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In this article, we study the sampling recovery problem for certain relevant

multivariate function classes on the cube [0, 1]d, which are not compactly

embedded into L∞([0, 1]d). Recent tools relating the sampling widths to the

Kolmogorov or best m-term trigonometric widths in the uniform norm are

therefore not applicable. In a sense, we continue the research on the small

smoothness problem by considering limiting smoothness in the context of

Besov and Triebel-Lizorkin spaces with dominating mixed regularity such that the

sampling recovery problem is still relevant. There is notmuch information available

on the recovery of such functions except for a previous result by Oswald in the

univariate case and Dinh Dũng in the multivariate case. As a first step, we prove

the uniform boundedness of the ℓp-norm of the Faber coe�cients at a fixed

level by Fourier analytic means. Using this, we can control the error made by a

(Smolyak) truncated Faber series in Lq([0, 1]
d) with q < ∞. It turns out that the

main rate of convergence is sharp. Thus, we obtain results also for S1
1,∞

F([0, 1]d),

a space “close” to S1
1
W([0, 1]d), which is important in numerical analysis, especially

numerical integration, but has rather poor Fourier analytical properties.

KEYWORDS

sampling recovery, limiting smoothness, non-compact embedding, Faber basis, mixed

smoothness

1. Introduction

In this article, we continue to study the approximation power of Smolyak sparse

grid sampling recovery for multivariate function classes with small mixed smoothness

Srp,θB([0, 1]
d) and Srp,θF([0, 1]

d) based on the multivariate Faber representation [1, 2] of f .

The advantage of such a representation is the fact that the coefficient functionals only use

discrete functional values of f , see (2.1) and (2.3) below, which allow for various applications.

For instance, Kempka et al. [3] used the Faber system to analyze the path regularity of the

Brownian motion, where a small smoothness setting is also required.

It provides a powerful tool for studying various situations of the sampling recovery

problem where errors are measured in Lq. Surprisingly, the proposed method turned out to

be sharp in several regimes. A systematic discretization of multivariate functions with mixed

smoothness in terms of Faber coefficients is given [1, 2, 4, 5], see also [6] for further history.

In this article, we study an endpoint situation for the sampling recovery problem on the cube

[0, 1]d, where r = 1/p in the source space and the fine parameter θ ≤ 1 is sufficiently small.

This still allows for an embedding into the continuous functions (therefore making function

evaluations possible). However, the embedding into Lq is only compact if q < ∞.

Recent observations regarding the problem of optimal sampling recovery of function

classes in L2 bring classes with mixed smoothness to the focus again since several newly

developed techniques only work for Hilbert-Schmidt operators [7–9] or, more generally,

in situations where certain asymptotic characteristics (approximation numbers) are square
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summable [10, 11]. We need new techniques for situations where

this is not the case. In Temlyakov and Ullrich [12, 13], the authors

consider the range of small smoothness where one is far away

from square summability of the corresponding widths. However,

we have the compact embedding into L∞ for those examples. This

embedding seems to be of crucial importance when (non-linear)

sampling widths (̺m)m, defined by

̺m(F,X) := inf
x1 ,...,xm

inf
R :Cm→X

sup
f∈F

‖f − R(f (x1), ..., f (xm))|X‖,

withX = L2 are related to certain asymptotic characteristics such as

Kolmogorov (dm)m or best m-term trigonometric widths (σm)m in

L∞. It has been shown by Temlyakov [14], Bartel et al. [9] and Jahn

et al. [15] that the following inequalities hold for relevant function

classes F

̺lin
bm(F, L2) ≤

C

(b− 1)3/2
dm(F, L∞), (1.1)

̺⌈Dm(logm)3⌉(F, L2) . σm(F, L∞) .

Here, we have some constants C,D > 0 and oversampling

parameter 1 < b ≤ 2 in the first relation. We speak about

linear sampling widths denoted by (̺lin
m )m if the reconstruction

mapping R is linear. The second relation might not need a compact

embedding into L∞ at first glance. However, the proof heavily

relies on certain compactness properties of the embedding, see [15].

Clearly, a compact embedding into L∞ allows us to use the decaying

Kolmogorov widths for controlling the linear sampling widths. As

discussed by Temlyakov and Ullrich [12], sparse grid techniques

[16] perform asymptotically worse by a log factor for classes with

mixed smoothness compactly embedded into L∞.

In this article, we continue our research in this direction. Note

that there are several relevant (multivariate) function classes F

which are continuously but not compactly embedded into L∞.

Thus, at least the first relation in (1.1) is useless. In fact, only

few results have been published on reconstructing functions from

samples, which only satisfy a Besov regularity with smoothness

r = 1/p or Sobolev type regularity with r = 1 and p = 1. Our aim

is to investigate this problem systematically in the Fourier analytic

context. As a first step, we prove the following relation for the Faber

coefficients d2
j,k(f ) of f , namely

sup
j∈Nd

−1

( ∑

k∈Zd

|d2j,k(f )|
p
)1/p

.
∥
∥f
∣
∣S

1/p
p,min{p,1}B(R

d)
∥
∥

in case 1/2 ≤ p ≤ ∞. Our contribution is a proof that works for

Fourier analytic defined spaces and allows for incorporating also

the extreme cases S21/2,1/2B(R
d) and S0∞,1B(R

d) [in contrast to Dũng

[17], Theorem 3.2]. It represents an extreme case of the considered

limit situation, in which the Faber approximation can benefit from

the highest regularity of smoothness equals 2. The above relation

directly implies that the truncated Faber representation still works

well when we consider errors in Lq with q < ∞. We make progress

toward the solution of an open problem mentioned [[18], Section

3.2]. The univariate class B
1/p
p,1 ([0, 1]) and its approximation by

equidistant samples in [0, 1] have been considered by Oswald [19]

in the beginning of the 80s. In 2011, Dũng [[17], Theorem 3.2]

obtained results for the multivariate situation in the framework of

Besov spaces with a bounded mixed difference. In contrast to the

spaces considered by Dũng [17], we highlight that the Besov and

Triebel-Lizorkin spaces considered here are defined using Fourier

analytic building blocks. Note that in the considered limiting

situation and p < 1, it is not yet known whether these spaces

coincide with the ones considered by Dũng [see [20], Remark

2.3.4/2].

Notation. In general, N denotes the natural numbers, N0 =

N ∪ {0}, N−1 = N0 ∪ {−1}, Z denotes the integers, R denotes the

real numbers, and C denotes the complex numbers. The letter d is

always reserved for the underlying dimension in R
d,Zd, etc. For

a ∈ R, we denote a+ := max{a, 0}. For 0 < p ≤ ∞ and x ∈ R
d,

we denote |x|p = (
∑d

i=1 |xi|
p)1/p with the usual modification in

the case p = ∞. We further denote x+ : = ((x1)+, . . . , (xd)+)

and |x|+ : = |x+|1. By (x1, . . . , xd) > 0, we mean that each

coordinate is positive. If X and Y are two (quasi-)normed spaces,

the (quasi-)norm of an element x in X will be denoted by ‖x|X‖.

