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Cost e�ectiveness and optimal
control analysis for bimodal
pneumonia dynamics with the
e�ect of children’s breastfeeding

Fekadu Mosisa Legesse*, Koya Purnachandra Rao and

Temesgen Duressa Keno

Department of Mathematics, College of Natural and Computational Science, Wallaga University,

Nekemte, Ethiopia

The global impact of exclusive versus inclusive nursing on particular baby

mortalities and morbidities from conception to 6 months is examined in

this study. Exclusive breastfeeding practices are more crucial and e�ective in

preventing illness outbreaks when there is no access to appropriate medications

or vaccinations. Additionally, this study takes optimal control theory into account,

applying it to a system of di�erential equations that uses Pontryagin’s Maximum

Principle to describe a bimodal pneumonia transmission behavior in a vulnerable

compartment. The proposed pneumonia transmission model was then updated

to include two control variables. These include preventing illness exposure

in susceptible children through various preventative measures and treating

infected children through antibiotics, hospital care, and other treatments. If the

threshold number (R0) is less than one, then treatment and prevention rates

are increased, and the disease will be wiped out of the population. However,

when (R0) is greater than one, then the disease persists in the population,

which indicates that prevention and treatment rates are low. To evaluate the

cost-e�ectiveness of all potential control techniques and their combinations,

the incremental cost-e�ectiveness ratio (ICER) was determined. The simulation

results of the identified model show that the interventions of prevention and

treatment scenarios were the most successful in eradicating the dynamics of the

pneumonia disease’s propagation during the epidemic, but they were ine�ective

from a cost-saving perspective. Therefore, limiting pneumonia transmission to

prevention alone during an outbreak is the most economical course of action.

KEYWORDS

inclusive and exclusive, cost-e�ectiveness, pneumonia, optimal control, S1S2EIR model,

ICER, breastfeeding

1. Introduction

Infant (child) disability and death are the primary continuing public health issues

worldwide. However, newborn (child) mortality and morbidity rates are greatly impacted by

deaths caused by infectious illnesses. Infectious diseases can take 7 from 10 childhood deaths

throughout the world. Pneumonia is one of the most common causes of death worldwide

among acute respiratory infections, accounting for 30% of all child fatalities. Ninety-five

percent of cases of pneumonia occur in developing countries. As a result, infectious illnesses

are more likely to kill newborn babies in these countries [1, 2].
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Among acute respiratory infection (ARI) diseases, pneumonia

is the one that affects children’s lungs. Approximately 740,180

children aged 05 years died because of pneumonia in 2019,

which accounts for 14 and 22% of all deaths of children

below 5 years and 1–5 year(s) old, respectively, and deaths are

higher in Asia and Africa [3]. Hence, of infectious diseases,

pneumonia causes the most children’s deaths worldwide [4].

Pneumonia can be caused either by viruses, bacteria, or fungi;

among these, bacterial pneumonia is the leading cause of

death for children under 6 years of age. By immunizing

against the disease, providing appropriate nutrition (EBF), and

decreasing environmental variables, pneumonia can be avoided [5].

Additionally, using many control measures, such as prevention,

treatment, and reducing indoor air pollution, can halt the spread of

pneumonia. The following research has been carried out to address

non-exclusive EBF or a lack of EBF, one of the main risk factors for

infectious illnesses.

The first natural diet for infants is their mother’s milk,

which contains all the nutrients and energy required for a

baby throughout the first 6 months of life [6]. According to

WHO recommendations, newborns should receive only breast

milk for the first 6 months of their lives. Thereafter, additional

(complementary) foods are allowed for 18 months or more,

followed by breastfeeding. Hence, infants (children) can achieve

good growth and development [7]. Therefore, for children in

the first months of life up to 6 months, any additional food

or liquid (even water) is not permitted except vitamins, mineral

supplements, and medicine[7, 8].

An intervention of double control has been offered to help

eliminate the mortality and disability rates among children because

of infectious diseases. Breastfeeding is one of the most popular

and cost-effective strategies (interventions) for preventing pediatric

pneumonia and all other causes of death [9–11]. Furthermore,

the WHO, UNICEF, AAP, AAFP, and NNPE advocate starting

breastfeeding promptly within the first hour after birth and

continuing to exclusively breastfeed with human milk for the

following 6 months to reduce the baby (child) death and disability

rate. Continual breastfeeding with other appropriate foods will

follow for the first 2 years of life to ensure that the children have

healthy optimal growth and development [2].

Most of the studies assure that over two-thirds of the deaths

occurring globally in the first year of life of children are often

associated with a loss of exclusive breastfeeding or inappropriate

feeding exercises [10]. Sub-optimal breastfeeding contributes to

18% of acute respiratory disease deaths among children under 5

years old in low-income countries [6].

Evidence suggests that if the EBF length is properly maintained,

it can significantly increase immunity and lower the risk of

death and disability from communicable and non-communicable

diseases in both the early and advanced phases [12, 13]. EBF

throughout the first 6 months of a baby’s (or child’s) life can

typically lower the likelihood of developing any infectious diseases

[14]. For the first 6 months of their lives, infants (children) who

were nursed exclusively had a higher risk of contracting infectious

diseases than those who were not [9, 15].

According to [10, 16], 1.24 million or 96% of child deaths

occur during the first 6 months of life due to inappropriate EBF

practices, and the mortality rate is higher in Africa and Asia.

Additionally, poor breastfeeding results in more than 236,000

child deaths annually in a select few nations, including Nigeria,

China, Mexico, Indonesia, and India [17]. Furthermore, in low-

and middle-income nations, inadequate breastfeeding was found

to be responsible for 18 and 30% of acute respiratory and diarrheal

mortalities, respectively [18]. To reduce child mortality among

children under the age of five, the WHO advises that an EBF of

90% is needed globally. Furthermore, the Sustainable Development

Goals (SDGs) plan envisaged an increase in EBF of 50% by 2025

[19, 20]. According to the study by [12, 20], raising the EBF rate in

middle-income and developing nations to an ideal level can reduce

infant mortality among children under the age of five by 13 to 15%.

