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Climate change is arguably one of the most pressing issues a�ecting the world

today and requires the fusion of disparate data streams to accurately model

its impacts. Mosquito populations respond to temperature and precipitation

in a nonlinear way, making predicting climate impacts on mosquito-borne

diseases an ongoing challenge. Data-driven approaches for accurately modeling

mosquito populations are needed for predicting mosquito-borne disease risk

under climate change scenarios. Many current models for disease transmission

are continuous and autonomous, while mosquito data is discrete and varies both

within and between seasons. This study uses an optimization framework to fit

a non-autonomous logistic model with periodic net growth rate and carrying

capacity parameters for 15 years of daily mosquito time-series data from the

Greater Toronto Area of Canada. The resulting parameters accurately capture

the inter-annual and intra-seasonal variability of mosquito populations within

a single geographic region, and a variance-based sensitivity analysis highlights

the influence each parameter has on the peak magnitude and timing of the

mosquito season. This method can easily extend to other geographic regions and

be integrated into a larger disease transmission model. This method addresses

the ongoing challenges of data and model fusion by serving as a link between

discrete time-series data and continuous di�erential equations for mosquito-

borne epidemiology models.

KEYWORDS

data fusion, non-autonomous model, logistic growth, mosquito populations, di�erential
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1. Introduction

Climate change is arguably one of the most pressing issues affecting our world

today, and one of the threats exacerbated by the changing climate is mosquito-borne

disease transmission [1, 2]. Mosquito-borne diseases such as malaria, dengue, and West

Nile virus are transmitted through the bites of infectious female mosquitoes and are

responsible for 350–650 million human cases and over 630,000 deaths worldwide each

year [3, 4]. Mosquito populations are directly impacted by climatic variables, such as

air temperature and precipitation, in a non-linear way [5–7]. The air temperature needs

to be warm enough for mosquitoes to survive and develop, but if too hot can cause

excess mortality [8, 9]. Precipitation is necessary to create egg laying sites for juvenile

mosquitoes, but too much rainfall can risk flushing eggs and larvae from their habitats

[10, 11]. A comprehensive approach that incorporates data streams for climate, land cover,
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and mosquito and human populations is vital to predict the next

mosquito-borne disease outbreak and assess mitigation strategies

[2]. Many mosquito-borne disease transmission models that

incorporate known biological mechanisms and allow for “what-

if ” scenarios are continuous and either autonomous [12–15] or

vary with a function such as a sine wave [16]. The former is

good for single-season outbreaks and building intuition, while

the latter may capture seasonal patterns with tractable analysis

[17]. However, neither approach captures inter-annual and intra-

annual variation in season length and intensity when they are not

directly connected to observed data [2, 18]. To better understand

how mosquito-borne disease transmission will be altered under

climate change, we aim to incorporate variable seasonal dynamics

of mosquito populations into a classical mathematical model for

mosquito population dynamics.

As we gain access to increasingly diverse and big data,

we have the opportunity to merge data-driven and model-

driven approaches to enhance our understanding of physical and

biological phenomena [19]. An ongoing challenge of integrating

both approaches is data fusion—the process of transforming

collected data into a usable format [2] to reconcile disparate data

streams of varying spatial and temporal resolution. Further, data

fusion needs for connecting discrete, noisy data to mechanistic

mathematical models differ from the data fusion needs for

purely statistical models [19]. In the context of understanding

mosquito population dynamics as informed by climate and

environment, mosquito trap data is currently the gold standard for

capturing within and between season variation mosquito density

in a particular location [20]. Additionally, some highly detailed

mosquito life cycle models [21, 22] can produce predictions of

mosquito populations variation through time. Data from traps or

high-resolution model output are discrete and often noisy, varying

widely between and within seasons [23]. Recovering time-varying

parameters from time-series data is an ongoing endeavor related

to the area of determining dynamics [24, 25]. Existing methods

tend to be computationally intensive or produce outputs that are

difficult to interpret [18, 26]. A current challenge is to incorporate

this important data-driven variability into disease transmission

models while preserving the fast computation time, interpretability,

and general utility of a continuous differential equation approach

[2, 27].

To address this question, we annually fit a non-autonomous

logistic model with periodic net growth rate and carrying capacity

parameters to 15 years of mosquito time-series data from the

Greater Toronto Area of Canada. We considered ten variations of

the non-autonomous logistic growth model, allowing for different

combinations of fixed and varying parameters to ensure a balance

between parsimony and enough flexibility to capture observed

patterns throughout the considered time period. We used a

model selection procedure, Akaike Information Criterion (AIC),

to show that a four-parameter non-autonomous logistic model

best captures the dynamic behavior for two types of adult female

mosquito time-series data, (a) the Total Population including all

adult female stages, and (b) the Active Population—blood-seeking

females assumed to be directly proportional to number of captures

per trap per day. We also quantified model error and determined

not only optimal parameters for each year, but also the best start and

end days of the mosquito season as these vary from year to year.We

further explore the sensitivity of parameters on the peak magnitude

and timing of the mosquito season for each population type. This

method addresses the ongoing challenges of data and model fusion

by serving as a link between a discrete, noisy population time

series and continuous differential equations for mosquito-borne

epidemiology models.