The symbolX↪Y indicates that the identity operator is continuous.

For two sequences an and bn, we will write an . bn if there exists a

constant c > 0 such that an ≤ c bn for all n. We will write an ≍ bn
if an . bn and bn . an.

2. The tensor Faber basis

As a main tool, we will use decompositions of functions in

terms of a Faber series expansion.

2.1. The univariate Faber basis

Let us briefly recall the basic facts about the Faber basis taken

from [[4], 3.2.1 and 3.2.2]. For j ∈ N0 and k ∈ Dj := {0, 1, ..., 2j−1},

we denote the dyadic interval by Ij,k given by

Ij,k = [2−jk, 2−j(k+ 1)] .

Definition 2.1. [The univariate Faber system] Let

h(t) =









1 : t ∈ [0, 1/2) ,

−1 : t ∈ (1/2, 1] , and

0 : otherwise ,

the Haar function and v(x) be the integrated Haar function, i.e.,

v(x) := 2

∫ x

0
h(t) dt, x ∈ R ,

and for j ∈ N0 and k ∈ Dj, then

vj,k(·) : = v(2j · −k) .

For notational reasons, we let v−1,0 = x and v−1,1 := 1 − x for

j = −1 and obtain the univariate Faber basis

{vj,k : j ∈ N−1, k ∈ Dj} ,

where D−1 := D1 = {0, 1}.
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Faber [21] observed that every continuous (non-periodic)

function f on [0, 1] can be represented as

f (x) = f (0) · (1− x)+ f (1) · x−
1

2

∞
∑

j=0

2j−1
∑

k=0

12
2−j−1 (f , 2

−jk)vj,k(x),

(2.1)

with uniform convergence [see e.g., [4], Theorem 2.1, Step 4]. The

analysis of Besov and Triebel-Lizorkin spaces on R as defined in

Section 4 requires a version of the Faber representation acting on

R. For this purpose, we extend the number of translations to the

whole integers and obtain

f (x) =
∑

k∈Z

f (k)v−1,k(x)−
1

2

∞
∑

j=0

∑

k∈Z

12
2−j−1 (f , 2

−jk)vj,k(x), (2.2)

where v−1,k(·) := v0,0((· + 1+ k)/2).

2.2. The multivariate Faber basis

Let f (x1, . . . , xd) be a d-variate function, f ∈ C(Rd).

By fixing all variables except xi, we obtain by g(·) =

f (x1, . . . , xi−1, ·, xi+1, . . . , xd), a univariate continuous function.

By applying (2.2) in every such component, we obtain the

representation

f (x) =
∑

j∈Nd
−1

∑

k∈Zd

d2j,k(f )vj,k(x) (2.3)

in C(K), K ⊂ R
d compact, where

d2j,k(f ) := (−2)−|e(j)|1
2,e(j)

2−(j+1) (f , xj,k), j ∈ N
d
−1, k ∈ Z

d ,

vj,k(x1, . . . , xd) := vj1 ,k1 (x1) · · · vjd ,kd (xd), j ∈ N
d
−1, k ∈ Z

d ,

and |e(j)| denotes the cardinality of e(j). Here we put e(j) = {i : ji 6=

−1} and xj,k = (2−(j1)+k1, . . . , 2−(jd)+kd) .

In Section 6, we apply the Faber series expansion for functions

on the d-variate unit cube [0, 1]d. For this purpose, we simply

truncate the series expansion to all translations whose support has

a non-empty intersection with [0, 1]d. That is

Dj := Dj1 × · · · × Djd , j = (j1, . . . , jd) ∈ N
d
−1 .

With similar arguments as above, we obtain for f ∈ C([0, 1]d)

the representation

f (x) =
∑

j∈Nd
−1

∑

k∈Dj

d2j,k(f )vj,k(x) . (2.4)

3. Faber coe�cients and bandlimited
functions

In the sequel we deal with two tensor domains. On the one

hand the d-variate unit cube Id = [0, 1]d and on the other hand

the d-variate Euclidean space Rd. We use the notation

‖f ‖p :=
∥
∥f
∣
∣Lp(I

d)
∥
∥ :=

( ∫

Id
|f (x)|p dx

)1/p
< ∞,

with the usual modification in case p = ∞. The space C(Id) is

often used as a replacement for L∞(Id). It denotes the collection

of all continuous and bounded d-variate functions equipped with

the uniform norm. The computation of the Fourier transform (and

its inverse) of an L1-integrable d-variate function is performed by

the integrals (ξ ∈ R
d)

Ff (ξ ) =
1

(2π)d/2

∫

Rd
f (x)e−iξ ·x dx,

F
−1f (ξ ) =

1

(2π)d/2

∫

Rd
f (x)eiξ ·x dx ,

where ξ · x := ξ1x1 + · · · + ξdxd. To begin with, we recall

the concept of a dyadic decomposition of the unity. The space

C∞
0 (R) consists of all infinitelymany times differentiable compactly

supported functions.

Definition 3.1. Let 8(R) be the collection of all systems ϕ =

{ϕn(x)}∞n=0 ⊂ C∞
0 (R) satisfying

(i) suppϕ0 ⊂ {x : |x| ≤ 2} ,

(ii) suppϕn ⊂ {x : 2n−1 ≤ |x| ≤ 2n+1} , n = 1, 2, . . .,

(iii) for all ℓ ∈ N0, it holds sup
x,n

2nℓ |Dℓϕn(x)| ≤ cℓ < ∞, and

(iv)
∞∑

n=0
ϕn(x) = 1 for all x ∈ R.

Now we fix a system ϕ = {ϕn}n∈N0 ∈ 8(R). for ℓ =

(ℓ1, . . . , ℓd) ∈ N
d
0 , let the building blocks fℓ be given by

fℓ(x) = F
−1[ϕℓ1 (ξ1) · · ·ϕℓd (ξd)Ff (ξ )](x), x ∈ R

d . (3.1)

Because of the Paley-Wiener theorem, the functions fℓ are

entire analytic functions and therefore continuous. The goal of this

section is to derive bounds for fixed “levels” j of the Faber expansion

(2.3) of such a bandlimited function fℓ. To be more precise, we aim

at bounds for ‖
∑

k∈Zd d2j,k(fℓ)vj,k(·)‖p . Clearly, due to the compact

support of vj,k, wemay replace vj,k by the characteristic function χj,k

of the parallelepiped [2−j1k1, 2−j1 (k1+1)]×· · ·×[2−jdkd, 2
−jd (kd+

1)] . Note that for any continuous function f ∈ C(Rd)

∥
∥
∥

∑

k∈Zd

d2j,k(f )vj,k(·)
∥
∥
∥
p
≍

∥
∥
∥

∑

k∈Zd

d2j,k(f )χj,k(·)
∥
∥
∥
p

≍
(

2−|j|1
∑

k∈Zd

|d2j,k(f )|
p
)1/p

,

where 0 < p ≤ ∞. To perform this, we need some tools from

harmonic analysis. We state a mixed version of the Peetre maximal

inequality, proved in [[20], 1.6.4].

