orientation s. The degree distribution of agent i, i.e.,
the number of relationship in which agent i is involved, denoted
as ki, is a random variable following the binomial distribution,
namely ki ∼ Bin

(

Nsi − 1
)

P (λi, si) where Nsi is the number of
individuals which can form a partnerships with an agent having
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sexual orientation si. Therefore the degree distribution of agent i
is given by the expected value

ki =
(

Nsi − 1
)

P (λi, si) . (4)

As mentioned earlier, sexual contact networks typically exhibit
a power-law degree distribution [20]. Therefore, we assume that the
community with sexual orientation si follows a power-law degree
distribution based on data from the previous year

p
(

ki
)

= csik
−γsi . (5)

Clearly, since we are dealing with a finite set of individuals, the
power law cannot extend to infinity, so it is mandatory to introduce
two cut-offs for the distribution, k0,si and k∞,si . The constant csi can
be computed as

∫ k∞,si

k0,si

csk
−γsi dk = csi





k
1−γsi
∞,si − k

1−γsi
0,si

1− γsi



 = 1,

and

csi =
1− γsi

k
1−γsi
∞,si − k

1−γsi
0,si

. (6)

Now we can use the method of transformation to compute the
degree distribution of the community having sexual orientation si:

p
(

ki (λ|si)
)

= f (λ|si)

(

dk (λ|si)

dλ

)−1

. (7)

The density of λ|si is then obtained as

f (λ|si) = csik
−γsi

(

dk (λ|si)

dλ

)

. (8)

Integrating both sides between 0 and λ we obtain

F (λ|si) =

∫ λ

0
f
(

λ
′

|si

)

dλ
′

=

∫ λ

0
csik
−γsi dk

(

λ
′

|si

)

= csi
k (λ|si)

1−γsi − k
1−γsi
0,si

1− γsi
(9)

which gives the following formula

k (λ|si) =

(

1− γsi
csi

F (λ|si)+ k
1−γsi
0,si

)
1

1−γsi
. (10)

4.1.3. Closed expression for formation and
breakup rates

Now there are two formulae for the degree distribution of
sexual contact for the orientation si, Equations (4) and (10).
Assuming a suitable and realistic expression for the probability
that agents i and j are in a partnership in a given year, q

(

hi; hj
)

,
we can derive an explicit expression for the coefficients governing

partnership formation and dissolution. These coefficients, in turn,
determine the dynamics of the sexual network.

We assume that

q
(

hi; hj
)

= q
(

λi, λj|si, sj
)

=

{

g (λi|si) g
(

λj|si
)

if si = sj

ḡ2M
(

si, sj
)

if si 6= sj
. (11)

The first hypothesis is reasonable since in the case of the same
sexual orientation the probability of being in a relationship can
be factorized by the product of the same relationship propensity
function, g

(

λj|si
)

, characterizing the particular sexual orientation.
The second hypothesis states that there is a small and constant
probability, ḡ, of being in a relationship with a bisexual individual.
This is because the model contemplate a mating term between
different sexual orientations, but it must not be too large to heavily
influence the network of sexual contacts, as it happens in reality.
Here M

(

si, sj
)

is the symmetrical mating matrix between different
sexual orientation, whose values is 1 if si = HW and sj = MSM or
si = HM and sj =WSW, 0 otherwise.

From the above assumptions and Equations (4) and (3), it
follows

ki (λi|si) =
(

Nsi − 1
)
∑

sj∈S
ψsj

∫∞
0 q

(

λi, λ|si, sj
)

f
(

λ|sj
)

dλ

=
(

Nsi − 1
)

[

∑

j : sj 6=si
ψsj ḡ

2M
(

si, sj
)

+ψsig (λi|si)
∫∞
0 g (λ|si) f (λ|si) dλ

]

=
(

Nsi − 1
)

[

∑

j : sj 6=si
ψsj ḡ

2M
(

si, sj
)

+ψsig (λi|si)E
[

g|si
]]

(12)

We integrate the previous formula as follows

∫ ∞

0
ki (λ|si) f (λ|si) dλ

=
(

Nsi − 1
)





∑

j : sj 6=sj

ψsj ḡ
2M

(

si, sj
)

+ ψsiE
[

g|si
]2



 .