2. Methods

2.1. Non-autonomous logistic model with
periodic parameters

The logistic growth model is often used to model density-

dependent population dynamics, includingmosquitoes [12, 28, 29].

Under logistic growth, the population’s rate of change decreases

linearly as its size approaches the carrying capacity. The carrying

capacity is the theoretical maximum that can be sustained by

the environment. These logistic growth models can be used to

assess population control strategies, or incorporated into a larger,

mechanistic vector-borne disease modeling framework to study

transmission dynamics [12, 13, 30]. The classical logistic model

and many applications assume that the biological parameters– the

intrinsic growth rate and carrying capacity– are constant with

respect to time [13]. This simplifying assumption not only allows

for increased mathematical tractability and analysis, but also serves

as an approximation when detailed, reliable population data is

unavailable. However, the assumption of constant parameters may

fail to capture realistic behavior observed in nature, particularly

in the case for mosquitoes whose populations are inherently time-

dependent [8, 10, 11]. Specifically, the mosquito population growth

rate is known to be influenced by temperature and carrying capacity

depends on the availability of egg laying sites and competition

between larvae [12].

The classic non-autonomous logistic model consists of a single

ordinary differential equation to represent the population of adult

female mosquitoes, P(t):

dP(t)

dt
= r(t)P(t)

(

1−
P(t)

K(t)

)

, (1.1)

where r(t) is the time-varying intrinsic net growth rate andK(t)

is the time-varying carrying capacity. For this application, the net

growth rate is defined as the difference between the rates of adult

emergence and adult mortality. Therefore, it is possible for the net

growth rate to be negative. Such examples of a negative growth

rate can occur during extreme weather events that kill a high

proportion of juvenile or adult mosquitoes, or could just be typical

environmental patterns that cause some species of mosquitoes to

diapause during the winter season [31]. The model assumes both

growth rate and carrying capacity are time-varying since both

processes are influenced by time-dependent exogenous factors,

such as temperature, water availability, and daylight hours [8, 10,

11]. We use periodic functions to represent the yearly seasonal

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2023.1207643
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Mancuso et al. 10.3389/fams.2023.1207643

fluctuations of r(t) and K(t):

r(t) = rb − rscos

(

2π t

365

)

, (1.2)

K(t) = Kb − Kscos

(

2π t

365

)

. (1.3)

Components with the b subscripts denote the baseline (mean)

values, and the components with s subscripts represent the

amplitude scaling factor of the cosine wave.

2.2. Data and mosquito process-based
model

Greater Toronto Area (GTA) mosquito data for years 2005–

2016 was obtained from Public Health Ontario’s mosquito

database. Adult mosquitoes are trapped weekly during the

mosquito season, which occurs from roughly May–October for

Toronto. This time frame recorded over 115,000 mosquito

observations from 2,722 trap sites. Since nearly 85% of the

traps used were Light Traps targeting female mosquitoes actively

seeking a blood meal, we assume in the models that all

trapped mosquitoes are female and blood-seeking. The majority

of identified mosquitoes were Culex pipiens and Culex restuans

species, which are known to transmit West Nile virus (WNV)

[21]. The data from the WNV mosquito database is available upon

request and approval from Public Health Ontario [32].

Our non-autonomous logistic model is capable of fitting any

discrete time series for mosquitoes. However, in this study, to

overcome the challenges of sparse trap data and outliers, our non-

autonomous logistic model was fitted to the daily output from a

Process Based Model (PBM) developed by Shutt et al. [21]. Shutt

et al.’s PBM mechanistically models the life stages of mosquitoes

and provides an improved estimation of the daily true mosquito

population compared to fitting parameters to the temporally-coarse

data alone. The PBM was fitted to the GTA’s Culex trap data

for years 2005–2016, and we used it to estimate the mosquito

populations for years 2017–2019 based on temperature and stream

gauge records. The PBM provides two time-series outputs—the

Total Population, representing the adult female mosquito total

count in the GTA each day (including mosquitoes meal-seeking,

resting, egg-laying, and in diapause), and the blood-seeking female

mosquito Active Population, assumed to be directly proportional

to the average number of captures per trap per day. Although

our non-autonomous logistic linkage model is being fitted to the

output from a high-fidelity mosquito life cycle model, it also has

the capability to fit any discrete time series for mosquitoes, such as

trap data.

2.3. Model selection procedure

Model selection involves finding a balance between having a

model detailed enough to capture important behavior of interest,

but not so detailed that it overfits the given dataset. In order to

find a non-autonomous logistic model best fits the data across all

years, we conducted a model selection procedure using the Akaike

TABLE 1 Candidate models for the model selection procedure.