Lemma 3.2. [Peetre maximal inequality] Let 0 < p ≤ ∞ and

a > 1/p (a > 0 in case p = ∞). Furthermore, let f ∈ L1(Rd)

such that suppFf ⊂ [−b1, b1] × · · · × [−bd, bd], where b =

(b1, . . . , bd) ∈ R
d
+. Then there is a constant c > 0, only depending

on a and p but not on f and b, such that

∥
∥
∥ sup
y∈Rd

|f (x+ y)|

(1+ b1|y1|)a . . . (1+ bd|yd|)a

∥
∥
∥
p
≤ c ‖f ‖p .
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The following univariate pointwise estimate connecting

differences between bandlimited functions and Peetre maximal

operator is taken from [[22], Lemma 3.3.1].

Lemma 3.3. Let a, b > 0 and f ∈ L1(R) with suppFf ⊂ [−b, b].

Then there exists a constant C > 0 such that

|1m
h f (x)| ≤ Cmin{1, |bh|m}max{1, |bh|a} sup

y∈R

|f (x+ y)|

(1+ b|y|)a
.

The bound may be slightly improved when replacing pointwise

estimates with estimates involving Lp-norms. We have the

following.

Lemma 3.4. Let j, ℓ ∈ N0, a > 0, 0 < p ≤ ∞, and f ∈ C(R). Then

we have

‖ sup
|h|≤2−j

|f (x+ h)|‖p . 2ℓ/p‖ sup
|h|≤2−(j+ℓ)

|f (x+ h)|‖p

. 2ℓ/p
∥
∥
∥ sup
y∈R

f (x+ y)

(1+ |2j+ℓy|)a

∥
∥
∥
p

independent of x ∈ R, j, ℓ, and f .

Proof. We start with a pointwise estimate

sup
|h|≤2−j

|f (x+ h)| ≤ sup
|k|≤2ℓ−1

sup
|h|≤2−(j+ℓ)

|f (x+ k2−(j+ℓ) + h)|

≤
( ∑

|k|≤2ℓ−1

sup
|h|≤2−(j+ℓ)

|f (x+ k2−(j+ℓ) + h)|p
)1/p

.

Taking Lp-norms on both sides gives

‖ sup
|h|≤2−j

|f (x+ h)|‖p ≤
( ∑

|k|≤2ℓ−1

∫

R

sup
|h|≤2−(j+ℓ)

|fj+ℓ(x+ k2−(j+ℓ) + h)|p dx
)1/p

. 2ℓ/p‖ sup
|h|≤2−(j+ℓ)

|f (x+ h)|‖p .

Finally, we trivially observe

∥
∥
∥ sup
|h|≤2−(j+ℓ)

|f (x+ h)|
∥
∥
∥
p
=

∥
∥
∥ sup
|h|≤2−(j+ℓ)

2a|f (x+ h)|

(1+ 1)a

∥
∥
∥
p

.
∥
∥
∥ sup
|h|≤2−(j+ℓ)

|f (x+ h)|

(1+ 2j+ℓ|h|)a

∥
∥
∥
p

≤

∥
∥
∥ sup
y∈R

|f (x+ y)|

(1+ 2j+ℓ|y|)a

∥
∥
∥
p
.

(3.2)

In the next lemma, we combine both univariate bounds

and derive a multivariate estimate via iteration with respect to

coordinate directions. Let f ∈ L1(Rd) and fj+ℓ denotes the

bandlimited function from (3.1).

Lemma 3.5. Let 0 < p ≤ ∞, j ∈ N
d
−1, and ℓ ∈ Z

d. Then we have

∥
∥
∥

∑

k∈Zd

d2j,k(fj+ℓ)χj,k(·)
∥
∥
∥
p
. ‖fj+ℓ‖p

d
∏

i=1

min{22ℓi , 1}max{2ℓi/p, 1} .

Proof. Step 1. To provide a technically transparent proof of this

lemma, we start with the univariate case (d = 1). In the second

part of this proof, we deal with the multivariate case, which requires

more involved notation. For x ∈ R, we define

Fj,ℓ(x) :=
∑

k∈Z

d2j,k(fj+ℓ)χj,k(x) .

Let x ∈ [2−jk, 2−j(k+ 1)]. For this x, we have

|d2j,k(fj+ℓ)χj,k(x)| . |fj+ℓ(k · 2
−j + 2 · 2−(j+1))|

+ 2|fj+ℓ(k · 2
−j + 2−(j+1))| + |fj+ℓ(k · 2

−j)|

. sup
|h|.2−j

|fj+ℓ(x+ h)| .

Since χj,k(x) do not overlap, we receive

|Fj,ℓ(x)| =
∣
∣
∣

∑

k∈Z

d2j,k(fj+ℓ)χj,k(x)
∣
∣
∣ . sup

|h|.2−j

|fj+ℓ(x+ h)| .

By Lemma 3.4, we find

‖Fj,ℓ‖p . max{2ℓ/p, 1}
∥
∥
∥ sup
y∈R

fj+ℓ(x+ y)

(1+ |2j+ℓy|)a

∥
∥
∥
p

(3.3)

for some a > 0, which is at our disposal.

In case ℓ ≤ 0, we may continue arguing pointwise. First of all,

we have

|Fj,ℓ(x)| ≤ sup
|y|.2−j

|12
2−j−1 fj+ℓ(x+ y)| .

Using Lemma 3.3 and the fact that ℓ ≤ 0, we obtain

|Fj,ℓ(x)| ≤ 22ℓ sup
y∈R

|f (x+ y)|

(1+ |2j+ℓy|)a
. (3.4)

Combining (3.3) and (3.4) gives

‖Fj,ℓ(x)‖p .
∥
∥
∥ sup
y∈R

|f (x+ y)|

(1+ |2j+ℓy|)a

∥
∥
∥
p
max{1, 2ℓ/p}min{1, 22ℓ}.

Choosing a > 1/p and applying the Peetre maximal inequality in

Lemma 3.2 gives the result for d = 1 .