Mathematical models are frequently used to (i) analyse

the dynamics of the spread of infectious diseases like cholera,

bronchiolitis, pneumonia, and others; (ii) employ a variety of

control methods to reduce or stop the spread of infectious diseases;

and (iii) predict the effects of these diseases on people’s lives, socio-

economic systems, and national health programmes and policies.

However, none of the aforementioned studies take into account a

mathematical model method to illustrate the transmission behavior

of infectious diseases, particularly pneumonia.

Several mathematical modeling studies have been conducted

to estimate the potential burden of the endemic and the various

control approaches for the endemic disease of pneumonia in

children. Tilahun et al. [21] considered a non-linear deterministic

model for the transmission of the pneumonia disease in a

population of variable size, together with optimal control and cost-

effectiveness measures. Agusto et al. [22] studied the advantage of

isolation strategies and quarantine effectiveness measures against

outbreaks of disease in the absence of appropriate medicines

or vaccines.

Swai et al. [23] formulated an optimal control of pneumonia

transmission in two strains by incorporating drug resistance.

Additionally, how measures such as vaccination, public awareness

campaigns, and therapy can reduce pneumonia transmission

patterns should be considered. Tessema et al. [24] also developed

a deterministic mathematical model of drug-resistant pneumonia

with ideal preventive measures and cost-effectiveness evaluations.

Based on the simulation values of optimal controls for the proposed

model, they concluded that the combination of prevention,

treatment, and screening of infectious persons is the most

efficient and cost-effective way to remove pneumonia infections

from the community. The diagnostic problem of distinguishing

between bacterial and non-bacterial pneumonia is the main reason

antibiotics are used to treat pneumonia in children. Consequently,

Wu et al. [25] present causal Bayesian networks (BNs) in their

model as useful tools for resolving this problem because they

provide succinct maps of the probabilistic relationships between

variables and produce results in a way that is understandable

and justified by incorporating domain expert knowledge and

numerical data.

Kotola and Mekonnen [26] created a deterministic model

to demonstrate the efficacy of interventions for pneumonia and

meningitis co-infection and provide a reasoned recommendation

to public health officials, decision-makers in government policy,

and programme implementers. Owing to their shared clinical
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characteristics and significant effects on human morbidity and

mortality, pneumonia and tuberculosis are two of themost frequent

airborne infections. Therefore, in a community of populations with

both diseases, co-infection of the two diseases becomes inevitable.

Owing to a lack of resources, the significant illness burden that these

endemics together impose necessitates an efficient intervention to

mitigate the impact. Thus, the authors in Gweryina et al. [27] use a

pragmatic approach to create an SEIRmodel for the co-dynamics of

tuberculosis and pneumonia. Using a variety of parameters, Naveed

et al. [28] investigated the dynamics of delayed pneumonia-like

infectious illnesses. Kassa et al. [29] and Rafiq et al. [30] offer

a mathematical model of COVID-19 that includes bimodal virus

transmission in a susceptible compartment.

Until now, only Legesse et al. [31] formulated a S1S2CIR

deterministicmathematical model by grouping susceptible children

as inclusively and exclusively breastfeed children and verify that

inclusive breastfeeding children are more exposed to pneumonia

than those children breastfeed exclusively. However, they did

not take into account optimal control analysis in their research.

Furthermore, no research has been carried out so far to assess

the impact of EBF practice on child mortality rates and the

efficacy of EBF practice in lowering pediatric mortality due to

infectious disease (pneumonia).With this as a backdrop, the study’s

objective is to apply mathematical models with optimal control

and accessible methods to treat pneumonia in infants between

the ages of 0 and 6 months who do not participate in EBF. By

increasing the prevalence of EBF and stepping up efforts to reduce

non-exclusive breastfeeding, the findings of this study will help in

making decisions that will reduce child mortality and impairment

from pneumonia.

The article is organized as follows. The proposed model is

formulated in the Construction of a Bimodal Pneumonia Model

section and its analysis is presented in the Analyzing the Model

Qualitatively section. Stability analysis of the equilibria is then

discussed in the Equilibrium Point Stability section. Extension

of the proposed model into optimal control is presented in

The Proposed Model Under Optimal Control section. Numerical

simulations are performed to support the analytical results

discussed in the Analyzing the Model Qualitatively section and

are presented in the Results and Discussion. Cost-effective analysis

is performed in the subsequent section followed, finally, by

the Conclusion.

2. Construction of the bimodal
pneumonia model

In this model, the overall population size N(t) is divided

into five mutually exclusive compartments based on the disease

condition of the population as a whole. Furthermore, the total

population size N(t) at any given time t is given by:

N(t) = SI(t)+ SE(t)+ E(t)+ I(t)+ R(t) (1)

At any time instant t ∈ [0,∞), the real valued differentiable

state variables SI(t),SE(t),E(t),I(t), and R(t) represent the number of

susceptible children that are not exclusively breastfed, susceptible

children that are exclusively breastfed, children exposed to the

disease, children that are seriously infected, and children who have

obtained temporary immunity from pneumonia, respectively. This

research assumes that the two susceptible classes SI(t) and SE(t) are

enlisted into the population at rates of 31 and 32, respectively.

They acquire pneumonia infection through effective contact with

the infected humans I(t) or via inhalation of contaminated air

droplets at a force of infection given by

fi =
βiI
N , where i = 1, 2 and βj = kPj, where j = 1, 2.

Here βj = kPj for j = 1, 2 denotes the transmission rates.

However, k stands for the number of contacts, and Pj is the

probability of close contact rates between two susceptible humans

with the infected individuals causing infection.