Model Parameters fitted

A rs

B rs , rb

C rs , K

D rb , rs , K

E rs

F rb , rs

G Kb , Ks

H rs , Ks

J rb , rs , Ks

K rb , rs , Kb , Ks

Models A–D consider a constant carrying capacity, whileModels E–K consider a time-varying

carrying capacity.

Information Criterion (AIC) [33]. The AIC is based on information

theory and discourages overfitting by penalizing models with more

parameters. Models with a smaller AIC can reflect better goodness-

of-fit over models with larger AIC.

Ten candidate models of hierarchical nature were included in

the model selection procedure (Table 1). Each candidate model fits

a subset of the parameters of model (1) while keeping the remainder

of the parameters fixed. The first four models (A–D) assume a

constant carrying capacity (i.e., Ks = 0), and the last six models

(E–K) assume a time-varying carrying capacity.

Parameter fitting was carried out in Python using the

least_squares function from the SciPy Optimize library

[34]. This function minimizes the mean squared error between

the PBM output and our model simulation. We use a Trust

Region Reflective algorithm for minimization, which allows us to

incorporate bounds on the parameter search space as described in

Supplementary Table 1. Further details about the selected search

space constraints are included in Section 2.4. Simulation of the

model (1) uses a fourth-order Runge-Kutta method.

The parameters for each candidate model were fitted for three

tests for each mosquito population (Total and Active). We refer to

these tests as “Fitting Seasons”, that roughly represent the duration

and timing of mosquito prevalence in the GTA. The three Fitting

Seasons for the Total Population occur from (i) May 1–October

1, (ii) May 15–October 15, and (iii) June 1–November 1, each

year. Each of the Fitting Seasons last 154 days, or 22 weeks. The

Total Population time-series pose a challenge when fitting the non-

autonomous logistic model from November to May since this is

the period during which most or all adult female mosquitoes are

in diapause. However, it is assumed that since the majority of the

mosquitoes remain in a diapause state during this time frame they

are less relevant to model for disease transmission or vector control

modeling purposes. On the other hand, the Active Population can

be modeled throughout the full year (365 days) without issue. The

three Fitting Seasons for the Total Population begin (i) May 1, (ii)

May 15, and (iii) June 1, each year.

For each population, the AIC for candidate model j = A, B,...,

K was calculated from the sum of squared errors (SSE) over all
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M = 15 years of time-series data [33]:

AICj = n

[

ln

(

SSEj

n

)]

+ 2(k+ 1), (2)

where,

SSEj =

M
∑

i=1

SSE
j
i,

is the sum of the SSE for years i = 1, 2, ...M for candidate model

j, n is the number of data points (154 fitting days×M years for Total

Population, 365 fitting days ×M years for Active Population), and

k is the number of parameters fitted.

2.4. Parameter optimization

The four-parameter model (Model K) was selected as it

produced the lowest AIC for each of the three Fitting Seasons

for both Total and Active Populations. We then estimated the

seasonal (yearly) net growth rate and carrying capacity parameters

for the Total and Active Populations of the GTA from 2005–2019

using Model K from the Model Selection Procedure. Similar to the

process that fitted parameters for the Model Selection Procedure, a

Trust Region Reflective algorithm from the SciPy Optimize library

[34] found the optimal seasonal parameters for the time-varying net

growth rate and carrying capacity. Specifically, the components rb,

rs, Kb, and Ks of (1.2)–(1.3) were found for each of the 15 seasons

for each population type. The Trust Region Reflective algorithm

allows us to incorporate bound constraints for parameters based on

estimated ranges for the net growth rate [12, 13, 35] and reasonable

assumptions for the carrying capacity [36]. This algorithm is a

least squares method, which minimizes the mean squared error

between the PBM time-series and the mosquito population P(t).

Other methods to infer parameters from data include gradient

descent [37], Bayesian inference [23, 38], and ensamble-adjusted

Kalman filter [39]. Each of these methods are suitable for fitting

a small number of model parameters, but we used the Trust

Region algorithm to incorporate biologically suitable parameter

bounds [34]. This framework relates to the concept of determining

dynamics by providing a useful way to connect discrete time-series

data to numerous time-varying parameters from a continuous

modeling framework [18, 24–26].

2.4.1. Total mosquito population
As mentioned earlier, the Total Mosquito Population includes

all adult female mosquitoes in the GTA—i.e., the Total Population

captures the amount of adult female mosquitoes through all stages

of the gonotrophic cycle—bloodmeal seeking, digestion and egg

maturation, and oviposition—as well as those in diapause. The

start and duration of the optimal mosquito fitting season for

the Total Population changes from year-to-year and reflects the

interannual variation of mosquito populations. The majority of

mosquitoes remain dormant in diapause during the cold winter

and emerge once temperatures become suitable for growth and

survival [21]. Mosquitoes in diapause remain non-biting, and thus

do not pose a risk for contributing to infection propagation [31].