Step 2. We deal with the multivariate case and start with a

pointwise estimate of

Fj,ℓ(x) :=
∑

k∈Zd

d2j,k(fj+ℓ)χj,k(x) ,

where we apply the above procedure in every direction. In order

not to drown in notation, we introduce the following direction-wise

maximal operator

M
i
jf (x) := sup

|h|.2−j

|f (x+ eih)| ,

where ei = (0, . . . , 0
︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

d−i

). Clearly, for x ∈ R
d, we have

|Fj,ℓ(x)| .
( ∏

i : ℓi>0

M
i
ji

)

◦
( ∏

i : ℓi≤0

M
i
ji

)

◦
( ∏

i : ℓi≤0

1
2,i
2−ji−1

)

fj+ℓ(x) .
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Here we use the fact that we have in every direction

|1
2,i
2−j−1 fj+ℓ| ≤ M

i
ji
fj+ℓ(x),

including the case j = −1, where the difference is replaced by

the function value at the respective point. This case is included

in
(
∏

i : ℓi>0 M
i
j

)

since for ℓi < 0 there is nothing to prove in

this case. We use the triangle inequality in order to estimate the

difference by point evaluations. Taking sup over the step length

of this absolutely valued point evaluations leads to the direction-

wise maximal operator. In case ℓi ≤ 0, we keep the direction-wise

difference. Nevertheless, in order to get rid of the characteristic

function, we have to additionally apply a direction-wise sup also

in this case. Since it holds that

M
i
ji
f (x) ≤ M

i
ji
g(x)

with |f | ≤ |g|, we first estimate

∣
∣
∣

( ∏

i : ℓi≤0

1
2,i
2−j−1

)

fj+ℓ(x)
∣
∣
∣

pointwise from above using Lemma 3.3 iteratively. This gives

( ∏

i : ℓi≤0

1
2,i
2−j−1

)

fj+ℓ(x) . sup
yi∈R
i : ℓi≤0

|fj+ℓ(x+
∑

i : ℓi≤0
yiei)|

∏

i : ℓi≤0
(1+ 2ℓi+ji |yi|)a

∏

i : ℓi≤0

22ℓi ,

for any a > 0 . The maximal operators (
∏

i : ℓi≤0 M
i
ji
) go on the

same coordinates. Since ℓi ≤ 0 we clearly also have

( ∏

i : ℓi≤0

M
i
ji

)

◦
( ∏

i : ℓi≤0

1
2,i
2−j−1

)

fj+ℓ(x)

. sup
yi∈R
i : ℓi≤0

|fj+ℓ(x+
∑

i : ℓi≤0
yiei)|

∏

i : ℓi≤0
(1+ 2ℓi+ji |yi|)a

∏

i : ℓi≤0

22ℓi .

It remains to apply (
∏

i : ℓi>0 M
i
ji
) and take the Lp-norm, p <

∞. Here we use Lemma 3.4 iteratively:

∫

Rd
|Fj,ℓ(x)|

p dx

.

∫

· · ·

∫

{(xi)i : ℓi≤0}

∫

· · ·

∫

{(xi)i : ℓi>0}

∣
∣
∣

( ∏

i : ℓi>0

M
i
ji

)

◦
( ∏

i : ℓi≤0

M
i
ji

)

◦
( ∏

i : ℓi≤0

1
2,i
2−j−1

)

fj+ℓ(x)
∣
∣
∣

p ∏

i : ℓi>0

dxi
∏

i : ℓi≤0

dxi

.
d
∏

i=1

min{22pℓi , 1}max{2ℓi , 1}×

×

∫

· · ·

∫

{(xi)i : ℓi≤0}

∫

· · ·

∫

{(xi)i : ℓi>0}

(
( ∏

i : ℓi>0

M
i
ji+ℓi

)

sup
yi∈R
i : ℓi≤0

|fj+ℓ(x+
∑

i : ℓi≤0 yiei)|
∏

i : ℓi≤0
(1+ 2ℓi+ji |yi|)a

)p

∏

i : ℓi>0

dxi
∏

i : ℓi≤0

dxi .

Finally, we use the trivial estimate [already known from (3.2)]

to replace the operators Mi
ji+ℓi

by the Peetre maximal function.

This gives

∫

Rd

|Fj,ℓ(x)|
p dx .

d
∏

i=1

min{22pℓi , 1}max{2ℓi , 1}

∫

Rd

(

sup
y∈Rd

|fj+ℓ(x+ y)|

d∏

i=1
(1+ 2ℓi+ji |yi|)a

)p

dx

.

d
∏

i=1

min{22pℓi , 1}max{2ℓi , 1}‖fj+ℓ‖
p
p ,

if we choose a > 1/p . For the sake of completeness, let us

additionally consider the case p = ∞. We have

sup
x∈Rd

|Fj,ℓ(x)| . sup
x∈Rd

∣
∣
∣

( ∏

i : ℓi>0

M
i
ji

)

◦
( ∏

i : ℓi≤0

M
i
ji

)

◦
( ∏

i : ℓi≤0

1
2,i
2−j−1

)

fj+ℓ(x)
∣
∣
∣

.

d
∏

i=1

min{22ℓi , 1} sup
x∈Rd

sup
y∈Rd

|fj+ℓ(x+ y)|

d∏

i=1
(1+ 2ℓi+ji |yi|)a

.

d
∏

i=1

min{22ℓi , 1}‖fj+ℓ‖∞ ,

if we choose a > 0.

4. Besov and Triebel-Lizorkin spaces
with mixed smoothness

For the definition of the corresponding function spaces on R
d,

we refer to [1, 20, 23]. The corresponding function spaces on [0, 1]d

are defined via restrictions of functions on R
d [see [1], Section

3.4]. In this section, we mainly focus on the definition of Besov

and Triebel-Lizorkin spaces with dominating mixed (in the sequel

only called mixed) smoothness on R
d since they are crucial for our

subsequent analysis.We closely follow [[20], Chapter 2] and use the

building blocks fj(·) defined in (3.1).

Definition 4.1. [Mixed Besov and Triebel-Lizorkin spaces] (i) Let

0 < p, θ ≤ ∞, and r > (1/p − 1)+. If θ ≤ min{p, 1}, we admit

r = (1/p − 1)+. Then Srp,θB(R
d) is defined as the collection of all

f ∈ Lmax{p,1}(Rd) such that

‖f |Srp,θB(R
d)‖ϕ

:=
(∑

j∈Nd
0

2|j|1rθ‖fj‖
θ
p

)1/θ

is finite (with the usual modification if θ = ∞).

(ii) Let 0 < p < ∞, 0 < θ ≤ ∞, and r > (1/p − 1)+. Then

Srp,θF(R
d) is defined as the collection of all f ∈ Lmax{p,1}(Rd) such

that

‖f |Srp,θF(R
d)‖ϕ

:=

∥
∥
∥

(∑

j∈Nd
0

2|j|1rθ |fj(x)|
θ
)1/θ∥

∥
∥
p
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is finite (with the usual modification if θ = ∞).

It is noted that this definition is independent of the

chosen system ϕ in the context of equivalent (quasi-)norms.