Humans exposed to pneumonia advance at a γ rate to the

infected compartment I(t). The sub-populations are all reduced

at the same time because a consistent natural mortality rate of

µ is taken into account for each compartment. The parameters

σ and α at the infected stage indicate the mortality rate from

pneumonia disease, which only falls in the infected class, and

the percentage of children who recover due to therapy or innate

immunity, respectively. Those individuals that have recovered

from pneumonia are assumed to have partial immunity and again

become susceptible at a rate of δ. This study also assumes that

a child who has obtained partial immunity does not again join

exclusively breastfed children because as one individual is infected

with infectious diseases they cannot regain their original immunity

[31]. Using the parameter values, basic model assumptions, and

state variables described above, we have generated a systematic

diagram (Figure 1), and the corresponding model equation is given

by Equation (2).



























dSI
dt

= 31 + δR− f1SI − µSI
dSE
dt

= 32 − f2SE − µSE
dE
dt

= f1SI + f2SE − (γ + µ)E
dI
dt

= γE− (σ + α + µ)I
dR
dt

= σ I − (µ + δ)R

(2)

With the following initial conditions:

SI(0) ≥ 0, SE(0) ≥ 0,E(0) ≥ 0, I(0) ≥ 0,R(0) ≥ 0 (3)

3. Analyzing the model qualitatively

This subsection explains the qualitative behavior of the model

being considered for the long run.

3.1. Positivity and boundedness of solution

To ensure that the generated dynamical system’s (2) positivity

of solution is both epidemiologically meaningful and theoretically

well-posed, we must show that all the state variables of the

dynamical systems are non-negative.

Theorem 3.1. All the solutions of Equation (2) with the positive

initial condition given on Equation (3) are non-negative.
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FIGURE 1

Model flow chart.

Proof. From Equation (3), all the state variables are positive or zero

at the initial time, then T > 0. To show the positivity of all the state

variables select any equation of Equation (2), randomly let it be

dSI

dt
= 31 + δR− f1SI − µSI

dSI

dt
+ (f1 + µ)SI = 31 + δR

d

dt
[e

∫ T
0 (f1+µ)dt′SI] = (e

∫ T
0 (f1+µ)dt′ )[31 + δR] (4)

where t′ ∈ [0,T] and each state variable are non-negative at t′.

Equation (4) is integrated with regard to time to produce

SI(t) = k1SI(0)+ k1

[

∫ T

0
(e

∫ T
0 (f1+µ)dt′ )[31 + δR]dt

]

≥ 0 (5)

where k1 = e−
∫ T
0 (f1+µ)dt′ . From Equation (4), we observe that SI(t)

is non-negative for all t > 0. In a similar fashion, one can show

SE(t) ≥ 0,E(t) ≥ 0, I(t) ≥ 0 and R(t) ≥ 0.

Theorem 3.2. The closed positive invariant set � is a biologically

and mathematically well-posed region of the initial value problems

defined on Equations (2), (3), where

� = {(SI , SE,C,E,R) ∈ R5+ :

0 < N(SI , SE,E, I,R) ≤
31 + 32

µ
} (6)

Proof. For convenience, we let S1 = SI , S2 = SE, r1 = γ + µ, r2 =

σ + α + µ, r3 = µ + δ throughout this study. Differentiating

Equation (1) with respect to t gives

dN

dt
=

dSI

dt
+

dSE

dt
+

dE

dt
+

dI

dt
+

dR

dt

dN

dt
= 31 + 32 − µ(SI + SE + E+ I + R)− αI

dN

dt
= 31 + 32 − µN − αI (7)

In the absence of infectious rate Equation (7) reduced to

dN

dt
≤ 31 + 32 − µN. (8)

Integrating both sides of Equation (8) with regard to t and taking

the limit of Equation (8) as t −→ ∞, we obtain

N(t) ≤
31 + 32

µ
−

31 + 32 − µN0

µ
e−µt (9)

N(t) ≤
31 + 32

µ
. (10)

Therefore, each solution of the initial value problems on Equations

(2) and (3) remains in Equation (6) for all t > 0. This result can be

summarized as lemma below.

Lemma 3.1. � is a positively invariant region for the Equation (2)

with initial condition Equation (3) in R5+.

3.2. Threshold parameter

Before calculating the expression for threshold quantity (R0),

determine pneumonia free of Equation (2). For this aim, equate

the right hand side of Equation (2) to zero. After that, substitute

in S1(t) = SI(0) > 0, SE(t) = SE(0) > 0,E(t) = E0 = I(t) = I0 and

R(t) = R0 = 0. Thus,

E0 =

(

31

µ
,
32

µ
, 0, 0, 0

)

. (11)
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Hence, E0 is the pneumonia free-equilibrium of Equation (2). By

usingDFEwe can account the threshold number (R0) following the

work in Agusto [22], and we used the method of next generation

matrix to obtain the required threshold number and from the

transmission matrix

F = DF(E0) =

[

∂F1(E0)
∂E

∂F1(E0)
∂I

∂F2(E0)
∂E

∂F2(E0)
∂I

]

.

Where F1(t) = f1SI + f2SE and F2(t) = γE

F =

[

0 31β1+32β2
31+32

γ 0

]

(12)

and the transition matrix V is given by

V = DF(E0) =

[

∂V1(E0)
∂E

∂V1(E0)
∂I

∂V2(E0)
∂E

∂V2(E0)
∂I

]

.

where V1 = r1E and V2 = r2I.

⇒ V =

[

r1 0

0 r2

]

(13)

Hence, using the next generation matrix calculated from Equations

(12), (13) we get

FV
−1 =

1

r1r2

[

0 r1
β131+β232

31+32

γ r2 0

]

(14)

Now, the governing eigenvalue of Equation (14) represents R0 of

Equation (2), which is given by

R0 =

√

γ (β131 + β232)

r1r2(31 + 32)
(15)

The threshold number (R0) is a quantity that determines how

pneumonia spreads within the population or fades out of the

society. IfR0 < 1 then the disease will fade out of the community.