We explored May 1–June 1 as “candidate start days” to begin fitting

the Total Population each year. The range of “candidate start days”

refers to the time when mosquitoes begin to emerge from their

overwintering state in the GTA. Similarly, “candidate end days”

refer to the range of dates when most mosquitoes are likely to be

in diapause. We selected October 1–November 1 as the date range

for the “candidate end days.” The range of candidate start and end

days provides an exhaustive grid-search across the likely emergence

and disappearance of mosquitoes for each season.

For each year, the initial condition, P(0), was selected as the

value of the mosquito PBM time-series on the candidate start day.

The initialized value of Kb was selected as the maximum of the

mosquito PBM time-series between the candidate start day and

candidate end day. The bound constraints for the parameters were

selected as −0.2 ≤ rb ≤ 0.2, −0.35 ≤ rs ≤ 0, 1 ≤ Kb ≤

100, 000, and 0 ≤ Ks < 100, 000. Bound constraints for the

growth rate parameters were estimated from previous modeling

studies [12, 13, 35] and were included to mitigate the problem

of obtaining biologically irrelevant values. Although less is known

about the bound constraints for the carrying capacity parameters,

we assumed the carrying capacity to be no more than one order

of magnitude larger than the largest observation of the mosquito

PBM time-series. Parameters rb and rs were initialized as rb = 0

and rs = −0.07 to provide a biologically relevant starting place

for optimization. Parameter Ks was arbitrarily initialized as 0.1%

of the maximum baseline carrying capacity (i.e., Ks = 100) to

reflect a small variation in carrying capacity. The selected parameter

initialization and constraints directs the optimization algorithm to

an appropriate solution—one that is both biologically valid and

numerically stable.

Each of the 14,415 fits (31 candidate start days × 31 candidate

end days × 15 years) returns the fitted parameters along with

the root mean squared error (RMSE). The combination of the

candidate start day and candidate end day with the lowest RMSE

for each year is selected as that year’s mosquito fitting season. The

resulting rb, rs,Kb, andKs values obtained from themosquito fitting

season determine the time-varying net growth rate and carrying

capacity parameters for that year.

2.4.2. Active mosquito population
The Active Mosquito Population represents the number of

adult female mosquitoes in the GTA currently seeking a blood meal

in their gonotrophic cycle, so are assumed to be most likely to

be trapped. In other words, this is the population of mosquitoes

that are actively biting humans and other animals, and provides a

reasonable estimate for understanding the magnitude of mosquito-

borne disease risk on a given day. The fitting season of the Active

Population lasts 365 days since they go down to zero during the

winter, which the model can easily capture (as opposed to the Total

Population time series that includes diapausingmosquito dynamics

during winter which we avoided fitting to). The range of “candidate

start days” were chosen from May 1–June 1 each year and fitted

until the same calendar day the following year. That is, new values

for rb, rs, Kb, and Ks are fitted every 365 days.

To ensure the mosquito population remains non-negative, the

initial condition, P(0), was selected as maximum between 0.01 and
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the mosquito PBM value on the candidate start day. The initialized

value of Kb was the maximum value of the mosquito PBM time-

series during the fitting season. The carrying capacity for the Active

Population is much lower than that of the Total Population because

it is scaled to the number of adult female mosquitoes captured

per trap per day, rather than the entire population. Therefore, we

reasonably assumed the bound constraints for Kb and Ks to be

1 ≤ Kb ≤ 1, 000 and 0 ≤ Ks < 1, 000, respectively. Initialization

and bound constraints for rb and rs are as before, and Ks initialized

as 0.1% of the maximum Kb value (i.e., Ks = 1).

The root mean squared error (RMSE) was found for each of the

465 fits (31 candidate start days × 15 years), and candidate start

day with the lowest RMSE value for each year was selected as that

season’s start day. For each year, simulations last from the current

season’s start day until the following season’s start day. That is, the

365 day period used to fit the model is extended/truncated to align

with the next season’s start day. The last season of the time-series

is simulated for the full 365 day period from the season’s start day.

This produces a piecewise-continuous function to approximate the

Active Population across the 15 years of time-series data.

2.5. Sensitivity analysis

A sensitivity analysis was conducted to better understand the

influence of non-autonomous logistic model parameters on two

quantities of interest. The quantities of interest we explored were

the peak magnitude and peak timing. The peak magnitude is

defined as the greatest daily mosquito population simulated within

a season [maxP(t)], and the peak timing is the time t at which

the peak occurs. Sobol sensitivity indices [40] of each parameter

were computed for the peak magnitude and timing of the Total and

Active Populations. Sobol sensitivity analysis is a variance-based

sensitivity measure which computes the percentage of variance that

can be attributed to each input parameter and their interactions

[40, 41].