Moreover, in the case min{p, θ} ≥ 1, the defined spaces

are Banach spaces, whereas they are quasi-Banach spaces in

the case min{p, θ} < 1. For details, we refer to [[20],

Section 2.2.4]. In the next lemma, there appears the condition

r > (1/p − 1)+, which is caused by the parameter range

in our Definition 4.1. All the subsequent embeddings, of

course, also hold true for the general situation, where r ∈

R. We have the following elementary embeddings [see [20],

Section 2.2.3].

Lemma 4.2. Let 0 < p < ∞ (including p = ∞ in the B-case),

0 < θ ≤ ∞, and r > (1/p − 1)+. If θ ≤ min{p, 1}, we admit

r = (1/p− 1)+ in the B-case. Furthermore, let A ∈ {B, F}.

(i) If ε > 0 and 0 < v ≤ ∞, then

Sr+ε
p,θ A(Rd)↪Srp,vA(R

d) .

(iia) If p < u < ∞, 0 < θ , θ1, θ2 ≤ ∞, and r − 1/p = t − 1/u,

then

Srp,θB(R
d)↪Stu,θB(R

d),

Srp,θ1F(R
d)↪Stu,θ2F(R

d) .

(iib) (Jawerth-Franke embedding I) If 0 < p < u < ∞, 0 < w ≤

∞, and r − 1/p = t − 1/u, then

Srp,uB(R
d)↪Stu,wF(R

d) .

(iic) (Jawerth-Franke embedding II) If 0 < p < u ≤ ∞,

0 < θ ≤ ∞, and r − 1/p = t − 1/u, then

Srp,θF(R
d)↪Stu,pB(R

d) .

(iiia) If r > 1/p (including p = ∞, r > 0), then

Srp,θB(R
d)↪C(Rd) .

(iiib) If r = 1/p and θ ≤ 1, then we still have

S
1/p
p,θ B(R

d)↪C(Rd) ,

and especially the limiting case

S0∞,θB(R
d)↪C(Rd) .

(iiic) It holds

S11,∞F(Rd)↪C(Rd) .

(iv) If 1 < p < ∞ and r > 0, then

Srp,min{p,θ}B(R
d)↪Srp,θF(R

d)↪Srp,max{p,θ}B(R
d) .

Proof. The embeddings (i), (iia), (iiia), (iiib), and (iv) are standard

and can be found in [[20], Chapter 2] especially we refer to [[20],

Remark 2, p. 132], which includes the limiting case p = ∞ in

(iiib). As for the Jawerth-Franke type embeddings, we refer to [[24],

Theorem 1.2 and 1.4] and the summary [[6], Lemma 3.4.2 and

3.4.3]. See also [[6], Rem. 3.4.4] for further references, especially

for the mixed smoothness case. Finally, the embedding in (iiic) is a

consequence of (iic) and (iiib).

4.1. Spaces on domains

We aim for approximating functions defined on the unit cube

[0, 1]d with the above regularity assumptions. This requires the

definition of function spaces on domains. The domain � ⊂

R
d represents an open connected set. Later, when dealing with

continuous bounded functions, we may use as well compact sets

like [0, 1]d.

Definition 4.3. Let � be a domain in R
d.

1. Furthermore, let 0 < p, θ ≤ ∞, and r > (1/p − 1)+. If in case

θ ≤ min{p, 1}, we admit r = (1/p− 1)+. Then we define

Srp,θB(�) := {f ∈ Lmax{p,1}(�) : ∃g ∈ Srp,θB(R
d) with g|� = f } ,

where

‖f |Srp,θB(�)‖ := inf{‖g|Srp,θB(R
d)‖ : g ∈ Srp,θB(R

d), g|� = f }.

2. In case 0 < p < ∞, 0 < θ ≤ ∞, and r > (1/p− 1)+, we define

Srp,θF(�) := {f ∈ Lmax{p,1}(�) : ∃g ∈ Srp,θF(R
d) with g|� = f } ,

where

‖f |Srp,θF(�)‖ := inf{‖g|Srp,θF(R
d)‖ : g ∈ Srp,θF(R

d), g|� = f }.

On bounded domains �, all the embeddings in Lemma 4.2 keep

valid. In addition, we have the following embeddings. If 0 < p2 <

p1 ≤ ∞ (F-case: pi < ∞), 0 < θ ≤ ∞, and |�| < ∞, then

Srp1 ,θF(�)↪Srp2 ,θF(�),

and

Srp1 ,θB(�)↪Srp2 ,θB(�).

Clearly, this is a trivial consequence of the embedding

Lp1 (�)↪Lp2 (�).

It is well-known that spaces Srp,θB([0, 1]
d) with sufficiently large

smoothness, namely r > 1/p, are compactly embedded into

L∞([0, 1]d). This is a direct consequence of results on entropy

numbers of the classes Sr∞,θB([0, 1]
d) in L∞([0, 1]d) [see [25], Cor.

23, (iii) or [12], Theorem 6.2], and the embeddings stated in Lemma

4.2 above.

However, in case r = 1/p, we do not have a compact

embedding. For the convenience of the reader, we give a direct

proof.
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Lemma 4.4. [Non-compactness of limiting embeddings] (i) Let

0 < p ≤ ∞ and θ ≤ min{p, 1}. Then the embedding

S
1/p
p,θ B([0, 1]

d)↪L∞([0, 1]d) (4.1)

is not compact.

(ii) If p ≤ 1 and 0 < θ ≤ ∞, then the embedding

S
1/p
p,θ F([0, 1]

d)↪L∞([0, 1]d) (4.2)

is not compact.

Proof. We show the non-compactness of the embedding (4.1) first

in the case d = 1. Clearly, by standard (tensorization) arguments,

this would also imply the non-compactness in higher dimensions.

Note further that the non-compactness of (4.2) is implied by the

Jawerth-Franke embedding [see Lemma 4.2, (iib)]

S
1/p1
p1 ,p2B([0, 1]

d)↪S
1/p2
p2 ,θ

F([0, 1]d)

together with the non-compactness of (4.1). So, it remains to be

proved the non-compactness of B
1/p
p,θ ([0, 1])↪L∞([0, 1]) for any

θ ≤ min{p, 1} and 0 < p ≤ ∞. This fact is certainly known and

can be found in the literature. However, we would like to present a

direct argument here since it fits the scope of the article. The idea

is to find a sequence (gj)j of functions with ‖gj|B
1/p
p,θ ([0, 1])‖ ≤ 1

for all j, which is not convergent in L∞([0, 1]) . A straightforward

choice for the gj is the Faber basis functions (L∞-normalized hat

functions) for different levels j. To be more precise, we let j =

0, 1, 2, ... and consider the sequence (gj)j := (vj,0)j∈N0 . Clearly, we

always have

sup
|h|≤2−k

‖1m
h vj,0‖p . 2−j/p .