This shows that more exclusivity in breastfeeding children is added

to the susceptible class. Because exclusively breastfed individuals

have high natural immunity, they are less exposed to the diseases.

R0 > 1 shows that there is a continuation of disease spread within

the population.

3.3. Existence of the model’s endemic
equilibrium point

In this part, we examine the condition known as EE of Equation

(2). The fundamental motivation for this equilibrium is that it is

utilized to estimate how long pneumonia will continue to affect

the population. To identify the prerequisites for an equilibrium in

which community pneumonia is endemic (that is, at least one of

E∗ 6= 0 or I∗ 6= 0 ), denoted by Ee = (S∗I , S
∗
E,E

∗, I∗,R∗). To find

Ee, equate each equation in Equation (2) to zero and express each

state variable in terms of the force of infection at the steady state (f ∗i
where i=1,2), given by

f ∗1 =
β1I

N∗
, f ∗2 =

β2I

N∗

S∗I = 31r3+δσ I∗

r3(f
∗
1 −µ)

,

S∗E = 32
f ∗1 −µ

=
32(31+32)

µ(β2I∗−(31+32))
,

E∗ = r2I
∗

γ
R

2
0,

I∗ =
γE∗

r2
,

R∗ = σ
r3
R

2
0

(16)

Therefore, the existence of Ee in Equation (16) depends onR0,

meaning that Ee from Equation (2) exists ifR0 > 1.

4. Equilibrium point stability analysis

The two equilibria of Equation (2) are shown in this subsection

to have both local and global asymptotic stability. We employ the

Jacobianmatrices of system on Equation (2) at DFE and EE for local

stability and the Lyapunov function for the global stability of both

equilibria to confirm this stability.

4.1. Local stability analyses

Theorem 4.1. The disease free-equilibrium point (E0), of Equation

(2) corresponding to the considered model is locally asymptotically

stable ifR0 < 1 and not stable otherwise.

Proof. To prove this, first determine the Jacobian matrix evaluated

at E0 becomes

J(Eo) =















−µ 0 0 −
β131

31+32
δ

0 −µ 0 −
β232

31+32
0

0 0 −r1
β131+β232

31+32
0

0 0 γ −r2 0

0 0 0 σ −r3















(17)

The characteristic polynomial of Equation (17) becomes

9(λ) = (λ + µ)2(λ + r3)(λ
2 + D1λ + D2) (18)

The first three eigenvalues of Equation (18) are λ = −µ a double

root, λ = −r3. All are negative, and we use the RouthHurwitz

criterion to confirm the presence of the remaining eigenvalues in

the manner described below:

D1 = r1 + r2 > 0,

D2 = r1r2 − γ
β132 + β2α

31 + 32
= r1r2(1−R

2
0) > 1

As a result, the RouthHurwitz criteria’s required condition is

confirmed wheneverR0 < 1. Therefore, the DFE (E0) of Equation

(2) is locally asymptotically stable (LAS) whenR0 < 1.

Theorem 4.2. The disease endemic equilibrium point (Ee), of

Equation (2) is LAS in � ifR0 > 1 and unstable otherwise.
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Proof. To prove the local stability of Ee, first determine the desired

Jacobean matrix J(Ee) of system (2) at the endemic equilibrium,

which is given as Equation (19)

J(Ee) =

















−(f ∗1 + µ) 0 0 −
β1S

∗
I

N∗ δ

0 −(f ∗2 + µ) 0 −
β2S

∗
E

N∗ 0

f ∗1 f ∗2 −r1
β1S

∗
I+β2S

∗
E

N∗ 0

0 0 γ −r2 0

0 0 0 σ −r3

















(19)

The characteristics polynomial corresponding to Equation (19) is

(λ + (f ∗1 + µ))(λ + (f ∗2 + µ))(λ + r1)(λ + r2)(λ + r3) = 0 (20)

The first three roots of Equation (20) are λ = −r1 < 0, λ = −r2 <

0, and λ = −r3 < 0 and the remaining roots can be calculated from

λ2 + a1λ + a2

where

a1 = f ∗1 + f ∗2 + 2µ and a2 = f ∗1 f
∗
2 + 2µ(f ∗1 + f ∗2 )+ µ2

and f ∗1 , f
∗
2 are defined as the force of infection at the

endemic equilibrium.

As λ2 + a1λ + a2 has both roots with a negative real part (and the

system with characteristic equation P(λ) = λ2 + a1λ + a2 = 0

is stable) if and only if a1, a2 > 0, clearly a1, a2 > 0. Hence by

RouthHurwitz criteria, for R0 > 1, the endemic equilibrium (Ee)

is LAS.

4.2. Global stability analysis

In this section, we use LaSalle’s invariant principle to analyse

the global stability of both equilibria of Equation (2) by creating

suitable Lyapunov functions.

Theorem 4.3. If R0 < 1, then the disease free-equilibrium (E0) of

Equation (2) is GAS in � and unstable otherwise.

Proof. We first create a suitable Lyapunov function of the type

L(t) = k1E(t)+ k2I(t) (21)

where ki, i = 1, 2 are positive real numbers to be chosen later. Upon

differentiating Equation (21) along its trajectories with respect to t

and simplifying, the result yields

dL

dt
= k1

dE

dt
+ k2

dI

dt
,

dL

dt
= k1(f1SI + f1SE − r1E)+ k2(γE− r2I) (22)

Now, we choose k1 = γ and k2 = r1, and simplification of Equation

(22) yields

dL

dt
= γ (f1SI + f1SE)− r1r2I,

dL

dt
=

[

γ

(

β131 + β232

31 + 32

)

− r1r1

]

I (23)

Simplification and some rearrangement of Equation (23) will give:

dL

dt
= −r1r2

(

1−R
2
0

)

I (24)

Thus, dL
dt

< 0 whenever R0 < 1. Additionally, dL
dt

= 0 if

and only if E(t) = 0 and I(t) = 0. Hence, the largest compact

invariant set {(SI , SE,E, I,R) ∈ � :
dL
dt

= 0} is the singleton E0,

which is the disease-free equilibrium. Therefore, using LaSalle’s

invariant principle [32], we conclude that the point E0 is globally

asymptotically stable in � ifR0 < 1.