For each population type (Total andActive), we generated 1,024

(or 210) samples of parameter combinations for the Sobol sensitivty

analysis using the sobol.sample function of the SALib sample

package [42, 43]. To avoid selecting samples that would be

biologically invalid, we first re-scaled the carrying capacity equation

(1.3) to ensure that themodel would always produce a non-negative

carrying capacity:

K(t) = Kb

(

1− Ka cos

(

2π t

365

))

, (3)

where 0 < Ka < 1. Sensitivity indices were computed for

five model parameters: the baseline and scaling net growth rate

parameters (rb and rs), the baseline and re-scaled carrying capacity

parameters (Kb and Ka), and the initial condition P(0). Parameter

ranges for rb, rs, Kb, and P(0) were selected from the ranges

obtained from the parameter fitting results of each population

type (see Sections 3.2, 3.3, along with Supplementary Tables 2,

3). We decided to use these ranges for the parameter sampling

bounds instead of the original ranges selected for the parameter

fitting (see Sections 2.4.1, 2.4.2) because certain combinations

of parameters could produce numerically unstable output. In

particular, numerical simulations tended to be unstable when large

carrying capacity fluctuations were selected with large net growth

rate values. Because of this, we limited the range of Ka values to be

between 0 and 0.9.

Simulations of the non-autonomous logistic model were run

for 184 days for the Total Population and 300 days for the Active

Population for each parameter sample. The time frame for the Total

Population aligns with the time frame used for fitting parameters

(May 1–Nov 1), and the time frame for the Active Population

was selected to ensure that only one peak would be generated

during the period of simulation. The peak magnitude and timing

was computed from each simulation for both populations, and the

first and total order Sobol sensitivity indices were found using the

sobol.analyze function of the SALib sample package [42, 43].

First order indices measure the contribution to output variance by

a single model input alone, while the total order indices measure

the contribution to the output variance caused by the model input

and all higher order interactions with other model inputs [40, 43].

3. Results

3.1. Model selection

Akaike Information Criterion (AIC) values from the three tests

for the Total and Active Populations in the GTA are shown in

Tables 2, 3, respectively. For both populations, the four-parameter

model, Model K, has the lowest AIC value out of the ten candidate

models for each test. The three-parameter model with constant

carrying capacity, Model D, also performs relatively well for both

populations. Model G, the two-parameter model with time-varying

carrying capacity, performs fairly well for the Total Population

when the fitting season occurs from May 1–October 1, but has

poor performance when fitting from June 1–November 1. Since

the fitting season will vary slightly from year-to-year, Model K was

selected to ensure a better fitting quality throughout the range of

potential fitting seasons.

3.2. Parameter fitting results for Total
Population

Parameter fitting results for the GTA’s Total Population is

show in Figure 1. Figure 1A shows the seasonal fittings of the

model (1) along with the mosquito PBM output. Figure 1B shows

the relative root mean squared error (RRMSE) values for each

year’s optimal fit. Although the mean squared error metric was

used as the cost function for parameter optimization, RRMSE

values are presented in Figure 1B to provide comparison of the

fitting performance across years. Different parameters were fitted

separately for each year due to the deterministic nature of the

model and yearly variation in the data. Nipa et al. used a stochastic

differential equation model with seasonality incorporated for

the mosquito population in a dengue transmission model [16].

However, selecting similar seasonal constants as our method

can be achieved through averaging numerous realizations of this

stochastic model, but would be more computationally intensive.
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TABLE 2 Akaike Information Criterion (AIC) values from the 10 candidate models of Greater Toronto Area’s Total Mosquito Population.

Fitting Season Model A Model B Model C Model D Model E

May 1–Oct 1 18472 18247 18409 17929 18471

May 15–Oct 15 18735 17923 18580 17716 18730

Jun 1–Nov 1 19428 18125 18966 17909 19426

Fitting Season Model F Model G Model H Model J Model K

May 1–Oct 1 18247 17953 18178 18014 17485

May 15–Oct 15 17924 18572 18164 17876 17644

Jun 1–Nov 1 18124 19141 18798 18048 17853

The Fitting Season refers to the start and end dates of model fitting for each year of time-series data. Each fitting season lasts 154 days, or 22 weeks. The four-parameter non-autonomous logistic

model (Model K) produces the lowest AIC values for each Fitting Season.

TABLE 3 Akaike Information Criterion (AIC) values from the 10 candidate models of Greater Toronto Area’s Active Mosquito Population.

Start of Fitting Season Model A Model B Model C Model D Model E

May 1 12223 9137 11125 8400 11821

May 15 13337 8819 12545 8060 12991

Jun 1 14836 8707 13269 7883 14292

Start of Fitting Season Model F Model G Model H Model J Model K

May 1 9134 13501 8661 8197 7107

May 15 8826 12912 9930 8263 7384

Jun 1 8725 13363 12381 8658 7671

The Start of Fitting Season refers to the initial date of model fitting for each year of the time-series data. Model fitting lasts 365 days, or one full year. The four-parameter non-autonomous

logistic model (Model K) produces the lowest AIC values for each Fitting Season.