In case k > j, we even obtain (due to cancellation)

sup
|h|≤2−k

‖1m
h vj,0‖p . 2−k/p2j−k,

see, for instance [[2], (3.19) and (3.20)]. According to [[26], p.
110] we can equivalently describe the norm of Bsp,θ (R) in terms of

differences. Note that here we have to use differences of sufficiently
high orderm > s since 1/pmay get large. The estimate from above
implies

‖vj,0|B
s
p,θ ([0, 1])‖ ≍ ‖vj,0‖p +

( ∞
∑

k=0

[2ks sup
|h|≤2−k

‖1m
h vj,0‖p]

θ
)1/θ

≍ 2−j/p +
(∑

k≤j

[2ks2−j/p]θ +
∑

k>j

[2ks2−k/p2j−k]θ
)1/θ

≍ 1

in case s ≤ 1/p . Hence, the elements vj,0 have uniformly (in j)

bounded quasi-norm in Bsp,θ ([0, 1]) . However, it holds

‖gj − gℓ‖∞ ≥ 1,

if j 6= ℓ, see, for instance, Figure 1. This directly disproves the

compactness of the unit ball of B
1/p
p,θ ([0, 1]) in L∞([0, 1]).

Remark 4.5. We need to formulate the definition of the

Kolmogorov widths to demonstrate some relations with

approximative characteristics considered here. For a compact

set F↪X of a Banach space X, we define the Kolmogorov widths as

follows:

dm(F,X) := inf
{ui}

m
i=1⊂X

sup
f∈F

inf
ci

∥
∥
∥f −

m
∑

i=1

ci ui

∣
∣
∣X
∥
∥
∥, m = 1, 2, . . . ,

and

d0(F,X) := sup
f∈F

‖f |X‖.

Clearly, considering F as the unit ball in S
1/p
p,θ B([0, 1]

d) with

θ ≤ min{p, 1} and X = L∞([0, 1]d) then

dm(S
1/p
p,θ B([0, 1]

d), L∞([0, 1]d)) 9 0

by Lemma 4.4.

5. The decay of the Faber coe�cients

Now we are ready for proving our main tool: an assertion

about the decay of the Faber coefficients of functions from

S
1/p
p,min{p,1}B(R

d) . In order to do so we need to define the following

space of doubly indexed sequences.

Definition 5.1. Let 0 < p, θ ≤ ∞ and r ≥ 1/p.

(i) The sequence space srp,θb is the collection of all doubly indexed

sequences {λj,k}j∈Nd
−1 ,k∈Z

d such that

∥
∥λj,k

∣
∣srp,θb

∥
∥ :=

[ ∑

j∈Nd
−1

2|j|1(r−1/p)θ
( ∑

k∈Zd

|λj,k|
p
)θ/p]1/θ

is finite (with the usual modification if max{p, θ} = ∞).

(ii) Let � ⊂ R
d be a compact domain. We define the index set

Dj(�) to be the set of all k ∈ Z
d such that xj,k ∈ �. The space

srp,θb(�) is defined as the space of all doubly indexed sequences

{λj,k}j∈Nd
−1 ,k∈Dj(�) such that

∥
∥λj,k

∣
∣srp,θb(�)

∥
∥ :=

[ ∑

j∈Nd
−1

2|j|1(r−1/p)θ
( ∑

k∈Dj(�)

|λj,k|
p
)θ/p]1/θ

is finite (with the usual modification if max{p, θ} = ∞).

Remark 5.2. (i) In case � = [0, 1]d we have Dj(�) = Dj, which

was defined right before (2.4). In a certain sense the elements of

srp,θb(�) are restrictions of elements in srp,θb to indices related to �.

(ii) These sequence spaces already appeared in [[23], Def. 2.1, 3.2].

Let 0 < p, θ ≤ ∞ and r ∈ R. The spaces srp,θb and srp,θb(�) are

Banach spaces if min{p, θ} ≥ 1. In case min{p, θ} < 1 the space

srp,θb is a quasi-Banach space. Moreover, if u := min{p, θ , 1} it is a

u-Banach space, i.e.,

‖λ + µ|srp,θb‖
u ≤ ‖λ|srp,θb‖

u + ‖µ|srp,θb‖
u, λ,µ ∈ srp,θb .

Here is the first main result.
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FIGURE 1

Univariate hierarchical Faber basis on [0, 1] for levels j ∈ {0, 1} and their union.

Proposition 5.3. Let 1/2 ≤ p ≤ ∞. Then there exists a constant

c > 0 (independent of f ) such that

∥
∥d2j,k(f )

∣
∣s
1/p
p,∞b

∥
∥ ≤ c

∥
∥f
∣
∣S

1/p
p,min{p,1}B(R

d)
∥
∥ (5.1)

for all f ∈ S
1/p
p,min{p,1}B(R

d).

Proof. Let us put u = min{p, 1}. We make use of the

decomposition (2.3) in a slightly modified way. For fixed j ∈ N
d
−1

we write f =
∑

ℓ∈Zd fj+ℓ. Putting this into (5.1) and using the

u-triangle inequality yields

∥
∥d2j,k(f )

∣
∣s
1/p
p,∞b

∥
∥
u
≍ sup

j∈Nd
−1

2u|j|1/p
∥
∥
∥

∑

k∈Zd

d2j,k(f )χj,k(x)
∥
∥
∥

u

p

≤ sup
j∈Nd

−1

2u|j|1/p
∑

ℓ∈Zd

∥
∥
∥

∑

k∈Zd

d2j,k(fj+ℓ)χj,k(x)
∥
∥
∥

u

p
.

Applying Lemma 3.5 we obtain

∥
∥d2j,k(f )

∣
∣s
1/p
p,∞b

∥
∥
u
. sup

j∈Nd
−1

∑

ℓ∈Zd

2u|j+ℓ|1/p‖fj+ℓ‖
u
p

d
∏

i=1

2−uℓi/p min{22uℓi , 1}max{2uℓi/p, 1}

.
( ∑

ℓ∈Zd

2u|j+ℓ|1/p‖fj+ℓ‖
u
p

)

sup
ℓ∈Zd

d
∏

i=1

2−uℓi/p min{22uℓi , 1}max{2uℓi/p, 1}

.
∥
∥f
∣
∣S

1/p
p,u B(R

d)
∥
∥
u
,

since the sup stays finite since 1/2 ≤ p ≤ ∞ .

As a direct consequence we have the following restricted

version.

Corollary 5.4. Let 1/2 ≤ p ≤ ∞. Then there exists a constant c > 0

such that

∥
∥d2j,k(f )

∣
∣s
1/p
p,∞b(�)

∥
∥ ≤ c

∥
∥f
∣
∣S

1/p
p,min{p,1}B(�)

∥
∥

for all f ∈ S
1/p
p,min{p,1}B(�).