Theorem 4.4. The disease endemic equilibrium point (Ee) of

Equation (2) is GAS in the invariant region stated in Theorem 3.2

as � if R0 > 1.

Proof. To prove the global behavior of Ee, we systematically

construct a Lyapunov function V of the form as Legesse et al. [31]

V(xi) =

n
∑

1

(

xi − x∗i − x∗i ln

(

xi

x∗i

))

(25)

where xi represents the compartments in the model and i = 1,...5

and x∗i is the endemic equilibrium point. This is defined as

V(S∗I , S
∗
E,C

∗, I∗,R∗) =

(

SI − S∗I − S∗I ln

(

SI

S∗I

))

+

(

SE − S∗E − S∗Eln

(

SE

S∗E

))

+

+

(

E− E∗ − E∗ln

(

E

E∗

))

+

(

I − I∗ − I∗ln

(

I

I∗

))

+

(

R− R∗ − R∗ln

(

R

R∗

))

Then, after differentiating V with regard to time t, the following

is obtained.

dV
dt

=
(

1−
S∗I
SI

)

dSI
dt

+
(

1−
S∗E
S2

)

dSE
dt

+
(

1− E∗

E

)

dE
dt

+

(

1− I∗

I

)

dI
dt

+
(

1− R∗

R

)

dR
dt

(26)

Next, substituting dSI
dt
, dSE

dt
, dE
dt
, dI
dt
, dR
dt

in Equation (26) using

Equation (2) gives

dV

dt
=

(

1−
S∗I
SI

)

(31 + δR− f1SI − µSI)+

(

1−
S∗E
SE

)

(32 − f2SE − µSE)+

(

1−
E∗

E

)

(f1SI + f2SE − (γ + µ)E)+

(

1−
I∗

I

)

(γE− (σ + α + µ)I)+

(

1−
R∗

R

)

(σ I − (µ + δ)R)

(27)
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=

(

SI − S∗I
SI

)

(

31 + δR− (f1 + µ)(SI − S∗I )− (f1 + µ)S∗I
)

+

(

SE − S∗E
SE

)

(

32 − (f2 + µ)(SE − S∗E)− (f2 + µ)S∗E
)

+

(

E− E∗

E

)

(

f1SI + f2SE − (γ + µ)(E− E∗)− (γ + µ)E∗
)

+

(

I − I∗

I

)

(

γE− (σ + α + µ)(I − I∗)− (σ + α + µ)I∗
)

+

(

R− R∗

R

)

(

σ I − (µ + δ)(R− R∗)− (µ + δ)R∗
)

.

We can put dV
dt

as dV
dt

= 91 − 92 where

91 = 31 + 32 + δR+ f1SI + γE+ σ I + (f1 + µ)
S∗I

2

SI
+

(f2 + µ)
S∗E

2

SE
+ (γ + µ)

E∗2

E
+ (µ + δ)

R∗2

R
.

92 =
(SI − S∗I )

2

SI
(f1 + µ)+ 31

S∗I
SI

+ δR
S∗I
SI

+ (f1 + µ)S∗I+

(SE − S∗E)
2

SE
(f2 + µ)+

S∗E
SE

32 − (f1 + µ)S∗E +
f1SIE

∗

E
+ f2SE+

(f2SEE
∗

E
− (γ + µ)

(E− E∗)2

E
− (γ + µ)E∗ − γE

I∗

I
−

(σ + α + µ)
(I − I∗)2

I
+ (σ + α + µ)I∗ + (σ + α + µ)

I∗2

I
+

σ I + σ I
R∗

R
− (µ + δ)

(R− R∗)2

R
+ (µ + δ)R∗.

Thus, if P < N, then dV
dt

≤ 0. Hence, dV
dt

≤ 0

when R0 > 1. Clearly, dV
dt

= 0 if and only if SI =

S∗I , SE = S∗E,E = E∗, I = I∗, and R = R∗. Therefore,

the largest compact positive invariant in set {(SI , SE,E, I,R) ∈

� :
dV
dt

= 0} is the singleton Ee, which is a disease

endemic equilibrium of Equation (2). Generally, by LaSalle’s

invariant principle, Ee is GAS in the biologically feasible region

whenR0 > 1.

5. The proposed model under optimal
control

This section focuses on using optimum control techniques

with the model under consideration from Equation (2).

In a short amount of time, we were able to manage or

reduce the diseases in the community with the use of these

strategies. The pneumonia model is expanded to include the

following two control variables, each of which is defined as

follows:

u1: a campaign to prevent the spread of the disease among people

who are vulnerable.

u2: by treating infectious diseases, a treatment effort is made to

minimize infection or maximize recovery.

After incorporating u1 and u2 in Equation (2), we obtain the

following optimal control model Equation (28).



























dSI
dt

= 31 + δR− (1− u1)f1SI − µSI
dSE
dt

= 32 − (1− u1)f2SE − µSE
dE
dt

= (1− u1)(f1SI + f2SE)− (γ + µ)E
dI
dt

= γE− (σ + u2)I − (α + µ)I
dR
dt

= (σ + u2)I − (µ + δ)R

(28)

The control set U is Lebesgue measurable and has the following

definition in order to explore the optimal levels of the controls:

U = {(u1(t), u2(t))} : {0 ≤ u1 < 1, 0 ≤ u2 < 1, 0 ≤ t ≤ T} where

{0 ≤ u1 < 1, 0 ≤ u2 < 1, 0 ≤ t ≤ T} is the set of admissible

controls. Our goal is to find a control u and SI , SE,E, I,

and R that minimize the proposed objective function J

given below, while maintaining the lowest cost of control

implementation in Equation (2). The proposed objective

functional J should follow the epidemic Equation (2), which

is given by

J(u1, u2) = min
u1 ,u2

∫ tf

0
(b1E+ b2I +

1

2

2
∑

i=1

wiu
2
i )dt (29)

subject to Equation (3), where b1 and b2 are the weight positive

constants associated with the number of exposed children and

infected children, respectively, while w1 and w2 are positive

constants, present the relative cost weight, which is associated

with control measures u1 and u2, respectively. We assume

costs are non-linear in nature; hence, the control variables in

J are in second degree polynomial form [21, 23]. The major

thing that is required of us is to reduce the number of

exposed and affected children while maintaining a low cost.