FIGURE 1

Fitting results for the Greater Toronto Area’s Total Mosquito Population for years 2005–2019. (A) Simulations of model fittings (blue curves) and

Mosquito Process-Based Model output (red dots). (B) Relative root mean squared error values.
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For the Total Population, it can be observed that the PBM time-

series exhibits a “tail” toward the end of each mosquito season. This

occurs during the period from November through April, where

the majority of Culex mosquitoes in the GTA remain dormant in

a diapause state. During diapause, female mosquitoes are neither

biting nor seeking a bloodmeal, and are therefore not at risk for

spreading infection [31]. The non-autonomous logistic model fits

the PBM time-series data during the period when mosquitoes have

emerged from diapause, which occurs roughly between May and

October for the GTA.

Supplementary Figure 1 provides a closer look at each year’s

best fit. Overall, the time-varying parameters of the non-

autonomous logistic model are able to capture the intraseasonal

and interannual variability of the Total Mosquito Population.

However, the model fitting struggles to capture the peak magnitude

of for some seasons—particularly for years 2007 and 2014 which

both had multiple peaks during the mosquito season. Year 2013

had the lowest fitting performance and is also the year with the

greatest peak value and a distinctly bi-model mosquito season. The

substantial increase of peak magnitude for 2013 is likely attributed

to unusually high flooding in the GTA for that year [44]. The

model (1) was not fitted to the Total Population data from late

fall through early spring, as it was assumed that the majority of

adult female mosquitoes during this period were in diapause. The

mosquito fitting season and fitted parameter values for each year

are found in Supplementary Table 2. We note that the minimum

carrying capacity value throughout the season is always non-

negative. Interestingly, nearly half of the years (7 of 15, Ks ≈ 0)

show a nearly constant carrying capacity throughout the mosquito

fitting season, while other years show larger variability in the

carrying capacity where Ks ranges from 31 to 99% of the baseline

value. This explains why the three-parameter model with constant

carrying capacity was the second best performing model after the

four-parameter model with time-varying carrying capacity.

The difference in optimal candidate start and end date

combinations between years 2011 and 2014 highlight the intra-

seasonal variation in mosquito populations within a geographical

location, as is apparent in the heatmaps of Figure 2. The

heatmaps present the normalized RMSE to best compare the fitting

performance across start and end date combinations within a single

year. For 2011, Fitting performance is optimal when the Mosquito

Fitting Season begins the first week of May and ends the first week

of October. In 2014, a Mosquito Fitting Season from late May to

mid October provides the best fit. Heatmaps of normalized RMSE

values for GTA’s Total Population for years 2005–2019 are shown in

Supplementary Figure 2.

3.3. Parameter fitting results for Active
Population

Parameter fitting results for the GTA’s Active Population are

shown in Figure 3. Figure 3A shows the seasonal fittings of the

model (1) along with the mosquito PBM output. Figure 3B shows

the RRMSE values for each year’s optimal fit. A more detailed

look at each year’s best fits is provided in Supplementary Figure 3.

The model can accurately capture the peak magnitude for most of

FIGURE 2

Heatmaps of the normalized root mean squared error (RMSE) values

from Total Population fittings with respect to candidate start and

end dates for years (A) 2011 and (B) 2014. Dark purple regions

denote the candidate start and end date combinations with the

lowest normalized RMSE values.

the mosquito seasons. The model may struggle to capture peaks

that have greater magnitudes or additional non-linear qualities

due to requiring a steeper derivative of the differential equation

and potentially causing stability issues of the numerical solver.

Additionally, a clear discontinuity is observed between the end of

the 2011 season and the beginning of the 2012 season, showing

that the model may not always provide a smooth, continuous

simulation from year-to-year. Nonetheless, the model simulation

generally avoids the noise in the time-series values that occurs at

the beginning of the season as mosquitoes are emerging somewhat

sporadically.

Supplementary Table 2 provides the optimal fitted parameters

for each season. Similarly to what we observed for the Total

Population, the minimum carrying capacity for each season is non-

negative, and 6 of 15 years show a constant carrying capacity.
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FIGURE 3

Fitting results for the Greater Toronto Area’s Active Mosquito Population for years 2005–2019. (A) Simulations of model fittings (blue curves) and

Mosquito Process-Based Model output (red dots). (B) Relative root mean squared error values.

Interestingly, five of the years with constant carrying capacity were

the same for both Total and Active Populations.

Intraseasonal variation of the model fitting performance by

start date is shown in Figure 4 for the 2013 (Figure 4A) and 2019

(Figure 4B) seasons. Similarly to what was observed for the Total

population, the season start date of the Active population varies

year-to-year. The start date of the fitting season directly relates

to the peak magnitude achieved in the simulation. May 20th as

the optimal start date for the 2013 season, and May 1st as the

optimal start date for the 2019 season. Intraseasonal variation for

the Active Mosquito Population for all years 2005–2019 is included

in Supplementary Figures 4, 5.

3.4. Sensitivity analysis

Sensitivity results of the parameters are displayed in Figure 5

for the peak magnitude (Figure 5A) and peak timing (Figure 5B)

of the Total and Active Populations of the GTA. The first order

effects measure the single model input’s contribution to the output

variance, and the interaction order effects measure the higher

order interactions between model input combinations [40]. The

interaction order effects were found by taking the difference

between the total order and first order effects.