By using Equation (10) the left hand side is computed as

∫ ∞

0
ki (λ|si) f (λ|si) dλ

=

∫ ∞

0

(

1− γsi
csi

F (λ|si)+ k
1−γsi
0,si

)
1

1−γsi
f (λ|si) dλ

=

(

csik
1−γsi
0,si + 1− γsi

) (

k
1−γsi
0,si +

1−γsi
csi

)
1

1−γsi − csik
2−γsi
0,si

2− γsi
(13)

Therefore

(

Nsi − 1
)





∑

j : sj 6=sj

ψsj ḡ
2M

(

si, sj
)

+ ψsiE
[

g|si
]2





=

(

csik
1−γsi
0,si + 1− γsi

) (

k
1−γsi
0,si +

1−γsi
csi

)
1

1−γsi − csik
2−γsi
0,si

2− γsi
(14)
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and

E
[

g|si
]

=

√

√

√

√

√

1

ψsi

(

Nsi − 1
)

(

1− γsi
)

(

k
2−γsi
∞,si − k

2−γsi
0,si

)

(

2− γsi
)

(

k
1−γsi
∞,si − k

1−γsi
0,si

)

√

√

√

√−
∑

j : sj 6=sj

ψsj

ψsi

ḡ2M
(

si, sj
)

. (15)

To obtain g (λ|si), we consider Equation (12) rearranging it as
follows

g (λ|si) =
1

E
[

g|si
]





k (λ|si)

ψsi

(

Nsi − 1
) −

∑

sj 6=si

ψsj

ψsi

ḡ2M
(

si, sj
)



 , (16)

This is the closed formula for g (λ|si) that can be used
to compute the rate of formation and breakup of partnerships
recalling the assumption d

(

hi, hj
)

= φ a
(

hi, hj,
)

and therefore

q
(

hi, hj,
)

= 1−
exp

(

−a
(

hi, hj
))

1+ 1
φ

, (17)

which can be inverted as

a
(

hi, hj
)

=







− ln
[

(

1− g (λi|si) g
(

λj|sj
))

(

1+ 1
φ

)]

if si = sj

− ln
[

(

1− ḡ2
)

(

1+ 1
φ

)]

M
(

si, sj
)

if si 6= sj

(18)

While the process of formation and breakup of partnerships is
similar to the one proposed in Whittles et al. [9] (which in turn
is based on the work in Servedio et al. [21]), the introduction of a
multi-layer network in a dynamic framework, where each layer is
characterized by its own degree distribution and the layers have the
possibility to interact, represents the novelty of this work.

4.2. Transmission model

A crucial element in the multi-level description of gonorrhea
infection dynamics is played by the transmission model, which
stochastically describes both the number of intercourses occurring
in the unit of time and the probability of infection transmission
during an intercourse.

The number of intercourses in the unit of time is described
by a poisson process whose parameter depends on the population
size and on the data available for the population. At each time
step, the extracted number of intercourses are randomly distributed
among the various possible couples active at that time. Once a
couple is selected, if one agent of the couple is infected and the
other is uninfected, then a new infection could take place with a
transmission probability computed according to the model already
presented in Stolfi et al. [16] that is inspired by Craig et al. [2].

Briefly, the probability of transmission, denoted as β , is
determined by the bacterial load l:

β
(

l
)

= βp
ln
(

l/lc
)

ln
(

lp/lc
) ,

where lc is the critical load, representing the minimum bacterial
load required for transmission, lp is the bacterial peak load, and βp
is the transmission probability at the peak load.

4.3. Within-host model

Once an agent becomes infected, the multi-level model
incorporates the within-host component to capture the dynamics
of the infection. This component consists of a set of ordinary
differential equations that describe the competition and evolution
of the immune system and bacteria within the infected agent.
The within-host model takes into account different dynamics
depending on whether the infected agent seeks treatment
or not, which is influenced by the presence or absence
of symptoms.

We begin with the model proposed in Caudill and Lawson
[22], which considers a single site of infection and a single
strain of bacteria. When an agent becomes infected, the immune
response is activated, resulting in the slowing down of bacterial
growth through a term that represents the general immune
response. The following equations provide a detailed description of
this process:

Ṗ = aP

(

1−
P

Pmax

)

−
bPI

s+ P
− zP

İ =
cP

v+ P
+

dI

m+ I
− qI,

where the parameters are described in Table 2. A further discussion
of this model together with the trajectories of the dynamics can be
found in Stolfi et al. [19].

4.4. Algorithmic description of the
integrated model

Require: sexual contact network SCN

Initialize the network instance Net(0) from SCN

for t = 0 to T do

Create new partnerships, i.e., choose
{

(i, j)
}

such

that i and j become a partnership

Define new breakups, i.e., choose
{

(i′, j′)
}

such that

i′ and j′ are not a partnership anymore

Update the network (Net(t)← updated network)

Select the partnerships having a sexual

intercourse, i.e.,
{

(ĩ, j̃)
}

for all (ik, jk)in
{

(ĩ, j̃)
}

do

if (ik or jk is infected) then

update the bacterial load by using the

within-host model

define whether the susceptible partner gets

the infection by using transmission model

if (infection transmitted) then

update the status of the agent ik or jk

end if

end if

end for

end for

Algorithm 1. Multi-level model algorithm.
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