Thus, we are going to find optimal controls (u∗1 , u
∗
2), such

that

J(u∗1 , u
∗
2) = min{J(u1, u2)/ui ∈ U},

where U = (u1, u2): each ui is measurable

with 0 ≤ ui < 1 ,i = 1, 2 for t ∈

[0, tf ].

5.1. The Hamiltonian and optimality system

Here, applying the principle of Pontryagin [34], Maximum

Principle, we can drive the necessary conditions that the optimal

control solutionmust satisfy [35]. Therefore, this principle converts

the model Equations (28), (29) into a problem of minimizing a

Hamiltonian, H, point-wise with respect to u1 and u2, and we

obtained a Hamiltonian (H) defined as:

H(t, x(t), u(t), λ(t)) = f (t, x(t), u(t))+ λg(t, x(t), u(t))

where

f (t, x(t), u(t)) = blE+ b2I +
1

2
w1u

2
1 +

1

2
w2u

2
2,

g(t, x(t), u(t)) = (g1, g2, g3, g4, g5)
T ,
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where

g1 = 31 + δR− (1− u1)f1SI − µSI ,

g2 = 32 − (1− u1)f2SE − µSE,

g3 = (1− u1)(f1SI + f2SE)− (γ + µ)E,

g4 = γE− (r2 + u2)I,

g5 = (σ + u2)I − (µ + δ)R.

.

Hence the Hamiltonian becomes

H(SI , SE,E, I,R, t) = f (E, I, u1, u2, t)+ λ1
dSI
dt

+ λ2
dSE
dt

+ λ3
dE
dt

+

λ4
dI
dt

+ λ5
dR
dt

H(SI , SE,E, I,R, t) = f (E, I, u1, u2, t)+λ1g1+λ2g2+λ3g3+λ4g4+λ5g5

H = blE+b2I+
1

2
w1u

2
1+

1

2
w2u

2
2+λ1g1+λ2g2+λ3g3+λ4g4+λ5g5

(30)

where f (E, I, u1, u2, t) = b1E + b2I +
1

2

∑2
i=1 wiu

2
i , λi, i = 1, 2

are the adjoint variable functions which are determined by using

Pontryagin’s maximal principle [34] and use Swai et al. [23] for

verification of existence of the optimal control pairs.

Theorem 5.1. There exists adjoint variable λi, where i = 1, ..., 5

with transversality conditions λi(tf ) = 0, i = 1, ..., 5 for an optimal

control (u∗1 , u
∗
2) that minimizes J(u1, u2) such that:

dλ

dt
= −

∂H

∂X
,

where X = (SI , SE,E, I,R)
T and λ = (λ1, λ2, λ3, λ4, λ5)

T λ(T) = 0

transidentality condition.

Now,

dλ1

dt
= − ∂H

∂SI
= −(λ1(0− (1− u1)f1 − µ)+

λ2(0)+ λ3((1− u1)(f1)+

λ4(0)+ λ5(0))

= λ1((1− u1)f1 + µ)− λ3(1− u1)f1

dλ2
dt

= − ∂H
∂SE

= −(λ2(λ1(0)− (1− u1)f2 − µ)+ λ3((1− u1)(f2)+

λ4(0)+ λ5(0))

= λ2((1− u1)f2 + µ)− λ3(1− u)f2

dλ3

dt
= −

∂H

∂E
= −(b1+λ1(0)+λ2(0)+λ3(−(γ+µ))+λ4(γ )+λ5(0))

= −b1 + λ3(γ + µ)− λ4γ = −b1 + λ3γ1 − λ4γ

dλ4

dt
= −

∂H

∂I
= −(b2 −

λ1β1(1− u1)SI

N
−

λ2β2(1− u1)SE

N
+

λ3(1− u1)(β1SI + β2SE)

N
− λ4(σ + u2 + α + µ)− λ5(σ + u2)

= −b2 + λ1β1(1− u1)
31

31 + 32
+ λ2β2(1− u1)

32

31 + 32
−

λ3(1− u1)

(

β131 + β232

31 + 32

)

+ λ4(γ2 + u2)− λ5(σ + u2)

dλ5

dt
= −

∂H

∂R
= −(λ1σ + λ2(0)+ λ3(0)+ λ4(0)− λ5(µ + δ))

= −(λ1δ − λ5(µ + δ)) = −λ1δ + λ5γ3

In a similar manner, we obtained the controls by solving the

equation ∂H
∂ui

= 0 at u∗i , for i = 1, 2 in accordance with Pontryagin

[34]’s methodology and obtained:

w1u1 + λ1f1SI + λ2f2SE − λ3(f1SI + f2SE) = 0

u1 =
(λ3 − λ1)β131 + (λ3 − λ2)β232

w1(31 + 32)
I

u∗1 = max

{

0,min

{

1,
(λ3 − λ1)β1SI + (λ3 − λ2)β2SE

w1N
I

}}

Similarly ∂H
∂u2

= 0

w2u2 − λ4I + λ5I = 0

From this

u2 =
(λ4 − λ5)I

w2

This implies that

u∗2 =











u2, if 0 < u2 < 1

0, if u2 < 0

1, if u2 > 1

The above equation in compact notation is

u∗2 = max

{

0,min

{

1,
(λ4 − λ5)I

w2

}}

TABLE 1 Pneumonia model parameter values with their source.