The baseline carrying capacity (Kb) is the most sensitive

parameter for the peak magnitude for both populations

(Figure 5A), followed by the variation in net growth rate

(rs)—between 40 and 50% of the output variance is explained by

Kb alone, and 18-25% of the variance is explained by rs alone. We

notice that the baseline net growth rate (rb) has greater first and

interaction order effects for the Active Population compared to the

Total Population for peakmagnitude. The other parameters display

similar interaction order effects between the two populations for

the peak magnitude.

For peak timing (Figure 5B), both populations show the

greatest sensitivity to the net growth rate parameters (rb and rs).

However, the Active Population has substantially greater first order

effects for rb and less sensitivity to rs compared to the Total

Population. Nearly 88% of the output variance can be attributed

to rb alone for the Active Population, compared to only 53% for

the Total Population. On the other hand, roughly 70% of output

variance is attributed to rs for the Total Population, whereas only

25% for the Active Population.

Discrepancies in sensitivity indices between the two

populations are likely the result of the slightly different parameter

ranges used in the parameter sampling. These differing parameter

ranges were selected based on the differing characteristics of each

population time-series. When compared to the Active Population,

the fitted baseline carrying capacities and initial conditions for the

Total Population were up to two and four orders of magnitude

greater, respectively (see Supplementary Tables 2, 3). Further

investigation of parameter identifiability and sensitivity may

yield additional explanation about these differences [41, 45].

Nonetheless, both population types clearly show that the peak

magnitude is most sensitive to Kb and rs, while the peak timing
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FIGURE 4

Simulations (curves) of the Active Mosquito Population, Mosquito Process-Based Model output (red dots), and normalized root mean squared error

values for each start date’s fitting (May 1st-June 1st) for years (A) 2013 and (B) 2019.

is most sensitive to rb and rs. This suggests that the fluctuations

in net growth rate drive both peak magnitude and timing of the

mosquito season. Furthermore, the baseline carrying capacity is

most influential for the peak size, and the baseline net growth rate

is most influential for the timing of the peak.

4. Discussion

As data availability and storage continue to expand, data-driven

mechanistic and mathematical models provide useful insights into

the dynamics of various biological processes, such as population

growth [18, 20]. Mosquito populations have seasonal fluctuations

dependent on non-linear, exogenous variables related to climate,

land cover, and human behavior [2, 10, 46], and is an ongoing

challenge. The ability to accurately quantify mosquito populations

is important—not only to understand their distribution across

various spatial and temporal scales, but also to inform vector-

borne disease control and mitigation efforts, particularly under the

continued threat of climate change [6, 23, 38].

In this study, we fitted a non-autonomous logistic model

with piecewise periodic net growth rate and carrying capacity

parameters to adult female Culex mosquitoes in the Greater

Toronto Area (GTA) for years 2005–2019. Although most

applications using non-autonomous logistic growth typically have

only one of the parameters vary through time—either the growth

rate or the carrying capacity [29]—there is evidence that seasonal,

time-varying processes affect both parameters, making it preferable

to allow possible time-dependence for both the net growth rate and

carrying capacity in our application [10, 11]. This was supported

through the model selection procedure, which showed that fitting a

four-parameter non-autonomous logistic model provided the most

consistent fit across the time-series data for two types of mosquito

populations.
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FIGURE 5

Sensitivity of (A) peak magnitude and (B) peak timing to parameters for the Total (blue bars) and Active (orange bars) Populations. Interaction order

sensitivities were found by taking the di�erence between the total order and first order e�ects.

Common challenges of fitting temporally sparse data of an

unknown underlying distribution were averted by fitting the

intrinsic net growth and carrying capacity parameters to a

mosquito process-based model (PBM) output that considers the

biological mechanisms of each mosquito life stage [21]. The

joint implementation of the PBM with the non-autonomous

logistic model allows us to connect discrete time-series values to

parameters for continuous mechanistic models [2]. The models

are informed by real data, and challenges related to sample bias

are reconciled through the mechanistic framework. Moreover,

historical weather data was used as a proxy for estimating the

PBM’s time-series output in the absence of mosquito data (years

2017–2019) [21].

The non-autonomous logistic model captured the interannual

variability observed in the PBM time series for two mosquito

populations in the GTA—the Total Mosquito Population, which

considers all adult female mosquitoes, and the Active Mosquito

Population, which estimates the average number of captured adult

female mosquitoes per trap. The quality and performance of model

fitting are sensitive to the initial start date of the fitting, and

the optimal day to begin fitting varies from year-to-year. This

highlights the need to incorporate temporal population variation

in subsequent models for mosquitoes. An outstanding question

of interest is how to select the parameter search space—the final

parameter values obtained from the optimization framework were

notably sensitive to the initialization values and bound constraints.