Proof. Assume f ∈ S
1/p
p,min{p,1}B(�). Then, by Definition 4.3 there is

a g ∈ S
1/p
p,min{p,1}B(R

d) with g|� = f . By Proposition 5.3 we obtain

∥
∥d2j,k(g)|s

1/p
p,∞b

∥
∥ ≤ c ‖g|S

1/p
p,min{p,1}B(R

d)‖ .

Since d2
j,k(g) = d2

j,k(f ) for j ∈ N
d
−1 and k ∈ Dj(�) we have

∥
∥d2j,k(f )|s

1/p
p,∞b(�)

∥
∥ ≤

∥
∥d2j,k(g)|s

1/p
p,∞b

∥
∥

we obtain

∥
∥d2j,k(f )|s

1/p
p,∞b(�)

∥
∥ ≤ c‖g|S

1/p
p,min{p,1}B(R

d)‖ .

The last inequality holds for every extension g of f . Taking the

infimum yields the result.

The last corollary can be interpreted as a generalization of

[[2], Proposition 3.4] to the limiting smoothness case r = 1/p.

Related results concerning non-limiting smoothness were obtained

in [1, 5, 27].

6. Application for sampling recovery in
Lq with q < ∞

In this section, we would like to apply the Faber embedding

in Corollary 5.4 for sampling recovery on the unit cube � =

[0, 1]d. As we have shown in Lemma 4.4, we cannot expect an error

decay of a sampling recovery operator in the worst case when we

measure the error in L∞([0, 1]d). Hence, we focus on the recovery

in Lq([0, 1]d) with q < ∞. Based on the Faber representation,

we will use a sparse grid truncation in order to obtain a recovery

operator. Let

Inf =
∑

|j|1≤n

∑

k∈Dj

d2j,k(f )vj,k (6.1)

with the notation from Section 2.

Lemma 6.1. The following estimates hold true for α > 0

(i)
∑

|j|1>n

2−α|j|1 ≍ 2−αnnd−1 and
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(ii)
∑

|j|1≤n

2|j|1 ≍ 2nnd−1.

Proof. We refer to [[28], p. 10, Lemma D].

We first consider the case where p = q .

Theorem 6.1. Let 1/2 ≤ p < ∞. Then there is a constant C > 0

(independent of n and f ) such that

‖f − Inf ‖p ≤ C 2−n/pn(d−1)/min{p,1}
∥
∥f
∣
∣S

1/p
p,min{p,1}B([0, 1]

d)
∥
∥

holds for all n ∈ N.

Proof. The representation in (2.4) allows us to express and estimate

the error by u = min{p, 1}

‖f − Inf ‖
u
p =

∥
∥
∥

∑

|j|1>n

∑

k∈Dj

d2j,k(f )vj,k

∥
∥
∥

u

p

≤
∑

|j|1>n

∥
∥
∥

∑

k∈Dj

d2j,k(f )vj,k

∥
∥
∥

u

p
2u|j|1/p 2−u|j|1/p

≤
(

sup
j
2|j|1/p

∥
∥
∥

∑

k∈Dj

d2j,k(f )vj,k

∥
∥
∥
p

)u ∑

|j|1>n

2−u|j|1/p .

Finally applying Proposition 5.3 or Corollary 5.4 yields

‖f − Inf ‖
u
p .

∥
∥d2j,k(f )|s

1/p
p,∞b([0, 1]d)

∥
∥
u
∑

|j|1>n

2−u|j|1/p

. 2−un/pnd−1‖f |S
1/p
p,min{p,1}B([0, 1]

d)‖u,

where the sum is estimated by Lemma 6.1.

Remark 1. A one-dimensional version of the above result has been

proven by Oswald [19] about four decades ago. Dũng proved

in [[17], Theorem 3.2] that a related result for slightly different

Besov-type function spaces, especially not including the case p =

1/2.

In the situation p < q, we loose in the main rate. This

phenomenon has been observed earlier in the literature [see [6]].

We will use Jawerth-Franke type embeddings to improve the order

of the logarithmic term.

Theorem 6.2. Let 1/2 ≤ p < q < ∞. Then

‖f − Inf ‖q ≤ C 2−n/qn(d−1)/q‖f |S
1/p
p,min{p,1}B([0, 1]

d)‖.

Proof. Using Jawerth-Franke I (see Lemma 4.2), we obtain

‖f − Inf ‖q . ‖f − Inf |S
1/p−1/q
p,q B([0, 1]d)‖

.
( ∑

|j|1>n

2q|j|1[1/p−1/q]
∥
∥
∥

∑

k∈Dj

d2j,k(f )χj,k

∥
∥
∥

q

p

)1/q

.



 sup
j∈Nd

−1

2|j|1/p
∥
∥
∥

∑

k∈Dj

d2j,k(f )χj,k

∥
∥
∥
p





( ∑

|j|1>n

2−|j|1
)1/q

,

where we used the inverse Faber characterization for spaces with

positive smoothness [cf. [1], Theorem 4.18]. This reference deals

with the Rd case but can be easily extended by standard arguments

as shown, for instance, in the proof of Corollary 5.4 or following the

arguments in [[1], Theorem 4.25] to the unit cube setting. Finally

applying Proposition 5.3 yields

‖f − Inf ‖q . 2−n/qn(d−1)/q‖f |S
1/p
p,min{p,1}B([0, 1]

d)‖ .

Let us now deal with the space S11,∞F([0, 1]d), which is

embedded into C([0, 1]d), as shown in Lemma 4.2, (iiic). By

Jawerth-Franke embedding II [(Lemma 4.2, (iic)], we even know

that for every 1 < p < ∞, we have S11,∞F([0, 1]d)↪S
1/p
p,1 B([0, 1]

d).

As a direct corollary of Theorems 6.1 and 6.2, we make the new

observations.

Theorem 6.3. (i) It holds for any small ε > 0

‖f − Inf ‖1 .ε 2−n(1−ε)‖f |S11,∞F([0, 1]d)‖ .

(ii) For any 1 < q < ∞ we have

‖f − Inf ‖q . 2−n/qn(d−1)/q‖f |S11,∞F([0, 1]d)‖ .

Proof. By the embedding S11,∞F([0, 1]d)↪S
1/p
p,1 B([0, 1]

d) for p > 1,

we may apply Theorem 6.2 to obtain the result. For (i), we simply

choose small q > 1 and use the fact that the Lq-norm dominates

the L1-norm. Clearly, the logterm can be dropped in this regime.