Parameter Value References

α 0.33 [21]

31 0.02 Assumed

32 0.5 Assumed

µ 0.01 [21]

σ 0.0238 [33]

k 0− 10 [23]

δ 0. [21]

pj j = 1, 2 0.89-0.99 [23]

γ 0.1096 Assumed
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Considering the bounds of the control quintuple, we have

u∗1 = max
{

0,min
{

1, (λ3−λ1)β131+(λ3−λ2)β232

w1(31+32)
I
}}

u∗2 = max
{

0,min
{

1, (λ4−λ5)I
w2

}} (31)

The optimality system is obtained from the state Equation (29)

together with adjoint variables and the transversality condition

in Theorem 5.1 by including the characterized control set and

initial condition.

dSI
dt

= 31 + δR− (1− u1)f1SI − µSI
dSE
dt

= 32 − (1− u1)f2SE − µSE
dE
dt

= (1− u1)(f1SI + f2SE)− (γ + µ)E
dI
dt

= γE− (σ + u2)I − (α + µ)I
dR
dt

= (σ + u2)I − (µ + δ)R
dλ1
dt

= (1− u1)f1(λ1 − λ3)+ λ1µ
dλ2
dt

= (1− u1)f2(λ2 − λ3)+ λ2µ
dλ3
dt

= −b1 + λ3γ1 − λ4γ
dλ4
dt

= −b2 + (1− u1)(λ1 − λ3)
β1SI
N + (1− u1)

(λ2 − λ3)
β2SE
N + λ4(r2 + u2)− λ5(σ + u2)

dλ5
dt

= −λ1δ + λ5(µ + δ)

(32)

FIGURE 2

The pneumonia model’s trajectory of solutions converges to (A) DFEP and (B) EEP.

FIGURE 3

(A) Dynamics of sub-populations for the DFE point. (B) The phase portrait for SI(t) and SE(t) vs. E(t).
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FIGURE 4

Simulation of the optimal model showing the e�ect of prevention on (A) not exclusively breastfeed individuals, (B) exclusively breastfeed individuals,

and (C) exposed individuals.

λi(tf ) = 0, i = 1, ..., 5

SI(0) = SI0, SE(0) = SE0,E(0) = E0, I(0) = I0,R(0) = R0

Therefore, using the optimality system 32, it is possible to calculate

the optimal control. Consequently, the optimal problem is minimal

at control u∗1 and u∗2 , as shown by the fact that the second

derivatives of the Lagrangian with regard to u1 and u2, respectively,

are positive.

6. Results and discussion

To analyse the dynamics of pneumonia disease with or without

control measures, numerical simulations are performed on the

suggested model and optimality system using the parameter values

indicated in Table 1. In addition, we assumed the initial population

size to be SI(0) = 40; SE(0) = 100;E(0) = 50; I(0) = 15;

and R(0) = 1 for the purpose of numerical simulation. The weight

constant values are chosen as b1 = 3; b2 = 3;w1 = 0.05 and

w2 = 0.03. First, we simulate the pneumonia model for the case

R0 = 0.8513 < 1, which indicates that the pneumonia disease

dies out from the society. As a result, the pneumonia model’s

solution trajectory moves toward a disease-free equilibrium point.

The disease-free equilibrium point is demonstrated to be locally

asymptotically stable as all the trajectories of the model converge

to DFE, see Figure 2A. Next, we plotted the graphics for the case

R0 = 1.4232 > 1, which implies that the disease is endemic.

In this case, the solution curves are converging to the endemic

equilibrium point, which verifies the linear stability of the EE point

(see Figure 2B).

Now, to extend the proposed model to optimal control, we

focus on the parameter values and initial population, which give
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FIGURE 5

Simulations showing (A) the optimal use of treatment only (u2) and (B) its control profile.

R0 = 1.4232 > 1 to analyze the model. In light of the fact

that diseases are still prevalent in society, adding control factors

to the mode is appropriate. Figures 3–6 demonstrate the impact of

prevention and treatment on the dynamics of pneumonia.

The plot in Figure 3A illustrates that subpopulations converge

to the DFE point, which indicates that pneumonia has been

eliminated from the community. Moreover, it can be observed

that the two susceptible populations decrease while the exposed

and infected children increase for a few years and decrease

rapidly afterward to the DFE point. Figure 3B reveals that

even if controls are applied, non-exclusively breastfed children

are more exposed to pneumonia than exclusively breastfed

children. In general, from Figures 2A, 3A, we can easily see

the impact of control variables on the transmission dynamics

of pneumonia.

6.1. Contingency plans

We utilized the following scenarios to assess how each

regulation would affect the dynamics of pneumonia spread:

(i) Optimal use of prevention (u1 only).

(ii) Optimal use of treatment (u2 only).

(iii) Optimal use of prevention (u1) and treatment

(u2) intervention.

6.1.1. Scenario A: control of pneumonia with
prevention only

This scenario shows the use of only one control measure,

prevention (u1), and the other controls were set to zero. As

clearly observed from Figures 4A, B, with the optimal use of

a prevention strategy, the two susceptible individuals increase

due to the prevention strategy, and when we compare it with

the case free of prevention, the number of susceptibilities of

individuals to the diseases is less. Moreover, the number of

total exposed humans decreases more with control than when

there is no control, as depicted in Figure 4C. Since the number

of infection averted human from pneumonia disease due to

this strategy is less in number, hence additional intervention

is required.

6.1.2. Scenario B: control of pneumonia with
treatment only

Scenario B is shown in Figures 5A, B, which illustrate that

treatment has a significant impact in reducing the number

of children infected with pneumonia after 14 years. It can

be noted that the number of infected individuals slightly

decreases and becomes effective after some time; hence,

more interventions are needed to eliminate the disease from

the community.