Parameter initialization and bound constraints were selected based

on available knowledge of the net growth rate [12, 13] and

reasonable assumptions for the carrying capacity [36], which

cannot be directly observed in nature. An interesting result of the

model fitting showed nearly half the years of both populations

returned a constant carrying capacity (Ks = 0) despite having

the capability of modeling a time-varying one. This makes sense

since Model D, the three parameter model with constant carrying

capacity was the second best performing candidate model. We

observe that constant carrying capacities tend to be returned

when the PBM time series has a more symmetric peak or when

the best fitting curve is symmetric. However, the curves of the
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PBM time-series are greatly non-symmetric for several years of

each population, and thus the flexibility of having a time-varying

carrying capacity can be necessary to produce a parsimonious

output. As such, the interpretation of a time-varying carrying

capacity may provide more phenomenological than biological

insight. While our model does capture intra-annual variation, it

can struggle to reproduce seasons with multiple, distinct mosquito

peaks. This suggests an opportunity for adapting the model for

multi-modal data within a season. This is particularly worthwhile

for capturing the Total Population during the “off season”

(November though April for the GTA) when most mosquitoes are

diapausing and not at risk of spreading disease. Incorporating a

semi-discrete framework in the model structure can allow us to

quantify diapausing mosquitoes that can influence initial infected

populations as they emerge from overwintering [31]. Nonetheless,

the parameters fitted from themodel align with biologically sensible

ranges to produce parsimonious fits that balance model accuracy

with complexity.

Investigating the sensitivity and identifiability of model

parameters on their outputs is critical aspect for understanding

data-driven models [41, 45]. We employed a variance-based

sensitivity analysis of model parameters on the mosquito season’s

peak magnitude and timing using Sobol sensitivity indices [40].

Our results show that both the peak magnitude and timing

are sensitive to the amplitude variation of the net growth rate

(rs). Additionally, the peak magnitude is notably sensitive to the

baseline carrying capacity (Kb), and the peak timing is highly

sensitive to the baseline net growth rate (rb). Sensitivity indices

of parameters on the quantities of interest can vary based on the

specific characteristics of the mosquito population—we noticed

that peak timing was much more sensitive to rb and less sensitive

to rs for the Active population compared to the Total Population.

Further identifiability studies are required to explain the causes that

drive these differing sensitivities [45]. We suspect that the non-

autonomous logistic model is inherently unidentifiable in practice,

as numerous combinations of parameter values can produce

equally good fits. The fitted parameters obtained in this study

cannot be assumed as “ground truth” and should be interpreted

with caution.

Although the results shown here are specific to theCulex pipiens

and Culex restuans populations in the GTA, the non-autonomous

logistic model framework can be adapted to other mosquito

species and geographic locations. Parameters obtained from the

Total Population can be used to analyze mitigation and control

measures ofmosquito populations, while parameters obtained from

the Active Population can aid the forecasting and prediction of

mosquito-borne disease risk in deterministic epidemiology models.

The current purpose of the model is to reconstruct an observed

signal to use as a subsequent model input for a mosquito-borne

epidemiology model. Future work will incorporate the explicit

parameter dependence on environmental variables that impact

mosquito populations, such as temperature and precipitation [5, 6].

This will allow the model to be used for forecasting future mosquito

populations under climate change scenarios [2].

The concept of determining dynamic equations from data is

far from new, with notable developments ranging from symbolic

regression and chaotic data analysis to adaptive inference [18, 24–

26]. These techniques are useful when the underlying physical

laws are relatively unknown. However, these techniques can

be computationally expensive and elusive for researchers with

limited computer science or mathematics backgrounds [27]. Our

framework is useful for applications where the functional form of

time-dependent parameters or candidate models are assumed to

be known, but optimization of numerous time-varying parameters

is desired. Other applications that could benefit from this method

may include reactions with Michaelis-Menten dynamics, the

initiation of action potentials in neuroscience, gene regulation, and

circuit signals [18, 24]. The presented method provides a useful

way to connect discrete time-series data to a continuous modeling

framework.

While cloud computing has increased accessibility for

researchers to analyze large, heterogeneous datasets [27], lack

of publicly available data can still inhibit the ability to obtain

and analyze high-resolution data. There is currently no national

open-access mosquito data repository or standardized protocols

for mosquito data collection for the United States [20]. This creates

challenges for both data acquisition and data fusion and population

modeling [2].

The future is promising for data-informed mechanistic models

[2]. Statistical models alone have difficulty estimating coupled

systems or systems with unobserved variables [19], but data is

also necessary to validate mathematical models and produce high-

fidelity modeling forecasts. Mechanistic models are useful to assess

dynamics in locations where data is lacking or underlying drivers

are changing, for example, estimating the effect of the carrying

capacity that is unable to be directly measured or assessing the

impacts of mitigation strategies. Comprehensive frameworks that

combine statistical with mathematical modeling approaches can

provide robust output to inform decision makers and resource

allocation [2].
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