6.1. Sampling widths

Let us focus our considerations toward the problem of optimal

sampling recovery. We compare the number m of samples to the

resulting error in an algorithm and call the quantity

̺m(S
r
p,θA([0, 1]

d), Lq([0, 1]d))

:= inf
Xm⊂[0,1]d ,|Xm|=m

ϕ :C
m→Lq([0,1]d)

sup
‖f |Srp,θA([0,1]

d)‖≤1

∥
∥f − ϕ(f (Xm))

∣
∣Lq([0, 1]d)

∥
∥,

the m-th sampling width. If, in addition, the mapping ϕ :C
n →

Lq([0, 1]d) is linear, then we obtain the linear sampling widths

̺lin
m (Srp,θA([0, 1]

d), Lq([0, 1]d))

:= inf
Xm⊂[0,1]d ,|Xm|=m

ϕ :C
m→Lq([0,1]d)
linear

sup
‖f |Srp,θA([0,1]

d)‖≤1

∥
∥f − ϕ(f (Xm))

∣
∣Lq([0, 1]d)

∥
∥,

where A ∈ {B, F}. Therefore, according to the definitions

mentioned above, we have

̺m(S
r
p,θA([0, 1]

d), Lq([0, 1]
d)) ≤ ̺lin

m (Srp,θA([0, 1]
d), Lq([0, 1]

d)).

In the next theorems, we apply the linear algorithm Inf [cf.

(6.1)] to obtain upper bounds for ̺lin
m and ̺m.

Theorem 6.4. Let 1/2 ≤ p < ∞. Then

̺lin
m (S

1/p
p,min{p,1}B([0, 1]

d), Lp([0, 1]
d)) . m−1/p(logd−1 m)1/p+1/min{p,1}

for allm ∈ N.
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Proof. The upper bound is due to Theorem 6.1 recognizing that

the algorithm In in (6.1) samples f in m ≍ 2nnd−1 nodes. This can

be trivially checked by applying Lemma 6.1, (ii). For the sake of

completeness, we refer to [[1], Section 5.1] where further properties

of this operator were studied.

Theorem 6.5. Let 1/2 ≤ p < q < ∞. Then

(i)

̺lin
m (S

1/p
p,min{p,1}B([0, 1]

d), Lq([0, 1]
d)) . m−1/q(logd−1 m)2/q

and

(ii)

̺lin
m (S11,∞F([0, 1]d), Lq([0, 1]

d)) . m−1/q(logd−1 m)2/q

for allm ∈ N.

Proof. The upper bound in (i) is due to Theorem 6.2 taking the

number of sampling nodes into account, see Theorem 6.4. The

upper bound in (ii) is due to Theorem 6.3.

6.2. Lower bounds

The linear width of class F in a normed space X has been

introduced by Tikhomirov [29] more than 60 years ago. It is

defined by

λm(F,X) := inf
A : X→X linear

rankA≤m

sup
f∈F

∥
∥f − A(f )

∣
∣X
∥
∥ .

Romanyuk [30, 31] proved for F, the unit ball in Srp,1B([0, 1]
d),

that in case 1 ≤ p ≤ q ≤ 2 and q > 1

λm(S
1/p
p,θ B([0, 1]

d), Lq([0, 1]
d)) ≥ dm(S

1/p
p,θ B([0, 1]

d), Lq([0, 1]
d))

& (m−1 logd−1 m)1/q .

(6.2)

We obtain the following lower bounds for the (linear) sampling

widths.

Theorem 6.6. (i) Let 1 ≤ p ≤ q < ∞. Then we have

̺m(S
1/p
p,1 B([0, 1]

d), Lq([0, 1]
d)) & m−1/q .

(ii) If, additionally, 1 ≤ p ≤ q ≤ 2 and q > 1, then

̺lin
m (S

1/p
p,1 B([0, 1]

d), Lq([0, 1]
d)) & (m−1 logd−1 m)1/q .

Proof. The result in (ii) follows immediately from (6.2). For the

lower bound in (i), we use a fooling function that is constructed

as the simple tensor function, containing the univariate fooling

function obtained from [32] in the first direction smooth compactly

supported (bump) functions in all remaining directions. We obtain

our result by considering that all corresponding norms have

product properties related to simple tensor functions.

7. Outlook and discussion

In this article, we have shown that for the sampling

recovery problem the compact embedding into L∞([0, 1]d) is

not necessary. There are several relevant multivariate function

classes that fall under this scope, such as limiting mixed

Besov and Triebel-Lizorkin spaces with smoothness r = 1/p

and further parameter conditions to ensure the embedding

into the class of continuous functions. We were able to give

upper bounds for the sampling widths in Lq([0, 1]d) with

q < ∞, which are sharp in the polynomial main rate.

As for the right order of the logarithm, the situation is

completely open.

Let us comment on the particular case of L1-smoothness

spaces. Smoothness spaces built upon L1([0, 1]d) with smoothness

r = 1 play an important role in numerical integration. This

includes, for instance, the space S11W([0, 1]d) defined using

weak derivatives. This space cannot be described using Fourier

analytical means and is therefore difficult to handle. However,

these spaces are considered in the scope of this article since

we also have r = 1/p and a non-compact embedding into

L∞([0, 1]d). A Faber characterization is shown, similar to above,

including

sup
j∈Nd

−1

∑

k∈Zd

|d2j,k(f )| .
∥
∥f
∣
∣S11W(Rd)

∥
∥ . (7.1)

In particular, this would imply the following so-called sampling

inequality
∑

k∈Zd

|f (k)| .
∥
∥f
∣
∣S11W(Rd)

∥
∥ .

This extends the result in [[33], Prop. 2] in several

directions. On the one hand, we consider the multivariate

case, and on the other hand, the space S11W(Rd) is larger

than S11,1B(R
d) .

Having (7.1) at hand, the following slightly sharper version of

Theorem 6.3 is immediate.

Theorem 7.1. For any 1 ≤ q < ∞, we have

‖f − Inf ‖q . 2−n/qn(d−1)/q
∥
∥f
∣
∣S11W([0, 1]d)

∥
∥ .

A proper Fourier analytical replacement of the spaces

S11W([0, 1]d) are the spaces S11,qF([0, 1]
d). However, these

spaces are not really comparable, especially when q = ∞.

Using the methods in [[34], Theorem 1.9], there is strong

evidence for proving a version of (7.1) also for the spaces

S11,∞F(Rd). This would imply a version of Theorem

7.1. By well-known arguments, a cubature formula with

performance

∣
∣
∣

∫

[0,1]d
f (x) dx−

N
∑

i=1

λif (x
i)
∣
∣
∣ . N−1(logN)2(d−1)

∥
∥f
∣
∣S11,∞F([0, 1]d)

∥
∥

can be constructed by integrating the approximand. Note that

there were efforts made in the literature to treat such limiting

cases, see, for instance [[35], Cor. 6.5]. Suboptimal bounds

were proven there. Note that results for such limiting cases

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2023.1216331
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Byrenheid et al. 10.3389/fams.2023.1216331

are related to the Kokhsma-Hlawka inequality, showing that

QMC-cubature in S11W([0, 1]d) is related to the star discrepancy of

the cubature nodes.
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