6.1.3. Scenario C: optimal use of the two controls
This strategy demonstrates the effect of the optimal use

of prevention for the exposed humans and treatment for the

infectious humans to decrease the number of exposed and

infected individuals in the society. Additionally, this intervention

reduces the spread of pneumonia dynamics governed by model

(2) in the population. The numbers of exposed individuals

and infectious individuals decrease more rapidly when the two

control scenarios are in use compared with when controls are

not used or one control is used, as depicted in Figures 6A, B.

Figure 6F reveals that the optimal use of prevention. u1(t) is

maximum at 100% throughout the proposed days until reaching

the final time that maximum prevention is applied to control

pneumonia. Optimal use of treatment u2(t) is kept at the maximum
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FIGURE 6

Simulations demonstrating optimal use of prevention (u1) and treatment (u2) on (A) E (B) I (C) SE (D) SI (E) R and (F) its control profile.

level for 48 days before arriving at the minimum at the final

intervention time. Figures 6C–E reveal, respectively, the size of SI ,

SE, and R increases compared with non-control and one control

intervention. This confirms that a maximum number of children’s

pneumonia diseases are averted due to the intervention of the

two controls.
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7. Cost-e�ectiveness analysis

In this section, we present cost-effectiveness analysis, which

is used to evaluate the benefits related to a health intervention(s)

or strategy (strategies) (for instance treatment and prevention), to

elaborate the strategy’s costs [22]. The number of infections averted

is given as the difference between total infectious individuals

without control and total infectious individuals with control. Using

the parameter values in Table 1 and initial conditions of state

variables with the weight constant values chosen, the ICER is

determined for each intervention labeled as prevention, treatment,

and a combination of both. The prevention strategy includes

vaccination (immunization), personal hygiene, avoiding exposure

to people who are ill, covering a cough, and adequate nutrition

(scenario A), while the treatment intervention involves antibiotics

that stop the infection from progressing (these medicines are

used to treat bacterial pneumonia), hospital treatment (allowed

for more severe cases), rest, etc. (scenario B). The combination of

prevention and treatment scenario C. This is obtained by balancing

the change between the costs and health outcomes of these

intervention strategies; usually obtained by using the incremental

cost-effectiveness ratio (ICER), which is described as:

ICER =
change in total costs between strategies

change in health benefits between strategies
(33)

where the numerator of the ICER represents the difference in cost-

benefit and the denominator measures the change in health benefit.

According to the simulation outcomes of the optimality system,

the control scenarios are then ranked in ascending order of total

number of infections averted, i.e., prevention of infections in

susceptible children using vaccines, personal hygiene and others

(strategy A), treatment of infected individuals with antibiotics

(strategy B), and a combination of prevention and treatment

(strategy C), as shown in Table 2.

The ICER is obtained through the following computation:

ICER(B) =
1102.5

701.9053
= 1.5707

ICER(A) =
346.4642− 1102.5

1665.791− 701.9053
= −0.7827

ICER(C) =
1753.1540− 346.4642

2178.746− 1665.791
= 2.741

Now, comparing strategy A and B incrementally, the ICER for

the two competing strategies is calculated as above and it shows that

ICER (B) > ICER (A). From this, we can see that strategy A saves

0.7827 more than strategy B, and strategy B is a bit more expensive.

Hence, we excluded strategy B from the set of competing strategies,

and finally, we compared strategies A and C as depicted in Table 3.

From ICER (A) and ICER (C) in Table 3 we can see that strategy C

saves 2.741 than strategy A. Hence, we exclude strategy C, because

it is a bit expensive. Therefore, we conclude that strategy A the

cheapest of all compared strategies, that meant it is the most cost-

effective for pneumonia disease control intervention strategies.

TABLE 2 Incremental cost-e�ectiveness ratio in increasing order of total

infections averted.

Strategies Total infections averted Total cost ICER

StrategyB 701.9053 1102.5 1.5707

StrategyA 1665.791 346.4642 –0.7827

StrategyC 2178.746 1753.1540 2.741

TABLE 3 Comparison between intervention strategies A and C.

Strategies Total infections averted Total cost ICER

StrategyA 1665.791 346.4642 0.2080

StrategyC 2178.746 1753.1540 2.7423

8. Conclusion

This study is concerned with the mathematical analysis of a

pneumonia transmission model with naturally acquired immunity

in the presence of effective exclusively breastfed infants and a

lack of naturally acquired immunity due to the loss of exclusively

breastfed infants. This work also shows that if the threshold number

is smaller than unity, then the pneumonia-free equilibrium point

is both locally and globally asymptotically stable, which means

pneumonia is wiped out of the community. If the threshold

number is greater than unity, then an endemic equilibrium of

the model occurs, which shows the persistence of the diseases in

the population.

To control pneumonia spread dynamics in a population,

multiple time-dependent control variables, including prevention

using vaccines, personal hygiene, etc., treatment of infectious

humans using antibiotics, hospital treatment, and rest are

considered. An analysis of the optimal control model is carried out

theoretically, and the model is simulated to determine the effects

of combining the two control intervention strategies on the spread

dynamics of pneumonia in the community. It is shown that the

number of infected children is minimized through prevention and

treatment intervention strategies. Throughout this work, based on

the results in Table 3, we recommend the prevention of susceptible

children from being exposed to the diseases using vaccination,

public health education, etc., to reduce new exposed cases and the

number of infected children due to pneumonia in our society with

the least cost.

In general, we considered cleanliness as a method of

preventing pneumonia in children under the age of five in the

earlier studies on the dynamics of bimodal pneumonia [31].

However, in the present study, we considered the extension

of the bimodal pneumonia model to optimal control using

two time-dependent control measures, namely prevention and

treatment. In addition, we analyzed the cost-effectiveness of

intervention strategies. The result of the analysis reveals that

prevention strategies are the most cost-effective way of eradicating

pneumonia. Therefore, the present study is more effective and cost-

effective in preventing pneumonia transmission than the previous

study.
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